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Introduction: Healthcare-associated infections (HAIs) pose a significant challenge 
in acute care hospitals, particularly in intensive care units, due to persistent 
environmental contamination despite existing disinfection protocols and manual 
cleaning methods. Current disinfection methods are labor-intensive and often 
ineffective against multidrug-resistant (MDR) pathogens, highlighting the need 
for new, automated, hands-free approaches.

Methods: This study evaluates the bactericidal efficacy of low concentrations 
of gaseous ozone (5 ppm) against clinically relevant and often MDR bacteria 
under various concentrations, contact times, temperatures, and environmental 
conditions.

Results: We observed a 3 log10-fold reduction in Escherichia coli and Salmonella 
Typhimurium and a 1–2 log10-fold reduction in group A Streptococcus and 
methicillin-resistant Staphylococcus aureus upon ozone exposure. The 
bactericidal effect was dose-dependent, with no significant difference between 
single and repeated exposures. Environmental conditions such as temperature 
and humidity had minimal impact on low-dose ozone efficacy, with slightly 
improved bacterial killing at colder temperatures and higher humidity levels. 
Gaseous ozone also showed significant bactericidal activity against the broad 
range of Gram-positive and -negative MDR clinical isolates.

Discussion: These findings highlight the potential of low-dose gaseous ozone 
as a versatile, effective, and hands-free disinfectant for healthcare and other 
settings. Further research is needed to establish long-term safety and efficacy 
guidelines for its use in occupied spaces and to explore potential synergy with 
other contemporary disinfection strategies.

KEYWORDS

gaseous ozone disinfection, multidrug-resistant bacteria, alternatives to antibiotics, 
low dose ozone, environmental decontamination

1 Introduction

Approximately 75,000 individuals acquire healthcare-associated infections (HAIs) 
annually in U.S. acute care hospitals (Popovich et  al., 2019; Halverson et  al., 2022). 
Environmental contamination significantly contributes to the acquisition of HAIs, particularly 
in intensive care units (ICUs) (Huang et al., 2006; Drees et al., 2008; Dancer, 2014; Cohen et al., 
2018) Many clinically relevant pathogens can survive on inanimate surfaces for extended 
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periods (Porter et al., 2024), and the presence of a previously infected 
occupant significantly increases the risk of subsequent residents 
developing HAIs (Mitchell et al., 2023). Current disinfection protocols, 
which include manual and mechanical cleaning with disinfectants, 
germicides, and ultrasonic cleaners (Rutala and Weber, 2015; 
Sheppeard et al., 2022), face challenges due to the development of 
resistance in many clinical isolates, rendering decontamination both 
expensive and labor-intensive (Dancer, 2014; Lourbopoulos et al., 
2021). Given the persistent issues of understaffing and the growing 
antibiotic resistance crisis, there is a critical need for new, hands-free 
disinfection methods (Dancer, 2014).

Ozone (O3), a potent oxidant composed of three unstable 
oxygen atoms, is a naturally occurring, pungent gas found at 10–20 
parts per billion (ppb) in the atmosphere and up to 100 ppb in 
polluted areas. Ozone demonstrates remarkable microbicidal 
activity by oxidizing bacterial lipids, viral envelopes and capsids, 
and fungal membranes (Allison et al., 2009; Brié et al., 2018; Xue 
et al., 2023). Additionally, it generates reactive oxygen species (ROS) 
that collapse cellular membranes. O3 is frequently employed as an 
environmental decontaminant, particularly in its aqueous form in 
water treatment plants (Ding et al., 2019; Epelle et al., 2023).

Ozone has also been used therapeutically for skin and oral 
pathologies for decades (Kim et al., 2009; Liu et al., 2023). Despite 
these successes, the use of gaseous ozone as an environmental 
disinfectant has been limited due to its toxicity to humans at levels 
exceeding 70 ppb. The severity of these effects can be mitigated by 
using lower doses, shorter durations, and less frequent applications of 
ozone (Bette et al., 2022; Singh et al., 2023). While high doses of ozone 
can be harmful, it also offers advantages as a treatment therapy for 
various human diseases including cancer, bacterial infections, asthma, 
and viral diseases, due to its disinfectant properties and anti-
inflammatory effects (Singh et al., 2023; Elvis and Ekta, 2011; Zanardi 
et  al., 2016). Additionally, ozone has demonstrated effective 
antimicrobial properties in sustainable food production, wound 
healing in healthcare, and public environments by penetrating 
intracellular components of microorganisms and causing oxidative 
damage (Epelle et al., 2023; Agarwal et al., 2020; Moraes et al., 2021; 
Premjit et al., 2022; Roth et al., 2023; Neves et al., 2023).

In recent years, interest in low-dose ozone as a cheap and effective 
environmental disinfectant has grown, particularly in the agriculture and 
healthcare industries (Shen et al., 2021). Gaseous ozone is a Generally 
Recognized as Safe (GRAS) agent and is approved by the U.S. Food and 
Drug Administration (FDA) for use (Bobka, 1993). Several studies have 
reported conflicting evidence regarding the efficacy of low-dose gaseous 
ozone against pathogens, with effectiveness against some bacteria but 
ineffectiveness against COVID-19 (Fontes et al., 2012; Westover et al., 
2022; Misawa et al., 2023). Additionally, several studies have assessed 
ozone’s capability in decontaminating food and bacterial surfaces (Xue 
et al., 2023; Coll Cárdenas et al., 2011; Cantalejo et al., 2016). Most of these 
studies utilized a limited number of targets and exposure conditions, 
making it difficult to generalize the efficacy of low-dose gaseous ozone as 
a disinfectant.

We aimed to characterize the impact of environmental conditions, 
including bacterial growth conditions, temperature, and humidity, on 
the microbicidal capacity of low-dose ozone on clinically relevant 
bacterial pathogens. We found that ozone was effective at killing both 
Gram-positive and Gram-negative species in a dose-dependent 
manner. Additionally, we  found that gaseous ozone was equally 

effective at low and ambient temperatures and was relatively unaffected 
by humidity. These studies address the current gap in the literature 
and provide evidence for the use of low-dose gaseous ozone as a 
potential environmental disinfectant.

2 Materials and methods

2.1 Bacterial methods

All strains utilized are listed in Table 1. Strains are organized by 
usage in each figure.

2.1.1 Bacterial cultures
Escherichia coli, Pseudomonas aeruginosa, Salmonella 

Typhimurium (S. Tm), Serratia marcescens, and Vibrio cholerae were 
grown in Luria broth (LB) at 37°C with aeration. Acinetobacter 
baumannii was grown in tryptic soy broth (TSB) at 37°C with aeration. 
Listeria monocytogenes was grown in brain heart infusion broth (BHI) 

TABLE 1 Bacterial strains.

Figures 1, 2: Strain Source

Methicillin-resistant Staphylococcus aureus 

TCH1516

Gonzalez et al. (2005)

E coli CFT073 Welch et al. (2002)

Group A Streptococcus M1T1 5,448 Chatellier et al. (2000)

Salmonella enterica serovar Typhimurium ATCC 14028

Figure 3A: Strain Source

MRSA JH1 Bosi et al. (2016)

E. coli ESBL-3 Clinical isolate, this study

Pseudomonas aeruginosa P4 Lin et al. (2015)

Pseudomonas aeruginosa PA14 Rahme et al. (1995)

Acinetobacter baumannii Lac-4 Harris et al. (2013)

Group A Streptococcus NS501 Serotype M14 McKay et al. (2004)

Group B Streptococcus 7507-03 Dahesh et al. (2008)

Serratia marcescens SR01 Clinical isolate, this study

Enterococcus faecium 447 Tran et al. (2013)

Figure 3B: Strain Source

E coli CFT073 Welch et al. (2002)

MRSA Newman Strain Kuipers et al. (1993)

Pseudomonas aeruginosa PA14 Rahme et al. (1995)

Group A Streptococcus M1T1 5,448 Chatellier et al. (2000)

Vibrio cholerae Inaba El Tor O1 strain C6706 Son et al. (2011)

Enterococcus faecalis ATCC 29212

Salmonella enterica serovar Typhimurium ATCC 14028

Listeria monocytogenes 10403S Datta et al. (2006)

Lactococcus lactis NZ9000 Kuipers et al. (1993)

Bacillus subtilis 3,610 Liu et al. (2010)

Pseudomonas fluorescens Migula ATCC 13525
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at 37°C with aeration. Methicillin-resistant Staphylococcus aureus 
(MRSA), Bacillus subtilis, Enterococcus faecalis, and Lactococcus lactis 
were grown in Todd Hewitt Broth (THB) at 37°C with aeration. Group 
A Streptococcus (GAS) and group B Streptococcus (GBS) were grown 
in THB at 37°C without aeration. Pseudomonas fluorescens Migula was 
grown in nutrient broth at 30°C with aeration. For stationary phase 
cultures, 16–20 h cultures were used except for P. fluorescens Migula 
which was grown for 36 h. For log-phase cultures, stationary phase 
cultures were diluted 1:20 in fresh media and grown for 2–4 h under 
appropriate culture conditions until cultures reached mid-logarithmic 
phase (OD600 ~ 0.4).

2.2 Gaseous ozone

2.2.1 Gaseous ozone chamber
We constructed a 28-liter3 ozone chamber for this study, capable of 

controlling both ozone and humidity levels. Ozone was produced by an 
ozone generator (Model: 1000 mg/h; Ambohr Electric Limited, Fengdong 
New Town, Xi’an, Shaanxi, China), and vented into a humidity- 
controlled chamber. Ozone concentration was measured using an ozone 
sensor (Model:110-4xx, Interlink Electronics, Irvine California) and flow 
rate (0.1–5 ppm) was adjusted to maintain the desired concentration. 
We  built an ozone destructor (MINSLITE-B, Hunan, China) that 
decomposed residual ozone immediately after reaching the desired 
contact time. Humidity was measured using a humidity and temperature 
sensor (Model: SHT-31, Sensiron AG, Stäfa Switzerland) and the 
humidity was adjusted with molecular grade H2O. Ambient humidity 
(~55–70%) was used unless otherwise indicated.

2.2.2 Refrigerated ozone chamber
Ozone was produced by an ozone generator (Model: 1000 mg/h; 

Ambohr Electric Limited, Fengdong New Town, Xi’an, Shaanxi, 
China) placed inside a compact refrigerator (74 liters3, Walmart). 
Ozone concentration was measured using an ozone sensor (Model 
ZE14-O3, Winsen Electronics Technology Co., Ltd., Zhengzhou, 
China) and flow rate (0.1–5 ppm) was adjusted to maintain the 
indicated concentration.

2.2.3 Gaseous ozone treatment
Note: to compare gaseous ozone to other published studies, ozone 

concentration can be  expressed in multiple ways. We  report 
concentrations in volumetric ppm O3 and contact time (CT) = ppm x 
exposure time. Equivalent measures are listed in Table 2. Additional 
ozone calculation information can be  found at Oxidation 
Technologies (Ozone Equipment Manufacturer and Ozone System 
Integrators, 2024).

Unless otherwise indicated, stationary-phase cultures were serially 
diluted in PBS and spot-plated onto appropriate agar. Petri dishes were 

placed in the chamber at the indicated ozone contact times and 
humidities with the lid off, exposing the surface for the duration of the 
CT. For humidity experiments, control plates were placed in the chamber 
for the same amount of time with the tested humidity in the absence of 
ozone. For refrigerated experiments, control plates were placed in the 
refrigerated chamber for the same duration without ozone exposure to 
account for the impact of temperature on bacterial growth inhibition.

2.2.3.1 Dose response experiments
Stationary-phase E. coli, S. Tm, GAS, and MRSA were serially 

diluted in PBS in triplicate, plated on Luria agar (LA) or Todd Hewitt 
Agar (THA) plates, and exposed to 5 ppm O3 for 0, 25, 50, 100,200, or 
400 O3 CT.

2.2.3.2 Repeated exposure experiments
Stationary-phase E. coli, S. Tm, GAS, and MRSA were serially 

diluted in PBS in triplicate, plated on LA or THA plates, and 
exposed to a single dose of 5 ppm O3 for 360 CT or three doses of 
5 ppm O3 200 CT with 30–60 min recovery time at normal O2 
concentrations between exposures. Control plates were left 
untreated at ambient O2.

2.2.3.3 Logarithmic vs. stationary phase experiments
E. coli, S. Tm, GAS, and MRSA in stationary or mid-log phase 

(OD600 0.4–0.6) were serially diluted in PBS in triplicate, plated on 
Luria agar (LA) or Todd Hewitt agar (THA) plates and exposed to 0, 
25, 100, or 400 O3 CT.

2.2.3.4 Refrigerated exposure experiments
Stationary phase E. coli, S. Tm, GAS, and MRSA were serially 

diluted in PBS in triplicate, plated on LA or THA plates and exposed 
to 5 ppm O3 for 0, 25, 100, or 400 O3 CT at 4°C or room temperature 
(RT, 21–23°C). For extended refrigerated exposures, plates were 
exposed to 1 ppm O3 for 0 or 360 O2 CT. Untreated plates were 
incubated in the absence of ozone at 4°C or RT for the equivalent 
exposure time. All plates were then incubated overnight at 37°C.

2.2.3.5 Humidity exposure experiments
Stationary phase E. coli, S. Tm, GAS, and MRSA were serially 

diluted in PBS in triplicate, plated on LA or THA plates and exposed 
to 5 ppm O3 200 CT at low (<40%), ambient (40–60%), and high 
(>70%) humidity.

2.2.3.6 Clinical isolate experiments
Stationary phase MRSA, E. coli, P. aeruginosa, GAS, GBS, 

S. marcescens, E. faecium, V. cholerae, Salmonella, L. monocytogenes, 
L. lactis, B. subtilis, P. fluorescens and A. baumannii were grown in 
appropriate media, serially diluted in PBS in triplicate, and plated on 
appropriate agar as described above. Plates were exposed to 5 ppm O3 

TABLE 2 Gaseous ozone calculation.

Measure Calculation Equivalent to 1 volumetric ppm O3

Contact time 1 PPM × Minute = 1 ppm O3 × 1 min = 1 CT 1 CT

Volume 1 mg/L = 1 g/m3 = 1 ug/ml = 467 ppm O3 2.14 mg O3/m

Weight in air 1% O3 = 12.8 g/m3 = 7,284 ppm O3 0.00014% O3

Ozone concentration can be reported in multiple ways. Above table lists calculations for reporting gaseous ozone concentration and equivalent measures to 1 volumetric ppm O3.
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for a 400 CT or 1 ppm O3 360CT. Control plates were left untreated at 
ambient O2. All plates were then incubated overnight at 37°C except 
P. fluorescens which was incubated at 30°C.

2.2.3.7 Fitness studio pilot experiment
An ozone generator was placed inside a fitness studio, and the 

room was exposed to 0.5 ppm for 1 h for three consecutive evenings. 
Six sites were swabbed with pre-moistened sterile cotton swabs for 
microbial growth prior to exposure and after the final exposure. Swabs 
were vigorously inoculated into Letheen broth (3M) to transfer 
microbes, TSA was serially diluted, plated in triplicate on TSA plates, 
and grown at 37°C overnight for enumeration.

2.2.3.8 Data analysis
Statistical analysis was performed using GraphPad Prism v10. 

Comparisons between two groups were conducted using a two-tailed 
Student’s t-test, while comparisons among three or more groups were 
conducted using a one-way analysis of variance (ANOVA). Unless 
otherwise indicated in the figure legends, graphs display the means of 
technical replicates from three or more independent biological 
replicates ± standard error of the mean (SEM). p values <0.05 were 
considered statistically significant.

3 Results

We first tested the microbicidal activity of gaseous ozone, selecting 
E. coli and S. typhimurium as representative Gram-negative strains, 
and GAS and MRSA as representative Gram-positive strains. Strains 
were exposed to gaseous ozone at 5 ppm for varying CT. We observed 
a 3 log10-fold reduction in both E. coli and S. typhimurium after 

exposure compared to controls (Figures  1A,B). GAS and MRSA 
showed a 1–2 log10-fold reduction after exposure to increasing 
concentrations of O3 (Figures 1C,D), indicating that gaseous ozone 
kills in a dose-dependent manner. To assess whether repeated 
exposure enhances killing, we exposed strains to a single 360 CT dose 
or three doses of 200 CT with recovery periods between each dose. 
We found no significant difference in bacterial survival between single 
and multiple exposures, suggesting that a single potent dose is 
sufficient to reduce bacterial survival (Figures 1E–H).

Strains were exposed to gaseous ozone at 5 ppm for varying 
contact times (CT). We observed a three log10-fold reduction in both 
E. coli and S. typhimurium after exposure compared to controls 
(Figures 1A,B). GAS and MRSA showed a 1–2 log10-fold reduction 
after exposure to increasing concentrations of O3 (Figures  1C,D), 
indicating that gaseous ozone kills in a dose-dependent manner. To 
assess whether repeated exposure enhances killing, we exposed strains 
to a single 360 CT dose or three doses of 200 CT with recovery periods 
between each dose. We found no significant difference in bacterial 
survival between single and multiple exposures, suggesting that a 
single potent dose is sufficient to reduce bacterial survival 
(Figures 1E–H).

Next, we tested the impact of environmental conditions on the 
bactericidal capacity of gaseous ozone by exposing bacteria grown in 
logarithmic and stationary phases to O3. We did not find consistent 
differences in killing between growth phases of E. coli and MRSA, 
although stationary-phase MRSA was modestly, though not 
significantly, more resistant to killing (Figures  2A,B). Given the 
significant interest in applying ozone to refrigerated food products, 
we examined the impact of temperature on gaseous ozone efficacy by 
exposing E. coli and MRSA to gaseous O3 at ambient temperature 
(~21–22°C) and at 4°C. Gaseous ozone was slightly more effective at 

FIGURE 1

Gaseous ozone is effective against Gram-negative and Gram-positive bacteria in a dose-dependent manner. (A–D) Fold change in colony forming 
units (CFUs) from stationary phase (A) E. coli, (B) Salmonella enterica serovar Typhimurium (S. Tm), (C) Group A Streptococcus (GAS), and 
(D) methicillin-resistant Staphylococcus aureus (MRSA) treated with 5 ppm gaseous O3 to 25, 100, 200, and 400 CT. (E–H) Fold change in CFUs of 
(E) E. coli, (F) S. Tm, (G) GAS, and (H) MRSA treated with 5 ppm to 360 CT once or 200 CT three times with 30–60 min rest between each cycle. 
Pooled means ± SEM from three independent experiments. n.s., not significant. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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killing MRSA and E. coli at colder temperatures, though the difference 
did not achieve statistical significance (Figures  2C–F). We  also 
investigated the impact of humidity on ozone’s killing capacity by 
testing low humidity (<40%), ambient humidity (40–60%), and high 
humidity (>70%). Different humidity levels did not impact the ability 
of ozone to kill E. coli (Figure 2G). There was a modest, though not 
statistically significant, improvement in the bactericidal activity of 
gaseous O3 against MRSA at higher humidity levels (Figure  2H). 
Collectively, these results indicate that gaseous ozone is effective 
against bacteria in both quiescent and active growth phases and that 
its killing capacity is relatively unaffected by low temperatures and 
varying humidity levels.

Lastly, we examined the ability of ozone to kill a panel of clinical 
isolates of important human pathogens. We  exposed strains of 
A. baumannii, MRSA, E. coli, P. aeruginosa, GAS, GBS, E. faecium, and 
S. marcescens to a single dose of gaseous ozone and found significant 
bactericidal activity against all strains tested (Figure 3A). We further 
tested a broader panel of isolates relevant to both human health and 
the food industry. Consistent with previous findings, a single low-dose 
exposure of gaseous ozone effectively reduced microbial counts by at 

least 10-fold (Figure 3B). As a proof of principle, we conducted a pilot 
study where an ozone generator was placed in a fitness studio over a 
weekend. Six sites were sampled for microbial counts before and after 
exposure to gaseous ozone at 0.5 ppm for 1 h over three consecutive 
nights. All six sites showed reduced bacterial counts after O3 exposure 
(Figure 3C). These findings collectively demonstrate the potential of 
gaseous ozone as a hands-free microbicide effective against MDR 
bacterial species.

4 Discussion

The findings from our study demonstrate the robust bactericidal 
efficacy of low-dose gaseous ozone against a variety of MDR, clinically 
relevant pathogens, highlighting its potential as a hands-free 
environmental disinfectant. Our results showed that a single potent 
dose of ozone was sufficient to achieve significant reductions in 
bacterial counts. The lack of enhanced killing with repeated exposures 
suggests that ozone’s bactericidal effect is dose-dependent rather than 
frequency-dependent.

FIGURE 2

Ozone killing efficacy is largely indifferent to microbial growing conditions, ambient temperature, and humidity. (A,B) CFUs of (A) E. coli and (B) MRSA 
grown at stationary and logarithmic phase treated with 5 ppm O3 to 200 CT. (C–F) Colony forming units (CFUs) from stationary phase E. coli and MRSA 
treated with (C,D) 5 ppm O3 to 0, 25, 100, and 400 CT at 4°C or room temperature (RT) or (E,F) 1 ppm O3 360 CT at 4C and RT. (G,H) CFUs of (G) E. 
coli and (H) MRSA treated with 5 ppm O3 to 200 CT at low (<40%), Ambient (40–60%), or high (>70%) humidity. (A,B) Representative of two 
independent experiments. (C–F) three experiments pooled. n.s., not significant. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Ozone’s microbial inactivation stems from its ability to induce 
microorganisms such as bacteria, fungi, and mold, to generate reactive 
oxygen species (ROS), which then attack their cell membranes, 
particularly the polyunsaturated fatty acids, leading to lipid 
peroxidation and microbial inactivation (Brié et al., 2018; Xue et al., 
2023; Epelle et al., 2023; Elvis and Ekta, 2011; Agarwal et al., 2020; 
Moraes et al., 2021; Premjit et al., 2022; Roth et al., 2023; Neves et al., 
2023; Pagès et al., 2020; Rangel et al., 2021). This effect is more evident 
in humidified ozone applications, where spore swelling occurs more 
severely, enhancing the passage of ROS and resulting in the collapse 
or rupture of the cell membrane (Epelle et al., 2023; Agarwal et al., 
2020; Moraes et al., 2021; Premjit et al., 2022; Roth et al., 2023; Neves 
et al., 2023; Bhilwadikar et al., 2019; Tizaoui et al., 2022). When ozone 
is used against viruses, it damages their lipid envelopes and protein 
capsids, rendering them unable to infect hosts (Allison et al., 2009). 
This damage extends to the genome and RNA, impairing the virus’s 
ability to reproduce. Furthermore, the reaction with ROS can produce 
secondary reactive species, which can intensify the inactivation 
process (Farooq and Tizaoui, 2023).

A critical aspect of our study was evaluating the impact of 
environmental conditions on ozone’s efficacy. Previous studies have 
found mixed effects of microclimate on O3 (Pironti et al., 2021; 

Blanco et al., 2021; Grignani et al., 2020; Hudson et al., 2009). Our 
findings indicate that gaseous ozone maintains its bactericidal 
properties across various temperatures and humidity levels. 
Specifically, ozone was slightly more effective at colder temperatures 
(~4°C) compared to ambient temperature (~21–22°C), and higher 
humidity levels modestly improved killing, particularly for MRSA, 
though these differences were not statistically significant. Our 
findings are consistent with those of De Caro et al., which showed 
mild impacts of humidity and temperature on the bactericidal 
activity of O3 against E. coli (Pironti et  al., 2021). Furthermore, 
we observed a slight but nonsignificant increase in microbicidal 
efficacy at higher humidity levels compared to low humidity, 
aligning with previous reports demonstrating maximal antiviral O3 
activity against COVID-19 at high humidity (Hudson et al., 2009). 
Collectively, these results suggest that ozone can be an effective 
disinfectant in diverse environmental settings, including 
refrigerated environments. This is particularly relevant to the food 
industry, which continually combats mold and bacterial growth in 
walk-in refrigerators and refrigerated trucks where food is stored 
and transported. Regular low-dose gaseous ozone application to 
these spaces could reduce microbial contamination, prevent food 
spoilage, and result in cost savings.

FIGURE 3

Gaseous ozone is effective against clinically relevant bacterial pathogens. (A) CFUs from clinical isolates treated with 5 ppm 400 CT. (B) CFUs from 
healthcare associated and foodborne/spoilage associated bacteria treated with 1 ppm O3 360 CT. Healthcare associated pathogens include MRSA, E. 
coli, Pseudomonas aeruginosa, GAS, Vibrio cholerae, Enterococcus faecalis, S. Tm, and Listeria monocytogenes. Foodborne pathogens include E. 
faecalis, S. Tm, L. mono, Lactococcus lactis, Bacillus subtilis, and Pseudomonas fluorescens. Pooled means ± SEM from two-five independent 
experiments. (C) Fold change in CFUs from six sampled sites at a yoga studio after exposure to 0.5 ppm for 1 h on three consecutive nights over a 
weekend in a pilot application study. n.s., not significant. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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The effectiveness of ozone against a broad range of clinical isolates, 
including A. baumannii, P. aeruginosa, and S. marcescens, underscores 
its potential application in healthcare settings to combat healthcare-
associated infections (HAIs). The growing threat of MDR infections 
is difficult to overstate, with projections estimating 10 million deaths 
annually by 2050 if infection trends continue unchecked (O’Neil, 
2014). Of the 22 new antibiotics approved between 2012 and 2022, 
only two were considered first-in-class, or novel, antibiotics (García-
Castro et al., 2023), and five are no longer available (McKenna, 2020). 
Despite standardized cleaning protocols, a previously room occupancy 
by infected patients remains a major risk factor for HAIs due to the 
ability of MDR pathogens to leverage virulence factors that facilitate 
their persistence in highly inhospitable healthcare environments 
(Mitchell et al., 2023). Given the dwindling supply of antibiotics and 
limitations of current disinfection methods, ozone offers a promising 
alternative that could be integrated into infection control protocols in 
a cost-effective manner.

While gaseous O3 cannot completely replace manual cleaning, 
we envision its use in conjunction with current treatments to reduce 
the risk of HAIs and eliminate environmental reservoirs of nosocomial 
pathogens. O3 could be particularly useful in disinfecting hard-to-
reach spaces or areas where manual cleaning is impractical. As a proof 
of concept, we conducted a pilot study in which an ozone generator 
was placed in a fitness studio. Three one-hour exposures to 0.5 ppm 
gaseous O3 on successive evenings reduced microbial counts by 2–3 
log10-fold across multiple surfaces. These findings support the practical 
application of ozone and suggest it could be implemented in clinics, 
schools, and other high-risk settings.

While our study provides compelling evidence for the use of 
low-dose gaseous ozone as an environmental disinfectant, it also 
highlights areas for future research. Long-term studies assessing the 
safety and efficacy of continuous ozone use in occupied spaces are 
necessary to establish implementation guidelines. Additionally, 
exploring the synergistic effects of ozone with other disinfection 
methods could further extend its utility in various settings.
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