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WSSS-CRAM: precise
segmentation of
histopathological images via
class region activation mapping

Ningning Pan, Xiangyue Mi, Hongzhuang Li, Xinting Ge,

Xiaodan Sui and Yanyun Jiang*

Shandong Normal University, Jinan, China

Introduction: Fast, accurate, and automatic analysis of histopathological images

using digital image processing and deep learning technology is a necessary task.

Conventional histopathological image analysis algorithms require the manual

design of features, while deep learning methods can achieve fast prediction and

accurate analysis, but rely on the drive of a large amount of labeled data.

Methods: In this work, we introduceWSSS-CRAM aweakly-supervised semantic

segmentation that can obtain detailed pixel-level labels from image-level

annotated data. Specifically, we use a discriminative activation strategy to

generate category-specific image activation maps via class labels. The category-

specific activationmaps are then post-processed using conditional randomfields

to obtain reliable regions that are directly used as ground-truth labels for the

segmentation branch. Critically, the two steps of the pseudo-label acquisition

and training segmentation model are integrated into an end-to-end model for

joint training in this method.

Results: Through quantitative evaluation and visualization results, we

demonstrate that the framework can predict pixel-level labels from image-

level labels, and also perform well when testing images without image-level

annotations.

Discussion: Future, we consider extending the algorithm to di�erent

pathological datasets and types of tissue images to validate its generalization

capability.

KEYWORDS

histopathological image, precise semantic segmentation, weakly-supervised method,

category-specific image activation maps, deep learning

1 Introduction

Cancer is a leading cause of death worldwide, with increasing incidence and mortality

rates, and high treatment costs that impose a heavy burden on families and society

(Sung et al., 2021; Ferlay et al., 2021). Histopathological slides are the gold standard for

cancer diagnosis, providing not only basic information on tumor grading and subtype

classification but also a wealth of information about the tumor microenvironment (TME).

This not only plays a crucial role in explaining tumor development and metastasis but also

in influencing the treatment outcomes and prognosis of cancer patients. Recent studies

have found that the spatial organization of different tissues and cells is highly correlated

with tumor progression, and TME features can reveal gene expression in biological

pathways (Wang et al., 2020). Therefore, there is an urgent need for detailed segmentation

of different tissues for further clinical research.

Clinically, histopathological slides are visually inspected by pathologists and evaluated

semi-quantitatively, and the diagnostic results are reflected in the pathology report.

Quantitative assessment for research purposes requires manual annotation by pathologists.
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However, the reproducibility and consistency of manual

segmentation have been questioned due to inter-observer

annotation differences and inter-observer variability (Wang

et al., 2020). Due to the specific data storage format and large

size of histopathological slides, specific tools need to be used for

viewing and labeling, such as QuPath (Bankhead et al., 2017),

which makes data annotation work difficult. In addition, manual

annotation is very time-consuming and labor-intensive, requiring

several days for detailed segmentation of each histopathological

slide. Therefore, public research on histopathological image

segmentation is usually limited to partial areas of pathological

slides, or uses classification methods to achieve segmentation-like

effects on whole-slice histopathological images (Lu et al., 2021;

Yan et al., 2022; Pan et al., 2023), with very few studies focusing

on tissue segmentation in whole-slide histopathological images

(Cardenas et al., 2019; Amgad et al., 2022; Chan et al., 2019).

Therefore, it is imperative to develop fast and efficient methods

for the rapid, accurate, and consistent delineation of target

tissue areas. Semantic segmentation is a fundamental task in

computer vision, and deep learning-based automatic segmentation

frameworks have shown remarkable performance in medical image

segmentation tasks (Hesamian et al., 2019; Xun et al., 2022),

achieving outstanding results in various competitions. Popular

models for this task include FCN (Long et al., 2015), U-Net

(Ronneberger et al., 2015), V-Net (Milletari et al., 2016), nnU-Net

(Isensee et al., 2021), among others. Furthermore, other hybrid

models have also demonstrated excellent performance in medical

image segmentation (Jin et al., 2021; Leube et al., 2023; He et al.,

2023).

However, there are two major challenges in using deep-

learning-based segmentation algorithms for histopathological

image analysis tasks: (1) the performance of deep learning models

heavily relies on the quality and quantity of annotated data, and

histopathological image data is difficult to annotate, with pixel-level

annotation being even more challenging; (2) tumors from different

regions exhibit specificity, resulting in high costs for the transfer

learning of trained networks.

Although high-quality pixel-level annotation data is scarce,

coarse-grained or image-level annotation data is readily available.

In fact, for the problem of analyzing histopathological images,

there are publicly available datasets that can be downloaded and

used for research, such as TCGA,1 which contains tumor and

normal tissues from over 11,000 patients. The database provides

image-level descriptions of entire tissue pathology slides and

corresponding genomic sequencing results. To reduce the need for

pixel-level annotated images during model training, researchers

have proposed semi-supervised and weakly supervised learning

models, which attempt to improve the model’s performance by

providing unlabeled or image-level annotated data and hoping to

improve the model’s generalization ability.

Drawing inspiration from weakly-supervised deep learning

methods, we propose a weakly-supervised segmentation algorithm

based on Class Region Activation Maps (CRAM) for tissue region

segmentation in histopathological images. The framework utilizes

1 https://www.cancer.gov/about-nci/organization/ccg/research/

structural-genomics/tcga

image-level annotations to obtain Class Activation Maps (CAM)

as pseudo-labels for semantic segmentation. The algorithm can

be summarized into two main steps: (1) Obtain the CRAM:

using a deep learning classification model, high-quality pixel-level

pseudo-labels are generated based on image-level labels. (2) Train

a segmentation model: the pixel-level pseudo-labels generated in

step (1) are used as ground truth for model training. However,

salient region activation can exhibit a higher response to a single

class, while typically, multiple classes are present in one region of

a pathological image. Therefore, this paper uses a Discriminative

Activation (DA) layer to generate specific category masks for

foreground and background, which serve as initial segmentation

responses. To further increase the reliability of the pseudo-labels,

this paper introduces a joint training method by merging the

two steps into an end-to-end model. Furthermore, a joint loss

function is adopted to optimize both branches and then improves

the pseudo-labels’ quality. Furthermore, an additional Conditional

Random Field (CRF) operation is performed on the activation

regions, which are modified into more reliable regions as pseudo-

labels.

This approach primarily focuses on whole-slide images

(WSI) of lung adenocarcinoma stained with H&E. The

research dataset is sourced from the WSSS4LUAD2 challenge

dataset, with the goal of achieving pixel-level segmentation for

normal tissue, tumor epithelium, and tumor-associated stroma

within the histopathological sections. Figure 1 presents image

patches extracted from whole-slide pathology images of lung

adenocarcinoma, scanned at a resolution of 0.2517µm/pixel and

40× magnification. Corresponding segmentation labels for the

three prevalent tissue types are also provided. As depicted, these

three tissue types may simultaneously appear within a single

image patch, particularly tumor epithelium and tumor-associated

stroma, since tumor cells often adhere to the stroma. Thus,

tumors and stroma frequently coexist in the same image patch.

Figure 2 displays examples from the training dataset, where each

image patch is annotated with image-level labels indicating the

presence of tumor, stroma, and normal tissue. The training dataset

encompasses a total of 10,091 image patches. A comprehensive

description of the dataset is presented in Section 4.1 of this paper.

Our main contributions are illustrated as follows: (1) Proposing

a WSSS-CRAM that improves the traditional CAM method by

activating corresponding regions for each class in the image,

effectively utilizing the supervisory information of image-level

labels. (2) Integrating the steps of obtaining pseudo-labels and

training the segmentation model into an end-to-end model for

joint training. (3) Performing additional post-processing on the

activation regions, using a CRF operation to modify the activation

regions into more reliable pseudo-label regions.

2 Related work

This paper centers on the main research subject of

semantically segmenting tissue in lung adenocarcinoma.

The pertinent techniques predominantly center on semi-

supervised segmentation methods based on CAM. Therefore,

2 https://wsss4luad.grand-challenge.org/
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FIGURE 1

Histopathological images of lung adenocarcinoma tissue and their segmentation illustration. The blue area in the image represents the tumor region,

the green area represents the stroma region, and the yellow area represents the normal region.

FIGURE 2

Examples from the training set of the WSSS4LUAD Challenge. 1 indicates the presence of the tissue in the image, while 0 indicates the absence of the

tissue in the image. Top row: Tumor region; Second row: Tumor and stroma region; Third row: Stroma region; Fourth row: Normal region.

before delving into the specifics of the methods, we initially

introduce the task of region segmentation in histopathological

images of tissues. Following that, we offer a concise

analysis of pertinent research concerning semi-supervised

segmentation methods.

2.1 Histopathological image segmentation

Since the emergence of whole-slide pathology scanning

techniques, the utility of whole-slide tissue pathology imaging

has been confirmed across various applications within the
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realm of pathology. Digitized tissue pathology images have

facilitated tasks including remote expert consultations, prognostic

analysis, and tumor biomarker assessment (Kumar et al., 2020).

As scanning technologies and computational capacities have

advanced, significant strides have also been made in the domain

of tissue pathology image segmentation. Early approaches entailed

manual feature extraction, employing models such as support

vectormachines and Bayesianmodels for the segmentation of tissue

pathology images. For example, Hiary et al. (2013) employed a

Bayesian model to automatically segment stromal tissue in breast

tissue pathology images, leveraging color and texture attributes.

With the advancement of deep learning techniques, the remarkable

performance exhibited by deep learning in image segmentation has

prompted its application in the segmentation of tissue pathology

images. Among these techniques, FCN and U-Net have emerged

as the most frequently employed foundational architectures. For

instance, Chen et al. (2017a) introduced the utilization of a Deep

Contour-Aware Network (DCAN) for the segmentation of colonic

glands. This model incorporated auxiliary supervision mechanisms

to tackle the challenge of gradient vanishing during training (Chen

et al., 2017a). This approach secured the first rank in the 2015

MICCAI Gland Segmentation Challenge and the 2015 MICCAI

Nuclei Segmentation Challenge. Oskal et al. (2019) employed a

U-Net-based architecture to achieve a positive predictive value of

0.89 ± 0.16 and sensitivity of 0.92 ± 0.1 in epidermal or non-

epidermal pixel classification tasks. In recent years, semi-supervised

methods have also gradually been employed in tissue pathology

image segmentation tasks to address the issue of limited annotated

data (Jin et al., 2022).

Moreover, in recent years, various international competitions

have introduced challenges related to the analysis of tissue

pathology regions. For instance, the Digestive-System Pathological

Detection and Segmentation Challenge (DigestPath 2019) held

within MICCAI 2019 (Da et al., 2022; Li et al., 2019) was

centered around automating the segmentation of benign and

malignant regions within complete tissues. The Multi-organ

Nuclei Segmentation and Classification Challenge (MoNuSAC)

(Verma et al., 2021) in ISBI 2020 encompassed the identification

and segmentation of multiple cell types across four organs.

Additionally, the AGGC 2022 (Automated Gleason Grading

Challenge) within MICCAI 2022 addressed the automatic

segmentation of five tissue types in prostate cancer whole-slide

pathology images.

2.2 Weakly-supervised semantic
segmentation utilizing CAM

Instance segmentation, one of the most challenging problems

in computer vision, has undergone extensive research (He et al.,

2017; Arnab and Torr, 2017; Liu et al., 2018). However, many

of these studies necessitate manual annotation of instance masks

to provide strong supervision, thereby constraining their utility

on datasets with sparsely annotated structures. Semi-supervised

and weakly supervised instance segmentation strategies strive to

transcend this constraint. In scenarios involving solely image-level

categories, synthetic labels extracted from class response maps are

harnessed to train networks for paired semantic segmentation (Ahn

and Kwak, 2018). Employing a classification model to derive CAM

stands as a standardized process for generating pseudomasks in the

realm of Weakly Supervised Semantic Segmentation (WSSS).

2.2.1 Class activation maps
The Vanilla CAM approach initially scales the feature map

using fully connected weights learned for each individual class.

Subsequently, seedmasks are generated through channel averaging,

spatial normalization, and thresholding (Zhou et al., 2016). The

GAIN model applies CAM to the original image for mask

generation, minimizing model prediction scores to capture features

beyond the prior step’s activation map in successive training

rounds. This gradually refines the activated regions, ensuring

complete coverage of the target area (Li et al., 2018). Recently

emerged erase-based approaches also embrace similar principles

(Zhang et al., 2018; Kweon et al., 2021). The distinction lies

in their direct erasure of seed regions in CAM, followed by

inputting the erased image into the model to generate the next

round’s CAM, expected to capture new regions. Moreover, certain

schemes have been proposed to optimize CAM. For instance,

in Qin et al. (2022), Activation Modulation and Recalibration

Scheme (AMR) employs channel/spatial attention mechanisms for

fine-tuning activation area calibration, thereby achieving adaptive

modulation for segmentation-oriented activation responses. The

ReCAM strategy reactivates CAM activation regions using Softmax

Cross-Entropy Loss (SCL), resulting in ReCAM with Binary

Cross-Entropy (BCE) constraints (Chen et al., 2022). Embedded

Discriminative AttentionMechanism (EDAM) is a recent endeavor

that employs CAM-based perturbations to optimize an additional

classifier. It employs an extra DA layer to generate class-specific

masks (Wu et al., 2021).

2.2.2 Generation of pseudo-labels
The seed masks generated from CAM or its variations can

undergo refinement steps to enhance the quality of pseudo-labels,

employing both non-learning-based and learning-based methods.

SEC introduced the principles of Seed, Expand, and Constrain for

refining CAM, which have been widely adopted by subsequent

works (Kolesnikov and Lampert, 2016). Among these, CRF is an

earlier post-processing method that is user-friendly, independent

of features extracted by the trained model, and relies solely on the

original image features. DSRG, inspired by Seeded Region Growing

(SRG), employs CAM as seeds to expand regions of interest (Huang

et al., 2018). This approach integrates the SRG process into the

deep segmentation network, deviating from the previous strategy

of training segmentation models using pseudo-labels generated

through SRG.

Learning-based methods introduce additional network

modules. For example, AffinityNet employs a deep neural network

to predict semantic affinities between adjacent image coordinates,

achieving semantic propagation through random walks (Ahn and

Kwak, 2018). IRNet estimates rough regions of individual instances

and detects boundaries between different object classes. It focuses

on pixel relations on the graph and computes affinities based on

these relations (Ahn et al., 2019). Furthermore, incorporating
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confidence regions from saliency maps into CAM for pseudo-label

refinement has become a common practice in recentmethodologies

(Chen et al., 2022; Wu et al., 2021). Approaches like OOA (Jiang

et al., 2019) and CONTA (Zhang et al., 2020b) integrate CAM

inferences generated through multiple training iterations, directing

attention accumulation toward various parts of objects.

3 Methodology

In this section, the main focus is on introducing the CRAM

algorithm framework. We provide a comprehensive explanation

of the CNN-based pseudo-label acquisition module, the target

semantic segmentation module, and the employed loss functions

in the algorithm.

3.1 Framework

The foundational model for the CAM-based semi-supervised

segmentation algorithm used in this paper is divided into

two distinct steps: pseudo-label acquisition and independent

segmentation model training modules, as depicted in Figure 3.

The pseudo-label acquisition module utilizes a standard image

classification network supervised by image-level labels. By

accentuating response areas of image-level labels through CAM,

it generates pixel-level masks corresponding to each image,

serving as pseudo-labels for the semantic segmentation module.

The semantic segmentation module can be any end-to-end

segmentation network, using the pixel-level pseudo-labels

generated by the pseudo-label acquisition module as actual

labels for training the model. During inference, segmentation

predictions can be achieved solely by utilizing the semantic

segmentation module.

The model presented in this paper is based on the algorithm

outlined in Figure 3 and is divided into two primary modules: the

pseudo-label acquisition module and the semantic segmentation

module. Differing from the majority of previous methodologies

that adopt independent two-step procedures, this paper

amalgamates pseudo-label acquisition and semantic segmentation

into a cohesive end-to-end model for joint training. As illustrated

in Figure 4, following feature extraction by a backbone network,

the image is directed to both the pseudo-label acquisition module

and the semantic segmentation module. The integrated model is

subject to joint training via a full loss function.

The pseudo-label acquisition module: Within this module,

the model incorporates a DA layer to extract category-specific

activation regions. Unlike CAM, which employs a single activation

map for classification, the DA layer generates category-specific

activation maps for each category. These category-specific

activation maps are fused with the original feature layer to derive

category-specific feature maps. The self-supervised layer explores

collaborative information within and across images in a batch.

Ultimately, classification predictions are made based on the

collaborative information corresponding to each image. Given

that all images in the training set are associated with image-level

labels, a binary cross-entropy (BCE) loss function is employed

independently for each category.

The semantic segmentation module: This module initially

refines the feature maps extracted from the backbone network

through a series of convolutional layers. Subsequently, an

independent CRF is employed to enhance the category-specific

activation maps obtained from the pseudo-label acquisition

module. This refinement process helps eliminate mislabeled

pixels, resulting in comparatively reliable pseudo-labels. The target

semantic segmentation module applies cross-entropy loss and

energy loss to the confident and non-confident regions of the

pseudo-labels, respectively.

Joint loss function: The loss function is used to supervise

the optimization of parameters within the model. In the

presented algorithm, the classification and segmentation models

are integrated into an end-to-end framework for joint training. As

a result, the overall loss function comprises a binary cross-entropy

loss for classification, as well as cross-entropy loss and energy loss

for segmentation.

3.2 Pseudo-label acquisition based on
CNN classification model

3.2.1 Discriminative activation layer
For a given batch of data X =

{(
xn, ln

)}
N
, where N represents

the number of mini-batches, xn represents the n-th image in this

batch, and ln represents the corresponding class label. It should

be noted that ln is represented as {0, 1}K , indicating image-level

labels corresponding to K categories. Backbone network extracts

the feature map Fn ∈ R
C×H×W corresponding to image ln, where

C represents the number of channels in the feature map, and H

andW represent the height and width of the feature map. Connect

the DA layer to generate activation maps Mn ∈ R
(K+1)×H×W

corresponding to K target categories. To explicitly represent the

background region, in addition to generating activation maps

for each category, the DA layer also generates activation maps

corresponding to the background.

Applying L2-norm regularization to the activation map Mn

can generate pixel-level probabilities for the corresponding class

or background:

M̂n(i, j) = L2− norm
(∣∣Mn(i, j)

∣∣) . (1)

After the L2-norm regularization operation, M̂n(i, j) represents

the pixel-level class probability distribution at position (i, j), and

M̂k
n(i, j) represents the probability corresponding to class k at

position (i, j). Through the above operations, activation maps

corresponding to each category in the image are obtained.

3.2.2 Self-supervised layer
Combining the feature map Fn ∈ R

C×H×W corresponding to

image ln with the activation map M̂k
n(i, j) corresponding to K target

categories, generates feature maps for each class:

Fkn = Fn · M̂
k
n, (2)

where Fkn is the feature map corresponding to category k in the

image ln.
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FIGURE 3

Basic conceptual diagram of CAM-based semi-supervised segmentation algorithm, which contains two main modules: (A) The pseudo-label

acquisition module; (B) The semantic segmentation module.

For a batch of B images, the corresponding feature maps are

represented as Fk =
[
Fk1 , F

k
2 , . . . F

k
B

]
∈ R

B×C×H×W . After a

1×1 convolution, the feature maps are transformed into activation

features F̂k ∈ R
1×(B×C×H)×d corresponding to each category. The

combination of activationmaps with the initial feature maps is used

to explore collaborative information specific to category activation

maps. The self-supervised layer simultaneously considers feature

attention within and between images in a batch, making the

exploration of collaborative information more effective. The model

generates category-specific feature maps for each category, using

global average pooling and employing a specific classifier for label

prediction of the given category. Since in histopathological images,

one image often corresponds to multiple image categories, to make

the activation regions corresponding to categories more effective,

this paper transforms the multi-class problem into multiple binary

classification problems.

The purpose of the self-supervised layer is to highlight similar

regions in the activation maps corresponding to images in a batch

through self-attention mechanisms, to obtain better activation

maps for each category.

3.2.3 Classification loss function
The category-specific features output by the self-supervised

layer are mapped to categories through a fully connected layer, with

image-level labels corresponding to the image as supervision. The

classification loss function is represented as:

Lclass =
1

B× K

B∑

n=1

K∑

k=1

LBCE ( Linear
(
GAP

(
Ak
n

))
, lkn

)
, (3)

where

[
Ak
1,A

k
2, . . . ,A

k
B

]
= SelfAttention

(
F̂

k
)
, (4)

where Ak
n is the activation map corresponding to input image xn

after the self-supervised layer for the k-th category, lkn ∈ [0, 1]

represents the true label of input image xn corresponding to the

k-th category. Since the input to the self-supervised layer is a

combination of category-specific activationmaps and initial feature

maps, the loss function of the self-supervised layer will, through
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FIGURE 4

Weakly-supervised segmentation algorithm based on category activation regions.

backpropagation, affect the distinguishing activation layers of all

foreground categories, thereby influencing the parameter training

of the backbone network.

3.3 Target semantic segmentation model

3.3.1 Reliable semantic segmentation labels
From the pseudo-label acquisition module, activation

maps corresponding to each category can be obtained, which

highlight the regions where each category plays a role in

classification. In this activation map, select the high-confidence

foreground and background regions as reliable regions, and the

remaining regions as unreliable regions. High-confidence maps are

represented as:

pr(i, j) =

{
M̂k(i, j), if M̂k(i, j) < α or M̂k(i, j) > β

255, else
(5)

where α and β represent pre-established thresholds. When the

threshold falls below α, it signifies the region as a dependable

background area; conversely, when the threshold surpasses β , the

region is retained as a foreground area.

We employ CRF for post-processing the activation maps,

removing incorrectly labeled pixels, and enhancing the probability

maps associated with each category:

pcrf = CRF(x, M̂). (6)

Taking into account the constraints imposed by CRF on

the activation maps, the ultimate pixel-level pseudo-labels are

as follows:

ppseudo(i, j) =

{
pr(i, j), if pr(i, j) = pcrf (i, j)

255, else.
(7)

If pr(i, j) = pcrf (i, j), signifying alignment between the high-

confidence map and the CRF activation map, we retain this region

as the confident pseudo-label area, with the rest designated as

non-confident pseudo-label areas.

3.3.2 Segmentation loss function
The pseudo-labels generated by the model serve as the ground

truth labels for training the semantic segmentation module,

encompassing both areas with high-confidence pseudo-labels and

areas with low-confidence pseudo-labels.
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In the case of confident pseudo-label regions, the model utilizes

the standard cross-entropy loss function, denoted as:

Lce = −
∑

(i,j)∈ϕ

B(i, j) log
(
Pknet(i, j)

)
, (8)

where B(i, j) is a binary label indicating whether the label belongs

to class k. ϕ represents the confident pseudo-label region, i.e.,

when ppseudo(i, j) 6= 255. Pknet(i, j) represents the prediction of the

segmentation model.

The model utilizes the dense energy loss function (Zhang et al.,

2020a), applied to both confident and non-confident regions, and it

is represented as:

Lenergy =

H,W∑

i=0,j=0

H,W∑

a=0,b=0
(i,j) 6=(a,b)

S(i, j)E((i, j), (a, b)), (9)

where S(i, j) represents a soft filter. For regions with confident

pseudo-labels, soft filter weights are determined based on the

model’s predicted class probabilities. In contrast, for regions with

non-confident pseudo-labels, a dense energy loss is employed.

Cross-entropy loss functions are designed for hard labels, while

the pseudo-labels used in this study are not guaranteed to

be 100% accurate. Therefore, applying the cross-entropy loss

directly to confident regions could introduce errors during model

training. The dense energy loss function, using a soft labeling

strategy for confident regions, allows for further refinement of

the confident regions generated in the preceding step. S(i, j) is

defined as:

S(i, j) =

{
1−maxk∈K

(
Pknet(i, j)

)
, (i, j) ∈ ϕ

1, else
(10)

Here, E((i, j), (a, b)) represents the energy formula that

characterizes the relationship between pixel (i, j) and pixel (a, b):

E((i, j), (a, b)) =
∑

k1 ,k2∈K
k1 6=k2

G((i, j), (a, b))Pk1net(i, j)P
k2
net(a, b), (11)

where G((i, j), (a, b)) is a Gaussian filter.

The total loss function associated with the target semantic

segmentation network comprises both cross-entropy loss and

energy loss:

Lseg = Lce + Lenergy. (12)

3.4 Joint loss function

The approach presented in this paper integrates

classification and segmentation models into an end-to-

end framework. The overall loss function comprises the

Lclass loss function from the pseudo-label acquisition

module and the Lseg loss function from the semantic

segmentation network. The combined loss function is

shown below:

LTotal = Lclass + λLseg = Lclass + λ(Lce + Lenergy), (13)

where λ is a weighting coefficient that controls the balance

between the pseudo-label acquisition module and the target

segmentation module.

3.5 Independent semantic segmentation
model

After weakly-supervised training, the combination of

the backbone network and the target semantic segmentation

network can serve as an independent inference module for

generating semantic segmentation results during the testing

phase. Alternatively, the model proposed in this paper can

be used as a whole for pseudo-label acquisition. During the

training phase, the segmentation model outputs optimized region

segmentation results, which are used as artificial pseudo-labels for

an independent semantic segmentation model.

Define an independent semantic segmentation module: This

semantic segmentation module is designed as a standalone

component, utilizing pseudo-labels obtained from the previous

step’s image classification model as training labels for the training

model. During the final inference phase, running inference is as

simple as using this trained model. The standalone segmentation

model can employ any end-to-end semantic segmentation model

as its backbone network, such as FCN (Long et al., 2015), U-Net

(Ronneberger et al., 2015), DeepLab v3 (Chen et al., 2017b), and

so on. In this paper, we draw inspiration from previous research in

weakly-supervised segmentation, where the semantic segmentation

module combines the ResNet model and the DeepLab v3 model.

This network model consists of two parts: an Encoder based on the

ResNet model and a Decoder based on the DeepLab v3.

4 Algorithm validation and evaluation

4.1 Datasets

The dataset used in this paper is publicly available data

from the WSSS4LUAD challenge (Han et al., 2022a,b), which

includes 67 H&E (Hematoxylin and eosin)-stained WSI

(Whole Slide Images) from the Guangdong Provincial People’s

Hospital (GDPH) and 20 WSI images from the TCGA public

dataset. These images have annotations for three common and

meaningful tissue types: tumor epithelial tissue, stromal tissue, and

normal tissue.

The training dataset in this dataset consists of 63 WSI (49

from GDPH and 14 from TCGA), from which 10,091 image

patches were cropped and selected. The image size ranges from

150×150 to 300×300. Each image in the training set has image-

level annotations in the form of a three-digit label [tumor,

stroma, normal]. It includes 6,579 images of tumor tissue, 7,076

images of stromal tissue, and 1,832 images of normal tissue.
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The most common label is [1,1,0], indicating images containing

both tumor and stroma, with a total of 5,393 images. This

is followed by 1,832 images with the [0,0,1] label (indicating

normal tissue), 1,680 images with the [0,1,0] label (indicating

stromal tissue), and 1,181 images with the [1,0,0] label (indicating

tumor tissue).

The validation set comprises 12 WSI (9 from GDPH and 3

from TCGA), from which 40 image patches are cropped. These

include 9 large image patches ranging in size from 1,500×1,500

to 5,000×5,000 and 31 small image patches ranging in size from

200×200 to 500×500. The validation dataset has pixel-level labels

and is used to validate the trained models.

The test set also consists of 12 WSI (9 from GDPH and 3 from

TCGA), from which 80 image patches are cropped. These include

14 large image patches ranging in size from 1,500 × 1,500 to 5,000

× 5,000 and 66 small image patches ranging in size from 200× 200

to 500 × 500. The test dataset has pixel-level labels and is used for

the final model testing.

4.2 Experimental settings

This experiment was conducted in a PyTorch environment,

utilizing NVIDIA CUDA (version 11.4) and cuDNN library

(version 8.2.2). All experiments were performed on a computer

running Ubuntu 20.04 LTS, using 4 NVIDIA Tesla A100 GPUs

with 40GB of VRAM each. The model’s backbone network was

pre-trained on the ImageNet dataset and further fine-tuned on the

target dataset used in this paper.

The model used an SGD optimizer with a batch size of 8,

an initial learning rate of 0.001, weight decay set to 0.0002, and

momentum set to 0.9. Two hyperparameters, α and β , were set to

0.3 and 0.9, respectively.

During both training and testing, a CRF operation was used

to generate refined labels, with parameters following the default

values as described in Huang et al. (2018). During training, the

loss functions computed by the classification and segmentation

modules were updated through backpropagation to update the

backbone network. During testing, only the segmentation module

was used to generate region segmentation corresponding to

the images.

Considering the irregular sizes of image patches in this dataset,

they were standardized through resizing before being fed into

the model. During the training phase, the image dimensions

were initially randomly increased to two to three times their

original size. Subsequently, these enlarged images were uniformly

cropped to a size of 513 × 513 pixels, serving as the input

images for the model. In the testing phase, the image dimensions

were enlarged to 2.5 times their original size, and the model

made predictions and generated segmentation results based on the

enlarged images. Due to limitations in GPU VRAM, particularly

with extremely large pixel images, they were proactively cropped

to a fixed size (ranging from 400 × 400 to 500 × 500 in this

paper). The model’s predicted results were then combined for

visualization purposes.

4.3 Performance evaluation metrics

In the experiments, model evaluation is performed using

the mean Intersection over Union (mIoU), which is expressed

as follows:

mIoU =
1

k+ 1

k∑

k=0

TP

FN + FP + TP
(14)

where TP stands for true positives (correctly predicted positive

instances), while FN and FP represent false negatives (positive

instances incorrectly predicted as negative) and false positives

(negative instances incorrectly predicted as positive), respectively.

The variable k denotes the number of classes. In our experiments,

the test dataset includes a background label. Therefore, when

computing the final mIoU, the background region is excluded and

not included in the calculation area.

4.4 Model analysis

4.4.1 Comparison with state-of-the-art methods
Table 1 presents a comparison between our proposed method

with the existing fully supervised baseline segmentation methods

TABLE 1 Comparison with the state-of-the-art methods.

Model mIoU Tumor Stroma Normal

Supervised U-Net (Ronneberger et al., 2015) 0.5362 0.4158 0.7075 0.4854

ResNet101 (He et al., 2016) 0.5992 0.5312 0.7323 0.5342

DeepLab v3 (Chen et al., 2017b) 0.6222 0.5859 0.7318 0.5489

Weakly-supervised ChunhuiLin 0.8413 0.8389 0.8919 0.7931

baseline0412 0.8222 0.8402 0.8343 0.7921

Vison307 0.8058 0.8165 0.8554 0.7456

WSSS-CRAM1 0.7265 0.7074 0.8125 0.6597

WSSS-CRAM2 0.7618 0.7493 0.8237 0.7125

WSSS-CRAM3 0.8401 0.8293 0.8923 0.7987

Bold values indicates best result obtained for predictions.
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and the top three performers in the WSSS challenge, including

ChunhuiLin, baseline0412, and Vison307, with the best result

highlighted in bold. The fully supervised approach was trained

using training data containing only one tissue category, with

[1,0,0], [0,0,1], and [0,1,0] corresponding to 1,181, 1,832, and

1,680 images, respectively. Among the comparison weakly-

supervised methods, including ChunhuiLin, baseline0412, and

Vison307 are semi-supervised methods. Training details can be

found in the paper (Han et al., 2022a). WSSS-CRAM1 entails

training a model exclusively using image-level labels from the

training set, without any reference to pixel-level labels from

the validation set throughout the training process. Building

upon jointly optimized pseudo-labels, WSSS-CRAM2 establishes

a separate segmentation module to learn pixel-level pseudo-

labels, the model is shown in Figure 3. In contrast, WSSS-

CRAM3 incorporates pixel-level labels from the validation set as

a supervisory condition when training a separate segmentation

model with pseudo-labels. Notably, our proposed approach,

when training a dedicated semantic segmentation module and

incorporating pixel-level labels from the validation set into the

model training, achieves results differing by a mere 0.0012

from the competition’s top performance, indicating a remarkable

quantitative proximity. This outcome may be attributed to the

omission of weight consideration for pseudo-labels compared

to the known labels from the validation set during the model

training process.

4.4.2 Ablation experiment
Table 2 presents the results of ablation experiments aimed

at demonstrating the effectiveness of our method’s design. To

maintain control over the variables in these experiments, we

focused solely on the acquisition of pseudo-labels. In this process,

pseudo-labels obtained from the training dataset were combined

with pixel-level annotated labels from the validation data to train

TABLE 2 Ablation experiments for each module in the network.

Joint
optimization

CAM DA CRF mIoU

X 0.6925

X X 0.7680

X X X 0.7912

X X 0.7684

X X X 0.8059

X X X X 0.8401

Bold values indicates best result obtained for predictions.

FIGURE 5

Visualization of segmentation results: the first column features the original images, the second column showcases the model’s predictions, and the

third column reveals the ground truth labels. Notably, red boxes highlight representative regions, which are further magnified in the second row.
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FIGURE 6

Visualization of segmentation results: the first row is normal regions, the second row is stroma regions, the third row includes stroma and tumor, and

the fourth row features a large image containing normal, stroma, and tumor areas.
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FIGURE 7

Category-specific activation maps corresponding to the tumor, stroma, and normal regions.

separate semantic segmentation modules. It’s worth noting that

CAM, which serves as the foundational strategy for obtaining

pixel-level labels from image-level labels, was included in all

ablation models. As observed in the table, the joint optimization

of segmentation and classification modules yields a significant

improvement in segmentation performance. Furthermore, the

strategy of DA layer and CRF also contributes to enhancing

segmentation performance.

4.5 Visualized results

4.5.1 Visual presentation of results
Figure 5 presents the segmentation results obtained in the test

dataset. The first column contains image blocks extracted from

the overall histopathological image, the second column showcases

the model’s predictions, and the third column displays the ground

truth labels. In the second row, specific details from the first-

row images have been selectively magnified for closer inspection.

The result images clearly demonstrate a close alignment between

the model’s predictions and the ground truth labels. The trained

model exhibits the capability to accurately segment regions within

histopathological images of lung adenocarcinoma. In the second

row of enlarged images, regions, where the model’s predictions

deviate from the ground truth labels, are enclosed within blue

and orange rectangles. Upon a closer examination of the original

images, it becomes apparent that the region inside the blue

rectangle corresponds to a blank area in the original image, whereas

the region within the orange rectangle should indeed be labeled as

stroma, consistent with the ground truth. While this result may

differ from the manually annotated ground truth, it may offer a
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FIGURE 8

Comparison of pseudo-labels before and after CRF operations.

more precise representation of the intricate details in comparison to

the human-labeled labels. This comparative analysis indicates that

the model not only learns pixel-level annotations from image-level

labels but also excels in accurately predicting tissue boundaries and

intricate details.

Figure 6 showcases various segmentation examples from the

test dataset. In the first column, you’ll find the original images,

while the second column reveals the model’s predictions, and

the third column displays the ground truth labels. The result

images clearly depict that the first and second rows represent

image blocks from normal and stroma regions, respectively. In

these cases, the model excels in delivering remarkably accurate

predictions that closely align with the ground truth labels.

Moving to the third row, we encounter images featuring the

coexistence of tumors and stroma. Upon close examination, it

becomes apparent that the model also produces relatively precise
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predictions, with minor boundary prediction errors occurring

solely at the edges of the tumor and stroma regions. Finally,

in the last row of Figure 6, this is a typical example of a large

image block, encompassing tumor, stroma, and normal areas.

The model’s prediction results affirm that the proposed method

consistently yields precise segmentation results, even for intricate

histopathological images.

4.5.2 Category-specific activation maps from
discriminative activation layer

Figure 7 presents the activation maps generated by the model

after differentiating the activation maps from the activation

layer output. The data showcased here is sourced from the

training dataset and, therefore, lacks corresponding pixel-level

annotations. The four examples shown correspond to image-level

labels [1,0,1], [1,1,0], [0,0,1], and [0,1,0], representing tumor and

normal, tumor and stroma, normal, and stroma, respectively.

In the first column, you can see the original images, while the

second column displays the activation maps for tumor regions,

the third column displays the activation maps for stroma regions,

and the fourth column reveals the activation maps for normal

regions. Higher brightness in the activation maps indicates a

higher probability of the corresponding region belonging to

that class. From these images, it’s evident that distinguishing

the activation layer enables the generation of activation regions

corresponding to each class. Remarkably, even without the explicit

use of pixel-level annotations during training to inform the model

about specific regions as the tumor, stroma, or normal, weakly

supervised learning using only image-level labels demonstrates

the ability to produce pixel-level activations, showcasing a crucial

feature of CAM.

4.5.3 CRF refinement of pseudo-labels
Figure 8 demonstrates the refinement of pseudo-labels through

CRF operations. The first column showcases the original images,

the second column displays the pseudo-labels before CRF

refinement, and the third column reveals the pseudo-labels

after CRF refinement. Let’s compare the state of the labels

before and after CRF operations based on these results. From

the examples in the first row, it’s evident that the pseudo-

labels before CRF refinement exhibit distinct boundaries between

tumor and normal regions but overlook individual tumor cells

present in the finer details. CRF operations, guided by the

original image, rectify these boundaries, resulting in a more

precise demarcation between tumor and normal regions. In the

second row of examples, it becomes apparent that CRF not

only refines details but also corrects more extensive areas of

segmentation error. The third and fourth rows represent normal

and stromal tissues, and a comparison with Figures 4, 5 reveals

that activation maps can emphasize specific classes without clearly

defined activation boundaries for the image’s boundary details.

Consequently, in the pseudo-labels of the second column, only the

categories are nearly discernible. After undergoing CRF operations,

the distinctions between foreground and background become

much clearer.

5 Conclusion

This paper proposes a novel weakly-supervised segmentation

method based on class region activation mapping, effectively

achieving the segmentation of tissue regions in lung

adenocarcinoma pathological images. The paper incorporates

distinguishing activation layers and self-supervised layers into the

classification network to predict activation maps corresponding to

each category in the image and explore inter-image collaborative

information. Subsequently, pseudo-labels generated from the

activation maps are used as training labels for the target semantic

segmentation module. The fusion of the pseudo-label prediction

module and the target segmentation module allows for better

utilization of pixel-level segmentation of target regions with

image-level labels. Experimental results on the test set of a publicly

available lung adenocarcinoma dataset validate the performance of

the weakly-supervised segmentation algorithm based on category-

specific activation. Compared to traditional weakly-supervised

semantic segmentation methods based on category activation

maps, this algorithm exhibits a significant improvement in

segmentation accuracy in the literature.

The algorithm has only been validated on a lung

adenocarcinoma dataset. Although the algorithm performs

well on the lung adenocarcinoma dataset, its generalization ability

to other diseases or types of tissue images has not been verified.

Therefore, the method’s performance on other image datasets may

not be as expected. Future, we consider extending the algorithm to

different pathological datasets and types of tissue images to validate

its generalization capability. Consider integrating pathological

images with other types of medical imaging (e.g., CT, MRI) for

multimodal analysis to enhance diagnostic accuracy and the

applicability of the model.
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