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To identify what are the dominant lactic acid bacteria (LAB) involved in the fermentation 
of salt-free sauerkraut, and optimize its industrial culture conditions, we isolated 
and identified a strain of LAB, which is referred to as Lactobacillus sp. DF_001, with 
the preservation number CCTCC NO: M20232593, from five different regions in 
Guizhou Province. Industrial culture conditions were optimized using Plackett-
Burman and Central Composite design experiments, and the potential role of 
this LAB in salt-free sauerkraut fermentation was validated. Bioproduction was 
optimal with a culture time of 66  h, starch/water ratio of 1.7% and inoculum of 
0.02%, which gave approximately three-fold higher yield than the basal culture 
medium DeMan-Rogosa-Sharpe medium (MRS). The LAB was used in small-scale 
industrial experiments. The Dafang LAB significantly enhanced the sensory score 
of the salt-free sauerkraut products by about 32% compared to the control group. 
The total acid content increased by about 32% and the sugar and nitrite contents 
were reduced by 67.27 and 69.58%, respectively. The total number of bacterial 
colonies decreased by 37.5%. All other indicators complied with the national 
standard, providing overall the basis to improve salt-free sauerkraut fermentation.
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1 Introduction

Sauerkraut, commonly referred to as pickle, is a type of fermented vegetable that has been 
a staple in Chinese cuisine for over 3,000 years (Peng et al., 2018). In Guizhou province, its 
production can be of two types. The first type is salted and fermented, as is made for example 
in Dushan County (Mou, 1989), and similar fermentation methods are used for northeastern 
and Sichuan sauerkrauts (Ouyang et al., 2019). However, these sauerkrauts contain nitrite 
which may lead to health problems when consumed in large quantities and over a long period 
(Wang Y. et al., 2019). As a consequence, there is a global growing demand for alternative 
industrial fermentation methods.

The second type of fermented sauerkraut in Guizhou Province is salt-free, where production 
methods follow those used by farmers to make homemade water sauerkraut. This type relies on 
natural fermentation under anaerobic conditions, following microbial enrichment with lactic 
acid bacteria (LAB) and other beneficial microorganisms, which reduces nitrite content and 
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enhances acidity and taste. Indeed, it has been shown that LAB naturally 
degrade sauerkraut nitrites, affecting texture and sensory properties 
(Tian et al., 2023). And the use of salt-free sauerkraut, known for its high 
cellulose content, appetising flavour and greasy texture, together with 
optimization of the use of LAB, should prevent the problems associated 
to salt-cured sauerkraut. Therefore, selecting dominant LAB is crucial 
for enhancing the industrial fermentation of salt-cured sauerkraut.

LAB have a range of applications in food, agriculture, chemical 
industry or medicine (Wang J. et al., 2019), and include Gram-positive 
genera such as Lactobacillus or Bifidobacterium, among others (Wang 
J. et al., 2019; Liu et al., 2016; Cani et al., 2022). LAB are found in 
fermented foods such as sauerkraut (Van Zyl et al., 2020), yogurt, acid 
cabbage and other pickled products (Ağagündüz et al., 2021). They are 
considered to be probiotic, preventing intestinal infection (Li et al., 
2021) and having a general beneficial effect on health (Garbacz, 2022). 
Because of these probiotic properties, LAB are used in the fermentation 
of vegetables such as mustard tuber, kohlrabi, north-eastern sauerkraut 
and peppers (Ye et al., 2018). Flavor, quality and nutritional value in 
sauerkraut is affected by the type and quantity of LAB used (Yifei 
X. et al., 2021). And in salt-free fermented sauerkraut (Lin et al., 2021), 
mutual interaction of a diverse set of bacteria, with a major role of 
LAB, results in sauerkraut with a characteristic texture. Commercial 
production of salt-free sauerkraut requires industrial LAB cultivation, 
but this is affected by high turbidity and excessive suspended matter 
(Zhang, 2021; He J. et al., 2021; Jing et al., 2016), negatively impacting 
flavour and taste, later stages of fermentation or strain management 
(Zuo et al., 2022; Kim et al., 2022; Yang et al., 2016). Moreover, a 
review of the literature indicates a scarcity of studies focused on 
optimizing industrial cultivation conditions for LAB. Thus, optimizing 
and characterizing the industrial cultivation conditions of LAB for 
sauerkraut fermentation in Guizhou Province is crucial.

In the present paper, we explored water sauerkraut in five regions 
of Guizhou Province to identify a strain of dominant LAB (Lactobacillus 
sp. DF_001, with the preservation number CCTCC NO: M20232593). 
Industrial cultivation of this strain was optimized and its effect on the 
fermentation of salt-free sauerkraut was tested. We hypothesize our 
results can be used to overcome common problems in the industrial 
cultivation of LAB, and at the same time improving quality and taste of 
salt-free sauerkraut, enhancing acidity and reducing sugar and nitrite 
content. Implementation of these results may result in the successful 
commercialization of industrially made salt-free sauerkraut.

2 Materials and methods

2.1 Materials, isolation and identification of 
bacteria

The T-AOC Assay Kit and DPPH Free Radical Scavenging Assay 
Kit were purchased from Beijing Solarbio Science & Technology Co., 
Ltd., China. A total of 100 colorimetric test assay kits and nitric oxide 
metabolite assay kits were purchased from Shanghai Merck Science & 
Technology Co., Ltd., China. A total cholesterol (TC) colorimetric 
assay kit was purchased from Shanghai Elabscience Science & 

Technology Co., Ltd., China. MRS broth and LB broth were purchased 
from Beijing Solarbio Science & Technology Co., Ltd., China. All other 
chemicals were of analytical grade and were commercially available.

2.1.1 DeMan-Rogosa-Sharpe medium (MRS)
The following composition of the MRS was used in this study: 

10.0 g of peptone, 10.0 g of beef extract, 5.0 g of yeast extract, 2.0 g of 
diammonium hydrogen citrate, 20.0 g of glucose, 5.0 g of sodium 
acetate, 20 g of dipotassium hydrogen phosphate, 0.25 g of magnesium 
sulphate heptahydrate, 0.25 g of manganese sulphate, and 1 mL of 
Tween 80. Deionised water was added to reach a volume of 1,000 mL, 
and the mixture was sterilised at 121°C for 20 min before use. If solid 
medium was needed, 1.5–2.0% agarose was added, and the mixture 
was sterilised for later use.

Plate count agar (PCA) medium was prepared by the addition of 
5 g of tryptone, 2.5 g of yeast extract, 1.0 g of glucose, and 15.0 g of agar 
to 1,000 mL of deionised water. The mixture was sterilised at 121°C 
for 20 min before use.

Lauryl sulphate tryptone (LST) broth was prepared by combining 
tryptone (20 g), sodium chloride (5 g), lactose (5 g), dipotassium 
hydrogen phosphate (2.75 g), and potassium dihydrogen phosphate 
(2.75 g). The final pH was adjusted to 6.8 ± 0.2 with lactic acid, after 
which the total volume was brought to 1,000 mL with deionized water. 
The broth was sterilised at 121°C for 20 min and used for the detection 
of coliform bacteria.

2.1.2 Sample collection of salt-free sauerkraut 
juice

Samples were obtained from salt-free sauerkraut soup made by 
farmers from five counties in Guizhou Province: Qixingguan 
(longitude: 105.305, latitude: 27.298), Honghuagang (106.894, 27.645), 
Luban (106.402, 27.792), Nayong (105.383, 26.778), and Dafang 
(105.613, 27.142). The sauerkraut was thoroughly mixed in a 
fermentation container and a sterilised micropipette was used to draw 
a 40 mL sauerkraut juice sample which was placed in a sterilised 50 mL 
sampling tube. The sample was taken to the laboratory and refrigerated 
waiting for LAB purification.

2.1.3 Isolation and purification of LAB
The samples were diluted (10−1 to 10−8) with 0.9% NaCl (normal 

saline). After shaking at 37°C overnight, 100 μL from the 10−8 well 
were spread on an MRS plate. The plates were cultured upside down 
at 37°C overnight. Single colonies were observed and colonies were 
selected. Single colonies were streaked on plates. Streak culture was 
performed 2–3 times to ensure strain purity. After isolation and 
purification, the strains were subjected to Gram staining and 
microscopic morphological examination, followed by inoculation into 
MRS broth tubes for subculture and used to streak again in 
MRS media.

2.1.4 Isolation and identification of LAB
Identification of the strains was performed according to previous 

methods (Kim et al., 2022; Yang et al., 2016; Liu et al., 2021) with slight 
modifications. Phenotype and Gram staining were recorded, focusing 
on transparency, color, surface smoothness, unevenness, and wire 
drawing of the LAB. To identify the isolates, the TSINGKE Plant DNA 
Extraction Kit (Universal Type) was used following the manufacturer’s 
instructions. The extracted genomic DNA was stored at −20°C for 

Abbreviations: PB, Plackett-Burman; CCD, Central Composite Design; LAB, lactic 

acid bacteria.
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subsequent PCR amplification tests. Purified polymerase chain 
reaction amplicons from the isolates were sequenced using the 
universal primers 27F (5`-AGTTTGATCMTGGCTCAG-3`) and 
1492R (5`-GGTTACCTTGTTACGACTT-3`). For identification, 16S 
rRNA sequences were searched using BLAST (http://www.ncbi.nlm.
nih.gov/BLAST, accessed October 1, 2023).

2.1.5 Determination of the growth curve
The 5-bead local LAB strain was first activated for two generations. 

For each activation, 1.0% inoculum was added to MRS broth medium 
and cultured in a constant temperature vertical shaker at 37°C for up 
to 12 h. The blank control was not inoculated. For the MRS broth 
culture medium, liquid samples were taken every 3 h, measuring 
absorbance at 600 nm, and ensuring that absorbance was between 0.5 
and 3.0 (typically diluting 3–5 times). This experiment was repeated 
three times to obtain growth curves of strains from different locations, 
plotting absorbance (y) as a function of culture time (x).

2.2 Determination of physical and chemical 
indicators

Determination of nitrite content: Nitrite content was determined 
with reference to GB 5009.33–2016 “National Food Safety Standard—
Determination of Nitrite and Nitrate in Food”.1

Determination of total acid content (calculated as lactic acid): 
Lactic acid content was determined with reference to GB 12456–2008 
“National Food Safety Standard—Determination of Total Acid 
in Food”.2

Determination of reducing sugar content: Sugar content was 
determined with reference to GB/T 15038–2006 “National Food 
Safety Standard—Determination of Total Sugar in Food”.3

Coliform group detection: Coliform group was determined with 
reference to the GB/T 4789.3–2016 “Food Safety National Standard 
Food Microbial Inspection Coliform Group Count” (MPN) counting 
method for coliform group determination.4

Detection of the total number of colonies: The total number of 
colonies was determined according to GB 4789.2–2016 “National 
Food Safety Standard Food Microbiological Inspection Determination 
of Total Bacterial Colony”.5

Absorbance measurements: An ultraviolet (UV) spectrophotometer 
was used to measure the 600 nm absorbance and average OD600 was 
calculated. The number of LAB at 1OD was previously shown to 
be 1 × 108 bacteria/mL (Bai et al., 2021).

Determination of the number of LAB: The total number of LAB 
was determined according to the methods provided in GB 
4789.35–2023.6

Measurement of Cell Surface Hydrophobicity: Bacterial adhesion of 
LAB to hydrocarbons was measured as described (Kim et al., 2022; 
Yang et al., 2016; Liu et al., 2021) with slight modifications. Briefly, 

1 http://down.foodmate.net/standard/sort/3/50419.html

2 http://down.foodmate.net/standard/sort/3/16237.html

3 http://down.foodmate.net/standard/sort/3/11619.html

4 http://down.foodmate.net/standard/sort/3/50368.html

5 http://down.Foodmate.net/standard/sort/3/50367.html

6 http://down.foodmate.net/standard/sort/3/145883.html

LAB isolates cultured overnight were centrifuged at 8000 g for 5 min. 
The pellet was washed twice with sterile phosphate-buffered saline 
(PBS; pH 7.2) and resuspended in sterile PBS to an optical density of 
0.5 (A0) at 600 nm. The suspension was mixed vigorously with an 
equal amount of xylene (Sigma–Aldrich) and incubated at room 
temperature for 1 h. The separated aqueous phase was carefully 
removed, and its absorbance was measured (A1). Surface 
hydrophobicity (H%) was calculated using the formula H% = (1 − A1/
A0) × 100%.

Hydroxyl radical scavenging assay: Determination of total 
antioxidant capacity (T-AOC) was performed using a commercial kit 
(Beijing Legen Biotechnology Co., Ltd.) according to the 
manufacturer’s instructions.

DPPH radical scavenging assay: This assay was performed 
according to the instructions of the DPPH free radical scavenging 
ability detection kit (Beijing Suolaibao Technology Co., Ltd.).

Iron ion reducing capacity: An iron ion reduction capacity kit 
(Beijing Suolaibao Technology Co., Ltd.) was used to determine the 
iron ion reducing ability of the SEOs.

Determination of cholesterol content: Total cholesterol (TC) content 
was measured using a cholesterol assay kit (Applygen Technologies, 
Beijing, China) according to the manufacturer’s instructions.

Sensory Evaluation: The sensory evaluation method was performed 
as previously described with minor modifications (Du et al., 2022; Zhao 
et al., 2022; Akomea-Frempong et al., 2021). The samples were evaluated 
for colour, texture, smell and crispness, by 11 trained evaluators and a 
minimum of 100 consumers. Each parameter was assigned a number 
from 1 to 10 (10 = like extremely and 1 = dislike extremely). Sensory 
evaluation details were determined according to T/GZSX023-2017 
“Standards of Guizhou Food Industry Association”7 and DBS22/025–
2014 “Local Standards for Food Safety (pickled cabbage)”.8

2.3 Optimum design of culture conditions

2.3.1 Single-factor experimental design
To optimize the growth of LAB, single factor tests were performed 

varying starch leach solutions (wheat, potatoes, rice, sweet potatoes 
and corn), culture times (12 h, 24 h, 48 h and 72 h), starch/water ratios 
(0.5, 1, 1.5 and 2%) and inoculum (0.05, 0.1, 0.15 and 0.2%).

2.3.2 Central composite design
The response pattern (Reddy et  al., 2008) and the optimal 

combination of culture time, starch/water ratio and inoculum for 
maximising LAB yield were evaluated using a central composite 
design with three variables (Table 1). The Plackett-Burman design 
showed significant curvature and confirmed the importance of all 
three parameters. The variables that had the greatest potential for 
maximising LAB activity were selected as centre points for the 
central composite design. The experimental data were analysed 
using a predictive quadratic polynomial equation to establish a 
correlation between the response variable and the independent 
variables (Xie et al., 2014):

7 https://www.Bzwz.com/s_62/s_10193.html

8 http://down.foodmate.net/standard/sort/15/41770.html
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FIGURE 1

Flow chart of laboratory Shamita fermentation process.

 

2 2
0 1 1 2 2 3 3 11 221 2

2
33 12 1 2 13 1 3 23 2 33

X X X X X

X X X X X X X

= α + α + α + α + α + α +

α + α + α + α

Y

where Y is the predicted response; α0 is the intercept; α1, α2, and 
α3 are linear coefficients; α11, α22, and α33 are quadratic coefficients, and 
α12, α13 and α23 are interactive coefficients. The experimental design 
was developed using Design Expert 8.0.7.1 (Statease, Inc., 
Minneapolis, MS, United States).

2.4 Small-scale fermentation experiment

Salt-free sauerkraut was produced in a small-scale fermentation 
experiment. Green vegetables were used as raw materials which were 
blanched for 30 to 60 s in a starch/water ratio of 1.71%, inoculated with 
0.017% at 30–35°C and fermented for 7 days (Figure 1). Compliance 
with relevant standards was assessed using simulated pasteurisation, 
by heating in a water bath at 63°C for 15 min, followed by analysis of 
various parameters (Section 2.2 and related kit instructions).

2.5 Data processing and statistical analysis

All data were processed and visualised using Design Expert 13, 
GraphPad Prism 9, R language and Excel software. Experimental 
results are expressed as means ± standard error of the mean 
(mean ± SD). Standard error analysis was performed on the single-
factor experimental samples. Significance analysis was performed 
using an internal function in Design Expert 13, and a significance level 
of p < 0.05 indicated significant differences.

3 Results

3.1 Separation and identification of LAB

The strains isolated from the five locations were all Gram-positive, 
appeared as long or short rods (Supplementary Figure S1) and were 
consistent with the morphological traits of LAB, as stated in the Bergey’s 
Manual of Determinative Bacteriology. Samples were then tested for 
homology using 16S rDNA. Comparison of the 16S rDNA sequences 
with BLAST using the NCBI database showed that all five strains 
belonged to Lactobacillus fermentum (referred to as Lactobacillus) 
within the Lactobacillus family, with a 100% homology (Table 2).

Growth curves showed a fast increase that entered a stable phase 
after 9 h (at the end of the logarithmic phase) (Figure 2A). Growth was 
fastest for strains from Dafang and Honghua gang. LAB cultured for 
6–9 h were selected to test for acid resistance and production. Except 
Luban (Figure 2B), the survival rate after acid exposure for all the 
strains was higher than 50%, with Dafang showing the highest survival 
rate (> 70%). Dafang strain also showed more acid production than 
the other strains (Figure 2C).

TABLE 1 Central composite design experimental design.

Variable Code Level

−1.68 −1 0 1 1.68

Culture time (h) A 7.64 24 48 72 88.36

Starch/water 

ratio (%)
B −0.182 0.5 1.5 2.5 3.182

Inoculum (%) C −0.0018 0.005 0.015 0.025 0.0318
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We then analyzed hydroxyl radicals, DPPH free radicals, 
cholesterol degradation, nitrite degradation and reduction 
capabilities (Figure 3). In Dafang LAB, scavenging rate of hydroxyl 
radicals (Figure 3A) and the degradation rate of nitrite (Figure 3B) 
were about twice as high than in other regions. LAB isolated from 
Dafang and Nayong showed more iron reducing power than LAB 
from other regions (Figure  3C). No significant differences were 
observed in terms of the DPPH free radical scavenging rate or 
cholesterol degradation rate (Figures  3D,E), whereas surface 
hydrophobicity in LAB from Dafang was the highest (Figure 3F). 
Overall, Dafang LAB has clear advantages, and they were used in 
further experiments.

3.2 Physicochemical functional analysis of 
Dafang LAB

Based on the above results (Figures  2, 3), Dafang LAB were 
selected for probiotic analysis after 6 h culture. Compared to the 
control group, these LAB exhibited higher scavenging rates of 
hydroxyl radicals (Figure 4A), degradation rate of nitrite (Figure 4B), 

reducing power for iron (Figure 4C), degradation rate for cholesterol 
(Figure 4D) and scavenging rate for DPPH free radicals (Figure 4E). 
Finally, Dafang LAB were more hydrophobic (~10x) than the control 
group (Figure 4F). Thus, fermentation of Salt-free sauerkraut culture 
conditions of Dafang LAB may be further optimised.

3.3 Optimisation of industrial culture of 
Dafang LAB

Culture conditions of Dafang LAB were optimized using media 
supplemented with different starch extracts and under various culture 
durations. The highest LAB content was achieved after 48 h, regardless 
of the type of starch extract (Figure 5A). In wheat starch extract, LAB 
content at 48 h (Figure 5D). LAB content was highest when surface-
to-water ratio was 1.5% (Figures 5B,E). Similarly, LAB cultured in 
wheat starch extract performed better in rice or corn starch 
(Figures 5C,F) and was optimal with an inoculum of 0.15%. Then, 
we investigated the relationships between various factors using three 
experimental methods: Plackett-Burman (PB), steepest climbing and 
central composite design (CCD) experiments.

TABLE 2 Results of a BLAST search for the 16S rDNA sequences of all five isolates.

Sample Accession Kingdom Phylum Class Order Family Genus Reference 
species

Homology 
(%)

Qixing 

guan
MZ577210.1 Bacterial kingdom Firmicutes Bacillus Lactobacillus Lactobacillus

Limosilacto 

bacillus

Limosilactobacillus 

fermentum
100

Honghua 

gang
MZ577210.1 Bacterial kingdom Firmicutes Bacillus Lactobacillus Lactobacillus

Limosilacto 

bacillus

Limosilactobacillus 

fermentum
100

Luban MZ577210.1 Bacterial kingdom Firmicutes Bacillus Lactobacillus Lactobacillus
Limosilacto 

bacillus

Limosilactobacillus 

fermentum
100

Nayong MZ577210.1 Bacterial kingdom Firmicutes Bacillus Lactobacillus Lactobacillus
Limosilacto 

bacillus

Limosilactobacillus 

fermentum
100

Dafang MZ577210.1 Bacterial kingdom Firmicutes Bacillus Lactobacillus Lactobacillus
Limosilacto 

bacillus

Limosilactobacillus 

fermentum
100

FIGURE 2

Analysis of the activity and acid production capacity of LAB. (A) LAB growth curve; (B) survival rates of viable bacteria at pH 3 (Lin et al., 2018); (C) acid 
production ability of LAB strains. 1OD is equivalent to a LAB concentration of 1 × 108 cells/mL. All results are presented as the means ± SD, n  =  3.
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FIGURE 3

Probiotic analysis of various LAB. (A) Hydroxyl free radical scavenging rate; (B) nitrite degradation rate; (C) Iron ion reducing ability; (D) cholesterol 
degradation rate; (E) DPPH free radical scavenging rate; (F) surface hydrophobicity. All results are presented as the means ± SD, n  =  3.

3.4 Results and analysis of central 
composite design

Firstly, the Plackett-Burman experimental design consisted of 12 
trials with two levels for each variable (Supplementary Tables S1, S3). 
To determine the optimal response, a first-order model for LAB 
production was fitted using the Plackett-Burman experimental design, 
following Equation 1:

 

( )
( )

600Y OD of LAB 1.82 0.3183 A 0.1817 B –

0.2117 C R2 0.9139 .

∗ ∗

∗

= + −

=  
(1)

The effect of each variable on LAB yield was determined from the 
coefficients of Equation 1 and the statistical analysis 
(Supplementary Table S4). Variables with a confidence greater than 

95% (p < 0.05) were considered significant and were selected for 
further study. The model showed a linear regression coefficient R2 of 
0.9139, with p value of 0.0001 (p < 0.001), suggesting the design was 
appropriate. The p values for culture time (A) (p = 0.0001), starch/
water ratio (B) (p = 0.0042) and inoculum (C) (p = 0.0017) were all less 
than 0.05, corresponding to a 95% confidence level. The lack-of-fit 
value of the model was not significant (p = 0.5301), suggesting a good 
fit of the model. Thus, variables in A-C were used in subsequent 
experiments. It is currently accepted that cereals provide a favourable 
substrate for LAB growth (Dulf et al., 2022; Mendes et al., 2021).

Secondly, Equation 1 show that A coefficient is positive, whereas B 
and C are negative, suggesting that LAB production should increase by 
increasing culture time and decreasing starch/water ratio and inoculum 
(Supplementary Table S2). To determine the best direction change for 
these three factors while keeping other factors constant in the basal 
culture medium, the path of steepest ascent was used, where the highest 
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LAB yield was achieved when culture time, starch/water ratio and 
inoculum were 48 h, 1.5 and 0.015%, respectively (Supplementary Table S5).

Finally, the interaction between the three factors described above 
was analysed using central composite design and response surface 
methodology. The optimal level for these variables was determined 
using the values obtained from the steepest ascent path as centre 
points (Table 1, Supplementary Tables S2, S5), while keeping the other 
variables fixed at a low level (Table 3).

The results were subjected to analysis of variance (ANOVA) on 
Design Expert 13, and the resulting regression model is represented 
by the following equation:

 
( )

600

2 2

2

2

OD ofY 2.86329 0.200265 A 0.147011 BLAB 0.296453 C 0.06375 AB
0.19125 AC 0.01875 BC
0.506218 A 0.357726 B
0.601678 C
0.06875 ABC R 0.9730 .

∗ ∗
∗ ∗

∗ ∗

∗ ∗

∗

∗

  = + + + 
  + −

− −

− −

−

=
 

(2)

The relationships between LAB production (Y) and culture time 
(A), starch/water ratio (B) and inoculum concentration (C) are 
described in Table 1. The ANOVA of the quadratic regression model 
(Equation 2) demonstrated that this is highly significant model. 
Indeed, Fisher’s F test yielded a very low probability value (F 
value = 34.42) (Table 4), whereas the p value (<0.0001) was less than 
0.01% with 99% confidence and the lack-of-fit was not significant (F 
value of 3.14; p = 0.1205).

Culture time (A, p = 0.0035), starch/water ratio (B, p = 0.0180) and 
inoculum (C, p = 0.0003) had significant effects on LAB yield, and 
interaction between culture time (A) and inoculum (C) also was 
significant (p = 0.0184). The quadratic terms (A2, B2, C2) were also 
significant (p > 0.05), and the lack-of-fit value of the model was not 
significant (p = 0.1205). The “predicted R2” of this model was 0.9730, 
in reasonable agreement with the adjusted R2 of 0.9430. Adequate 
precision, measured by the signal-to-noise ratio, is desirable when the 
value is 4, whereas our model achieved a ratio of 15.75. The coefficient 
of variation of the model was 2.86, which indicated a high reliability.

To determine the optimum LAB production for the 
selected variables, response surface plots were analysed to 

FIGURE 4

Probiotic analysis of Dafang LAB. (A) Hydroxyl free radical scavenging rate; (B) degradation rate of nitrite; (C) reducing power of iron ion; 
(D) degradation rate of cholesterol; (E) DPPH free radical scavenging rate; (F) surface hydrophobicity. The control group has no test sample. All data are 
shown as the means ± S.D. of at least three experiments. The p-values were calculated using unpaired Student’s t-tests. No: no significance; *p  <  0.05; 
**p  <  0.01; ***p  <  0.001.
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FIGURE 5

Single factor experimental analysis of LAB. (A) Growth in different starch leaching solutions at different times (1.5% starch leaching solution and 0.1% 
inoculation); (B) growth with different concentrations of starch extracts in a 48  h culture; (C) growth with different inoculum in a 48  h culture and 1.5% 
starch extract; (D) Growth vs. time in culture medium containing 1.5% wheat extract; (E) growth in different contents of wheat extract; (F) growth vs. 
volume of bacteria. Control measurements used culture medium without inoculation. LAB growth was measured at 600  nm, where 1 OD is equivalent 
to 1 × 108 cells/mL. All results are presented as means ± SE n  =  3.

solve the regression equation obtained after ANOVA. This 
equation provides an estimate of LAB production based on 
culture time, starch/water ratio, and inoculum. The experimental 
design developed in this study was more accurate at 

optimising the components of closed media for LAB 
production. Based on the above analysis, the nonsignificant items 
in the t-test were deleted, and Equation 2 was further optimised 
as follows:
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The interactions of the three components and their optimum level 
for LAB production were analysed using response surface 
methodology (Figure 6). To generate the three-dimensional graphs, 
two variables were combined while keeping the other variable at the 
optimum level determined by the path of steepest ascent for LAB 
production. The response surface was convex, which indicated well-
defined optimum conditions and a maximum value for each variable. 
Based on these results, the predicted maximum production of LAB 
was 2.6 when culture time, starch/water ratio and inoculum were set 
at 66 h, 1.2 and 0.02%, respectively, while the remaining variables were 
kept at standard levels.

To evaluate the accuracy of the model in (Equations 2, 3) predicting 
optimum response values, LAB were cultivated in an optimised medium, 
where the yield obtained was 2.705, close to the predicted value 2.618. 
Notably, the use of the optimised culture medium resulted in an 
approximately 5-fold increase in LAB production compared to the basal 
culture medium (Figure 7).

3.5 Small-scale fermentation of salt-free 
sauerkraut and physicochemical 
characterization

To evaluate the impact of the LAB obtained via CCD 
optimisation on the fermentation of salt-free sauerkraut, 
we followed the flow outlined in Figure 1. We found that during 
fermentation, nitrite content gradually decreased from 48 h to 7 
days (Figure 8A). The sensory properties of the sauerkraut were 
evaluated after simulated pasteurisation. Sauerkraut without HCl 
had a sensory score of 36.82/40, 32% higher than the control with 
HCl (Figure  8B). Also, total acid and reducing sugar content 
increased by 32.54% (Figure  8C) and 67.27% (Figure  8D), 
respectively, whereas nitrite decreased by 69.58% (Figure 8E). The 
total number of bacterial colonies decreased by 37.5% (Figure 8F) 
and no coliform bacteria was detected in the final product, with 
no bubbles produced in neither of the nine test tubes (Figure 8G). 
The probable number of flora, as determined by the coliform 
group (MPN) index table, was ≤30 MPN/100 g, which complies 
with the national limit for coliform bacteria in pickled vegetables 
in bags. Collectively, these findings indicate that pasteurised, 
bagged salt-free fermented sauerkraut is unlikely to contain 
coliform bacteria.

4 Discussion

Recently, salt-free sauerkraut has gained popularity due to its low 
salt, sugar and having acidity. Herein we successfully isolated a strain 
of Dafang LAB from salt-free sauerkraut used to ferment sour soup. 
Through optimization of culture conditions, we show that Dafang 
LAB fulfills current market requirements for sauerkraut products.

TABLE 3 Design and results of central composite approach.

Run Culture 
time (h)

Starch/
water 
ratio 
(m/V)

(V/V) LAB yield 
(OD600)

1 0.000 0.000 0.000 2.86

2 0.000 1.682 0.000 1.96

3 1.000 −1.000 1.000 1.71

4 0.000 −1.682 0.000 1.45

5 −1.000 1.000 −1.000 0.88

6 0.000 0.000 0.000 2.79

7 −1.000 −1.000 1.000 1.63

8 1.000 −1.000 −1.000 1.33

9 1.000 1.000 1.000 1.99

10 1.682 0.000 0.000 1.56

11 0.000 0.000 0.000 2.84

12 1.000 1.000 −1.000 1.92

13 −1.000 1.000 1.000 1.89

14 −1.000 −1.000 −1.000 0.89

15 0.000 0.000 0.000 2.81

16 0.000 0.000 0.000 2.78

17 −1.682 0.000 0.000 1.01

18 0.000 0.000 0.000 2.83

19 0.000 0.000 −1.682 0.46

20 0.000 0.000 1.682 1.52

TABLE 4 Analysis of variance (ANOVA) for regression of central 
composite design.

Source Sum of 
squares

df Mean 
square

F 
value

p 
value

Model 11.50 10 1.15 32.42 < 0.0001 ****

A-A (Culture 

time)
0.5477 1 0.5477 15.44 0.0035 **

B-B (Starch/

water ratio)
0.2952 1 0.2952 8.32 0.0180 *

C-C 

(Inoculum)
1.20 1 1.20 33.83 0.0003 ***

AB 0.0325 1 0.0325 0.9165 0.3634

AC 0.2926 1 0.2926 8.25 0.0184 *

BC 0.0028 1 0.0028 0.0793 0.7846

A2 3.69 1 3.69 104.10 < 0.0001 ****

B2 1.84 1 1.84 51.98 < 0.0001 ****

C2 5.22 1 5.22 147.06 < 0.0001 ****

ABC 0.0378 1 0.0378 1.07 0.3288

Residual 0.3193 9 0.0355

Lack of fit 0.2284 4 0.0571 3.14 0.1205

Pure error 0.0909 5 0.0182

Cor Total 11.82 19

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 6

Three-dimensional response surface analysis and contour plots for LAB. (A) Effect of culture time and starch/water ratio when inoculum is 0.015%; 
(B) effect of culture time and inoculum when starch/water ratio level is 1.5%; (C) effect of starch/water ratio and inoculum when culture time is 48  h.

LAB play a crucial role in the fermentation of sauerkraut (Wang 
J. et al., 2019; Liu et al., 2016; Cani et al., 2022; Van Zyl et al., 2020; 
Tlais et al., 2022), with Lactobacillus species identified as dominant, 
particularly in the Northeast region (Wang W. et al., 2019; Sun et al., 
2022; Wang et al., 2017; Cong et al., 2016), as well as in other locations 
(Shu et al., 2019; Cheng et al., 2022; Feng et al., 2021; Yuan et al., 2019; 
Li et al., 2012, 2014; Zhao et al., 2020; Zhang et al., 2017; Cao and 
Zhang, 2017; Huang et al., 2023).These lactobacilli possess good acid 
resistance, acid production, nitrite degradation ability, salt resistance, 

bile salt resistance, bacteriostatic properties and temperature 
sensitivity (Wang W. et al., 2019; Sun et al., 2022; Wang et al., 2017; 
Cong et al., 2016; Shu et al., 2019; Cheng et al., 2022; Feng et al., 2021; 
Yuan et al., 2019; Li et al., 2012, 2014; Zhao et al., 2020; Cao and 
Zhang, 2017; Huang et  al., 2023). However, they have not been 
identified in salt-free sauerkraut in Guizhou.

The isolated Dafang LAB we isolated is similar to the one isolated 
previously (Wang et al., 2022). The probiotic properties of LAB have 
been shown before (Lee et al., 2022; Xia et al., 2022), especially the 
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ability to reduce cholesterol and nitrite levels and antioxidant 
properties (Yang et  al., 2022). LAB also regulate microbial flora, 
alleviates lactose intolerance and enhances immune function.

The selected Dafang LAB has more than three times higher 
antioxidant and reducing capacity than the control group, and higher 
antioxidant capacity than LAB in Northeastern sauerkraut (Zou 
et  al., 2023). Also, Dafang LAB exhibit cholesterol and nitrite 
degradation more than six times greater than the control group. This 
is consistent with observations in the Samburu tribe in Africa 
(Moiseenko et al., 2021), where a high consumption of dairy products 
fermented by wild Lactobacillus was associated with a reduction in 
cholesterol levels (Yang et al., 2021). Safety for consumption and 
cholesterol absorption was confirmed previously (Wan et al., 2021).

A key factor for bacteria to colonise hosts is surface adherence 
(Feng et  al., 2019), where hydrophobicity overcomes electrostatic 
repulsion. Adhesion requires formation of chemical bonds between 
ligands and receptors on mucosal epithelial cells, and understanding 

FIGURE 7

Experimental verification of CCD optimisation results. The control 
group is the non-optimised culture medium, while the test group 
used the medium conditions optimised by CCD.

FIGURE 8

Analysis of salt-free sauerkraut fermentation. (A) Change of nitrite content; (B) sensory evaluation; (C) total acid content; (D) reducing sugar content; 
(E) nitrite content; (F) total microbial colonies; (G) detection and analysis of E. coli bacteria according to national standards. The control was naturally 
fermented sauerkraut without salt.
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these interactions at the molecular level is essential to study 
Lactobacillus probiotic colonisation of the intestinal tract.

Salt-free sauerkraut fermentation also requires optimising culture 
conditions of LAB. To address the problems that affect flavour and 
taste in salt-free fermented sauerkraut, we cultivated LAB in various 
starch leaching solutions (Hatti-Kaul et al., 2018; Zuo et al., 2022). 
Wheat starch was selected, and CCD technology was used to fully 
optimise culture conditions which were consistent with previous 
studies (Zhang et al., 2017), solving the problems encountered in the 
fermentation process of salt-free sauerkraut, such as turbidity of the 
bacterial liquid, excessive suspended matter, and unstable taste of salt-
free sauerkraut (Hatti-Kaul et  al., 2018; Zuo et  al., 2022), and 
production of LAB herein was more than 2–5 times greater. Finally, 
Dafang LAB used in a pilot experiment involving salt-free 
sauerkraut fermentation.

It is generally accepted that LAB are crucial for the vegetable 
fermentation transition from traditional natural methods to modern 
purebred fermentation. The latter should result in rapid, stable and 
high-quality fermentation of salt-free sauerkraut (Xu et al., 2022). 
Purebred microorganisms (Yujian et al. 2013) help to produce low-salt, 
low-nitrite, fresh, crunchy salt-free sauerkraut products (Wang et al., 
2020), and our small-scale industrial test demonstrate lower nitrite 
content, lower total acid content and higher reducing sugar content 
than the control group.

Sensory evaluation of the sauerkraut product without salt also 
improved, suggesting a role for LAB in the fermentation of salt-free 
sauerkraut. This finding is consistent with previous reports (Ye et al., 
2018) that found that dominant bacteria involved in salt-free 
sauerkraut fermentation contributed to its overall mouthfeel, either by 
single (He J. et al., 2021) or mixed (Jing et al., 2016) LAB. Salt-free 
sauerkraut meets the national standard and fulfill market requirements, 
as evidenced by the total colony count and absence of coliform bacteria.

The importance of food taste cannot be overestimated. In China, 
sauerkraut is a widely enjoyed fermented vegetable known for its crisp 
texture and sour taste (Yun et al., 2021; Hu et al., 2022). It is claimed 
that it stimulates appetite, aids digestion and facilitates the absorption 
of essential nutrients. The successful implementation of this project 
will contribute to the promotion of salt-free sauerkraut within the 
green food industry while emphasizing its low salt, low sugar, and 
increased acidity characteristics.

We highlight the crucial role of LAB in the fermentation of salt-
free sauerkraut, offering new possibilities for the cultivation and 
innovation of strains used in salt-free sauerkraut technology, 
providing a basis for its introduction to the market.
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