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Linezolid-resistant enterococci have increased in recent years due to the worldwide 
spread of acquired resistance genes (cfr, optrA, and poxtA) in clinical, animal, and 
environmental settings. This study investigated the carriage of optrA-positive 
enterococci among patients in the anorectal surgery ward in Hangzhou, China, 
and characterized the genetic context of optrA. A total of 173 wound secretion 
samples were obtained to screen optrA-positive enterococci. Of the 173 samples, 
15 (8.67%) were positive for optrA, including 12 Enterococcus faecalis, two E. 
faecium, and one E. hirae. Multilocus sequence type analysis revealed that 12 
optrA-positive E. faecalis isolates belonged to eight different sequence types (STs), 
of which ST16 was the main type. Eight optrA variants were identified, whose 
optrA flanking regions with a fexA gene downstream were bounded by different 
mobile genetic elements. Furthermore, the optrA gene in 8 out of 15 optrA-positive 
enterococci could be successfully transferred through conjugation. The findings 
revealed a high carriage rate of optrA in enterococci from one anorectal surgery 
ward in China. The dissemination of optrA-positive enterococci isolates in clinical 
settings should be continually monitored.
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1 Introduction

Enterococci are important commensal bacteria found in the intestines of humans and 
many animals. However, they can also cause hospital-acquired infections, including 
meningitis, bacteremia, pneumonia, surgical wound infections, and urinary tract infections 
(Yi et al., 2022). The emergence of multidrug-resistant strains has complicated the treatment 
of enterococcal infections.

Linezolid is an oxazolidinone antimicrobial agent that is exclusively used for the treatment 
of severe infections caused by vancomycin-resistant enterococci (VRE), methicillin-resistant 
Staphylococcus aureus (MRSA), and penicillin-resistant pneumococci (Echeverria-Esnal et al., 
2019). However, the extensive use of linezolid results in the emergence of resistance. The main 
mechanism mediating resistance to linezolid has been attributed to mutations in the central 
loop of the domain V region of the 23 s rRNA gene. In addition, acquired resistance genes (cfr, 
poxtA, and optrA) were identified (Zhang et al., 2023; Partridge et al., 2018). Since its first 
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description in 2015, optrA has been frequently reported in enterococci 
of human, animal, and environmental origins from many countries 
(Andrea et  al., 2015; Mendes et  al., 2016; Flamm et  al., 2016; 
Gawryszewska et al., 2017; Na et al., 2020; Han et al., 2020; Li et al., 
2020). Furthermore, optrA has been reported in Gram-positive 
bacteria including Enterococcus, Staphylococcus, and Streptococcus as 
well as Gram-negative bacteria such as Campylobacter and Salmonella 
(Zhang et al., 2023; Liu et al., 2020; Schwarz et al., 2021). The optrA 
gene is often located on chromosomes or plasmids and can 
be transmitted by mobile genetic elements such as transposons and 
insertion sequences (Chen et al., 2018).

Enterococci can readily acquire or transfer multidrug resistance 
genes via mobile genetic elements and are the most predominant 
source of the spread of optrA. Enterococci harboring optrA have been 
widely detected in clinical, farm, and environmental settings 
worldwide (Gagetti et  al., 2023). The dissemination of optrA is a 
serious concern and poses a potential public health threat. The 
prevalence of optrA-positive E. faecalis was 0.2% in Austria (Kerschner 
et al., 2021) and 0.7% in Spain (Rodríguez-Lucas et al., 2022). A 3-year 
survey in Korea showed that 0.23% of clinical E. faecalis isolates 
harbored the optrA gene (Park et al., 2020). However, in China, the 
positive rate of optrA has increased from 0.4% in 2004 to 3.9% in 2014 
(Cui et  al., 2016). Therefore, the prevalence and spread of optrA-
carrying enterococci should be  monitored carefully. The optrA-
positive E. faecalis emerged in a tertiary care hospital (Park et al., 
2020). Several studies have reported fecal carriage rates of 3.53% for 
optrA-positive enterococci in healthy individuals and 15.1% in 
patients who underwent anorectal surgery (Cai et al., 2019; Cai et al., 
2016). optrA-positive enterococci may cause transmission of resistance 
genes in the intestine. However, reports of optrA-positive enterococci 
from anorectal infections have been limited. In this study, 
we  investigated the prevalence of the optrA-positive enterococci 
isolates from an anorectal surgery ward in a Chinese hospital. 
We utilized whole-genome sequencing (WGS) to further describe the 
optrA genetic context.

2 Materials and methods

2.1 Sample collection and bacterial 
isolation

A total of 173 non-duplicated wound secretion samples were 
collected from an anorectal surgery ward (118 male and 55 female 
patients) in a tertiary care hospital in Hangzhou, China. Each sample 
was collected from a different patient: 108 samples were taken from 
patients with perianal abscess and 65 samples were taken from 
patients with appendicitis. All the samples were processed to screen 
for isolates harboring optrA as we previously described (Shen et al., 
2022). Briefly, 20 mg of each wound secretion sample was inoculated 
into 5 ml of Luria-Bertani (LB) broth (Beijing AOBOX Biotechnology, 
Beijing, China) within 4 h of collection and incubated at 37°C for 24 h. 
A volume of 100 ml from each enriched sample was transferred to 5 ml 
fresh LB broth containing 5% NaCl and 10 mg/L florfenicol (Shanghai 
Aladdin Biochemical Technology, Shanghai, China) and subcultured 
for 24 h. Then, 20 ul of each resulting culture was streaked onto a 
selective medium consisting of Columbia agar (Autibio, Henan, 
China) base supplemented with 5% (v/v) sheep blood (Biolife Italiana 

S.r.l., Milan, Italy) and 10 mg/L florfenicol and incubated at 37°C 
for 24 h.

2.2 Species identification and detection of 
oxazolidinone-resistance genes

Based on the colony morphology, putative target isolates were 
selected from the developed colonies. Species identification was 
performed using matrix-assisted laser desorption ionization–time of 
flight mass spectrometry (Bruker Daltonik GmbH, Bremen, 
Germany). All florfenicol-resistant enterococci isolates were again 
subcultured for purification and then screened for the presence of 
optrA, poxtA, cfr, and cfrD genes using PCR and Sanger sequencing, 
following previously described procedures (Li et  al., 2020). The 
following primers were used (Shang et al., 2019; Antonelli et al., 2018; 
Kehrenberg and Schwarz, 2006; Coccitto et  al., 2023; optrA-F: 
GCACCAGACCAATACGATACAA, optrA-R: TCCTTCTTAAC 
CTTCTCCTTCTCA, poxtA-F: GGTCTGACTGGCTTGTTTTGCT, 
poxtA-R: ATAAGGTCGGTATTGTCGGCGT, cfr-F: TAAGAAGTAA 
TAATGAGC, cfr-R: TATAGAAAGTCTACGAGG, cfr(D)-F: TGCGC 
TACTGGAAAAATTGGC, and cfr(D)-R: GCTTGAACGTTCTTG 
GTGCAT).

2.3 Antimicrobial susceptibility testing

The minimum inhibitory concentrations (MICs) of seven 
antimicrobial agents (Shanghai Aladdin Biochemical Technology, 
Shanghai, China) were determined using the broth microdilution 
method (CLSI, 2018; Tang et al., 2022). The antimicrobial agents were 
linezolid, chloramphenicol, penicillin G, vancomycin, ciprofloxacin, 
erythromycin, and tetracycline. Broth microdilution was performed 
in Brucella broth supplemented with 2% fetal calf serum. Twofold 
dilutions of each antimicrobial agent ranging from 0.125 to 256 μg/ml 
were used. To each plate, 100 μl was added with an inoculum 
concentration of approximately 5 × 107 colony-forming units (CFUs)/
ml. The plates were incubated for 24–48 h at 37°C. The MIC was 
defined as the lowest concentration of the drug. The results were 
interpreted according to the Clinical and Laboratory Standards 
Institute standard (CLSI M100-Ed32; CLSI, 2022).

2.4 Conjugation experiment

To investigate the transferability of optrA, poxtA, and cfrD, 
conjugation experiments were performed using the filter-mating 
method with rifampicin-resistant E. faecalis JH2-2 as a recipient (Hao 
et al., 2019; Xie et al., 2021). Briefly, the donor and recipient were 
cultured in fresh LB broth at 37°C for 4 h to reach the logarithmic 
phase. Then, the donor and recipient were mixed at a ratio of 1:4 and 
then incubated on a 0.45-μm membrane placed on an LB agar plate 
for 24 h at 37°C. Transconjugants were selected on LB agar (TSA) 
plates supplemented with 30 mg/L rifampicin and 10 mg/L florfenicol. 
Colonies that grew on these selective plates were chosen after 
incubation for 16–24 h at 37°C. The presence of optrA, poxtA, and cfrD 
and species identification of the transconjugants were confirmed using 
PCR and MALDI TOF/MS, respectively. Conjugation frequency was 
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determined as the number of transconjugants/the number 
of recipients.

2.5 Whole-genome sequencing and 
genome analysis

Total genomic DNA was extracted from overnight cultures of 15 
isolates using the PureLink Genomic DNA Mini Kit (Invitrogen, 
Carlsbad, CA, USA) according to the provided instructions. WGS was 
performed using the NovaSeq 6,000 platform (Illumina, San Diego, 
CA, USA). The sequencing data were de novo assembled into contigs 
by SPAdes v.3.13.1 (Hölzer and Marz, 2019). Antimicrobial resistance 
genes were analyzed using the ResFinder2.1 bioinformatic database.1 
Plasmid replicons were identified using PlasmidFinder (2.1).2 A 
heatmap of antimicrobial resistance genes was performed using 
Morpheus.3 Multilocus sequence typing (MLST) of strains was 
performed using the PubMLST tool.4 Plasmid sequences were initially 
annotated5 using a subsystem technology (RAST version 2.0) server 
and curated manually using the BLASTn and BLASTp algorithms.6 
Easyfig (v2.2.2) was used to visualize the linear alignment of the 
genetic environment of the optrA gene in different isolates.7

2.6 Phylogenetic analysis using 
core-genome single-nucleotide 
polymorphism

Trimmed and quality-filtered assembly sequences of 12 optrA-
E. faecalis were aligned with the reference strain GZ86, and the 
phylogenetic trees of the isolates were constructed using Parsnp v2.0.3 
based on core genomic single-nucleotide polymorphism (cgSNPs).8 
The phylogenetic tree was visualized and retouched using iTOL.9

3 Results

3.1 Characteristics of enterococci 
harboring optrA

In this study, 15 florfenicol-resistant enterococci were obtained 
from 173 wound discharge samples. All samples were positive for 
optrA with a carriage rate of 8.67% (15/173). Among the optrA-
carrying isolates, E. faecalis had the highest frequency (80%, 12/15), 
while two E. faecium and one E. hirae were also isolated.

The carriage rates of optrA for male patients and female patients 
were 8.47% (10/118) and 9.09% (5/55), respectively. The median age 

1 https://cge.cbs.dtu.dk/services/all.php

2 https://cge.cbs.dtu.dk/services/PlasmidFinder/

3 https://software.broadinstitute.org/morpheus/

4 https://pubmlst.org

5 http://rast.nmpdr.org

6 http://blast.ncbi.nlm.nih.gov/blast

7 http://mjsull.github.io

8 https://github.com/marbl/parsnp

9 https://itol.embl.de

of the patients was 32 (IQR: 26–47) years (Table  1). Among the 
differentially diagnosed diseases, the optrA carriage rates varied. In 
total, 7.4% (8/108) of the patients had perianal abscess and 10.77% 
(7/65) of the patients had appendicitis. Cephalosporins were used 
during the treatment period. All patients were discharged.

3.2 Antimicrobial susceptibility and 
identification of optrA variants

All optrA-positive enterococcal strains were resistant to 
erythromycin and chloramphenicol (Table 1). All the isolates were 
either intermediate or resistant to linezolid and exhibited MICs of 4 
or 8 μg/ml. Two E. faecium isolates were resistant to penicillin, as was 
one E. faecalis isolate with an MIC of 16 μg/ml. The isolate E. faecalis 
GZ27 was susceptible to tetracycline with an MIC of 1ug/ml. No 
vancomycin-resistant enterococcal strains were isolated.

A total of 8 different optrA variants (including the WT) were 
identified among the 15 optrA-positive enterococci (Table 1). The 
RDK and DP variants, were the common variants (n = 4), followed by 
WT (n = 2). The RDK and DP (n = 4) variants were common among 
E. faecalis. One each of the DD, EDM, and KLDP variants was detected 
in E. faecium and E.hirae. Among the seven optrA variants, two 
variants only (EDM and EYDNDM) showed intermediate resistance 
to linezolid (MIC = 4 μg/ml), whereas the remaining variants (RDK, 
DP, DD, EDM, and KLDP) showed resistance to linezolid 
(MIC = 8 μg/ml).

3.3 Transferability of optrA, poxtA, and cfrD

To investigate the transferability of optrA, poxtA, and cfrD, all 15 
optrA-positive isolates were subjected to conjugation experiments. The 
optrA gene in eight isolates could be  successfully transferred to 
E. faecalis JH2-2 but could not be in the remaining seven isolates. 
Conjugation efficiency in the transconjugants of strains differed 
substantially, ranging from 10−3 to 10−7 (Table  1). For poxtA, the 
conjugation efficiency in the transconjugants of strains GZ61 and 
LW161 was 4.22 × 10−5 and 4.03 × 10−6, respectively. For cfrD, the 
conjugation efficiency in transconjugants of strain GZ61 was 
4.95 × 10−5.

3.4 Genotyping and phylogenetic analysis 
of optrA-positive enterococcal isolates

MLST analysis revealed 8 different sequence types (STs) among 
the 12 optrA-positive E. faecalis isolates (Figure 1), including ST16 
(n = 5), ST1022 (n = 1), ST179 (n = 1), ST824 (n = 1), ST58 (n = 1), 
ST403 (n = 1), ST1938 (n = 1), and ST239 (n = 1). One E. faecium 
isolate belonged to ST885, and another was divided into ST1818 and 
244 according to two different parting systems. In this study, it was 
assigned to ST1818. Nevertheless, phylogenetic analysis based on the 
SNPs showed that the distribution of E. faecalis in an anorectal surgery 
ward was highly diverse.

WGS revealed multiple antimicrobial resistance genes and plasmid 
replicons in 12 optrA-positive E. faecalis strains (Figure  1) and 3 
non-E. faecalis isolates (Table  2). Each strain was found to carry 
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TABLE 1 Antimicrobial susceptibility results (μg/ml), variants, and clinical information of 15 optrA-positive enterococci isolates.

Strain Enterococci 
species

variants Source Antimicrobial agent MIC(μg/ml) Conjugation frequency

Age Sex Clinical 
diagnosis

VA TE LZD C P CIP E FF optrA poxtA cfrD

LW22 E. hirae KLDP 32 male appendicitis 0.5 64 8 32 1 2 8 128 NA / /

GZ27 E. faecalis WT 27 male perianal 

abscess

0.5 32 8 32 8 8 64 128 5.8 × 10−6 / /

GZ61 E. faecalis RDK 28 male perianal 

abscess

0.5 32 8 64 4 8 64 32 7.3 × 10−5 4.22 × 10−5 4.95 × 10−5

GZ83 E. faecalis RDK 25 male perianal 

abscess

0.5 32 8 64 8 1 64 64 NA / /

GZ86 E. faecalis RDK 50 female perianal 

abscess

0.5 64 8 32 4 8 64 128 NA / /

GZ133 E. faecalis WT 47 male perianal 

abscess

0.5 32 8 64 8 1 64 32 3.23 × 10−4 / /

GZ138 E. faecalis DP 30 female perianal 

abscess

0.5 32 8 32 4 8 64 64 1.13 × 10−3 / /

GZ142 E. faecalis DP 21 female perianal 

abscess

0.5 32 8 128 4 8 64 32 2 × 10−3 / /

LW158 E. faecalis DP 32 male appendicitis 0.5 32 8 32 8 8 64 64 NA / /

LW161 E. faecium DD 21 male appendicitis 0.5 32 8 32 32 8 64 64 2.89 × 10−5 4.03 × 10−6 /

GZ178 E. faecalis DP 47 male perianal 

abscess

0.5 32 8 32 8 1 64 32 5.47 × 10−7 / /

LW192 E. faecalis KD 34 male appendicitis 0.5 32 8 32 4 8 64 32 NA / /

LW226 E. faecalis EYDNDM 47 female appendicitis 0.5 32 4 32 16 8 64 32 NA / /

LW227 E. faecium EDM 26 female appendicitis 0.5 32 4 64 64 2 64 64 NA / /

LW233 E. faecalis RDK 33 male appendicitis 0.5 32 8 32 8 1 64 64 1.71 × 10−3 / /

VA, Vancomycin; TE, tetracycline; CIP, ciprofloxacin; E, erythromycin; C, chloramphenicol; P, penicillin; LZD, linezolid; FF, florfenicol; NA, not available.
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resistance genes (7–17) and a diverse range of plasmid replicons (1–4). 
These included aminoglycoside-inactivating enzyme genes [aac(6′)-Iid, 
aac(6′)-aph(2″), aadD, ant(6)-Ia, ant(9)-Ia, aph(3′)-III, and str], 
macrolide resistance genes (ermA, ermB, and msrC), phenicol 
resistance genes (cfrD, cat, fexA, and fexB), tetracycline resistance genes 
[tet(L) and tet(M)], trimethoprim resistance gene (dfrG), oxazolidinone 
resistance genes (optrA and poxtA), and fosfomycin resistance gene 
(fosB3). The fosB3 gene was detected in only one E. faecalis LW226. 
Concerning the phenicol resistance genes, fexA was present in all 
optrA-positive strains. Genes less frequently present included fexB and 
poxtA (n = 2), cat (n = 3), and cfrD (n = 1).In addition, other resistance 
genes including aac(6′)-aph(2″) and dfrG (n = 10), aph(3′)-III and ermA 
(n = 13), ermB and lsaA (n = 12), and tet(M) (n = 14) were detected.

3.5 Genomic context of optrA

For the 12 E. faecalis isolates, identical genetic structures were 
found in two and three isolates, respectively (Figure  2). The two 
isolates (GZ61 and GZ142) carried the shortest contig in which only 
optrA was identified.

Several mobile genetic elements including IS1216E, ISVlu1, and 
transposase genes tnpC and tnpY, were inserted into the flank 
structure of fexA-optrA. Insertion sequences ISVlu1 and IS1216E, 
belonging to family member ISL3, were detected upstream and/or 

downstream of the fexA-optrA fragment. The IS1216E element was 
located upstream of the fexA-optrA segment in E. faecalis GZ83. The 
genetic segment fexA-optrA-ISVlu1 was identified in isolate LW192. 
Three isolates (GZ138, GZ178, and LW158) shared the same genetic 
segments ISVlu1-fexA-optrA-erm(A). Truncated transposon Tn554 
and transposase genes tnpC and tnpY were located upstream of the 
fexA-optrA segments in E. faecalis isolates LW226, GZ27, and 
GZ133. In addition, for the two same genetic environment isolates 
(GZ27 and GZ133), the resistance genes ant9-1 and erm(A) were 
present in the region between transposon Tn554 and fexA-
optrA fragments.

The optrA flanking regions in three non-E. faecalis enterococci are 
shown in Figure 3. Two E. faecium LW227 and LW161 isolates shared 
the genetic environment Tn544-tnpC-fexA-tnpY-optrA. No mobile 
genetic elements were identified in the E. hirae strain.

4 Discussion

The prevalence of linezolid resistance has rapidly increased. The 
spread of optrA-mediated linezolid resistance in Enterococcus could 
be an imminent threat.

In this study, the prevalence of optrA-positive enterococci in 
wound secretion samples obtained from patients in an anorectal 
surgery ward of a Chinese hospital was 8.65%. It was 1.1% at a tertiary 

FIGURE 1

Phylogenetic tree analysis and heatmap of 12 optrA-positive E. faecalis strains A core-genome Journal Pre-proof phylogenetic tree. Antimicrobial 
resistance genes, ST, and plasmid types in optrA-positive strains are labeled. Colored cells in each column denote the presence of a particular 
resistance gene or plasmid replicon as labeled at the top. Antimicrobial resistance genes and plasmid replicon types are shown in red and orange, 
respectively.

TABLE 2 Resistance genes and plasmid replicon types of optrA-positive non-E. faecalis enterococcal isolates.

Strain 
species

Resistance 
gene 

number

Resistance genes Plasmid 
replicons

E. hirae

LW22

7 aac(6′)-Iid, erm(A), lun(G), optrA, fexA, tet(L), and tet(M) repUS1

E. faecium

LW161

17 aac(6′)-Iid, aac(6′)-aph(2″), aadD, and ant(6)-Ia,

aph(3′)-III,erm(A), erm(B), ant(9)-Ia, lnu(B), lsa(E), msr(C),optrA, poxtA, fexA, fexB, tet(L), and tet(M)

rep18, rep22, 

and repUS15

E. faecium

LW227

13 aac(6′)-Ii,aac(6′)-aph(2″),aph(3′)-III, fexB, erm(A), erm(B), tet(L), lnu(B), lsa(E), tet(M), optrA, fexA, and dfrG rep1, rep2, and 

repUS15
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care hospital in Nanjing and Beijing, China (Zhou et al., 2019; Wang 
et al., 2024). Several studies showed that fecal carriage rates of optrA 
from healthy humans varied from 3.53% in 2019 to 5.89% in 2022 (Cai 
et al., 2019; Shen et al., 2022). A previous study reported a human 
intestinal carriage rate of optrA at 19.3%, utilizing an optimized high-
sensitivity screening approach (Shen et  al., 2022). We  used this 
method to screen for samples. As a result, we  discovered an 
unexpectedly high prevalence. Nevertheless, a study suggested that the 
prevalence of optrA is higher in enterococci from animals than those 
from humans (Wang et al., 2015; Shen et al., 2024). The isolates from 
shared bicycles were identified for the presence of optrA gene (Han 
et  al., 2020). The optrA gene has been widespread in animal, 
environmental, and clinical isolates, indicating that the horizontal 

transfer of optrA plays a crucial role in the human–animal–
environment interfaces (Shen et al., 2024; Gouliouris et al., 2018). In 
the present study, the patients had no history of linezolid use during 
hospitalization, indicating that infections were not associated with 
linezolid use.

In this study, STs and SNPs of optrA-positive E. faecalis isolated 
were genetically highly diverse. STs belonged to eight different 
types, mostly for ST16. ST16, with the GCTGAACC SNP profile, 
has often been identified in humans, animals, and surface water in 
various countries (Zhou et al., 2019; Freitas et al., 2020; Bender 
et  al., 2018; Rathnayake et  al., 2011). Previous studies reported 
ST480 as one of the predominant types in France and Germany 
(Egan et al., 2020). These findings demonstrated the non-clonal 

FIGURE 2

Genetic environment of 12 optrA-positive E. faecalis isolates in this study. The genes of different functions are labeled with different colors. Δ indicates 
a truncated gene.
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dissemination and the widespread presence of optrA-positive 
E. faecalis in hospitals.

All strains harbored multiple resistance genes and showed a 
multidrug-resistant phenotype, which indicated a broad antibiotic 
resistance spectrum of enterococcal isolates. To our surprise, the 
fosfomycin resistance gene foB3 was detected in a single optrA-
carrying E. faecalis. In 2021, the coexistence of foB3 and optrA was 
the first reported in E. faecalis from pigs (Wang et  al., 2021). 
Given that fosfomycin and linezolid are the last-resort antibiotics 
for treating infections caused by VRE, the co-occurrence of fosB 
and optrA in clinical strains may seriously compromise the 
effectiveness of clinical therapy and is another potential threat to 
public health.

To date, at least 69 optrA variants have been detected (Schwarz 
et  al., 2021), and 7 OptrA variants were detected in this study. 
We found the RDK and DP variants were the common variants in 
E. faecalis. Previous studies suggested that the different OptrA 
variants might have an impact on the relative linezolid 
susceptibility/resistance of the respective isolates (Schwarz et al., 
2021). A previous study demonstrated that enterococci strains 
(isolated from asymptomatic healthy humans) carrying the wild-
type optrA gene or the RDK variant exhibited relatively high levels 
of resistance to linezolid compared to other variants (Cai et al., 
2019). Moreover, another study demonstrated that strains with the 
RKD variant had linezolid MICs of 8–32 μg/ml, while those with 
the wild-type optrA gene showed MICs of 8–48 μg/ml (Wang et al., 
2024). The RDK variant increased the MIC of linezolid (Li et al., 
2020). We observed that isolates harboring the EDM and EYDNDM 
variants for linezolid MICs were 4 μg/ml, as observed in previous 
studies (Cai et al., 2015). The wild-type and other variants (RDK, 
DP, DD, EDM, and KLDP) were linezolid MICs of 8 μg/ml. Thus, 
distinct variants of the optrA gene may confer differential resistance 
to linezolid in enterococci.

In this study, the core structure fexA-optrA was found, which was 
also identified in various bacteria from humans, wastewater, and 
animals (Tang et  al., 2021; Yang et  al., 2024; Freitas et  al., 2017; 
Abdullahi et  al., 2023). Variations were distinguished by various 
flanking IS elements and other genes located between these elements. 
Mobile genetic elements, including IS1216E and ISVlu1, contribute 
significantly to the transmission of optrA (Partridge et al., 2018). 
Tn554 mediation of optrA transfer has been identified (Kang et al., 

2019). The optrA flanking structures were observed from different 
species, suggesting that the optrA cluster may jump via mobile 
elements, including transposon (Tn554), insertion sequences 
(IS1216E and ISVlu1), and transposase genes (tnpY and tnpC). The 
findings suggested that transposable elements, including ISVlu1, 
IS1216E, and Tn554, may be important in the transmission of optrA 
in the anorectal surgery ward.

Due to the limitations of second-generation short reads, we were 
unable to obtain and analyze the complete genetic environment 
including complete plasmids.

The intestine is a reservoir of drug-resistant genes. The detection 
of optrA-positive E. faecium from bile suggests that drug-resistant 
bacteria can also exist in the gallbladder upstream of the intestine 
(Deng et al., 2023). In the present study, the high carriage of optrA-
positive Enterococcus in anorectal disease not only makes the 
treatment difficult but also may pose a potential human health risk. 
Hence, optrA-carrying enterococcal from the intestine needs 
further attention.

In conclusion, we report the high carriage rate of the optrA gene 
isolates from anorectal disease patients and present the genetic 
diversity. Different mobile genetic elements including Tn554, IS1216E, 
and ISVlu1 mediated the dissemination of optrA. The prevalence and 
spread of optrA-carrying enterococci among patients in the anorectal 
surgery ward should be actively monitored.
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