The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Antimicrobials, Resistance and Chemotherapy
Volume 15 - 2024 |
doi: 10.3389/fmicb.2024.1480299
Survey of probable synergism between melittin and Ciprofloxacin, Rifampicin, and Chloramphenicol against multidrug-resistant Pseudomonas aeruginosa
Provisionally accepted- 1 Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- 2 Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran, Urmia, Iran
The emergence of multidrug-resistant bacteria and also biofilm-associated infections is a great health concern due to the failure of available antibiotics. This has alerted scientists to developing alternative antibiotics. Melittin as an antimicrobial peptide has antibacterial synergistic activity in combining with conventional antibiotics against pathogenic bacteria. Accordingly, this study aimed to assess the synergistic effect of melittin in combination with Ciprofloxacin, Rifampicin, and Chloramphenicol against MDR strains of P. aeruginosa.Materials and Methods: Fifty strains of P. aeruginosa were isolated from clinical specimens. The antibiotic susceptibility of isolates was evaluated by the disk diffusion method. The MIC and MBC of melittin and melittin-antibiotics combination against isolated strains were examined by microdilution method. The probable synergism between melittin and antibiotics was assayed using the FIC protocol. Time-killing kinetics and anti-biofilm effects of melittin and melittin-antibiotics combination were evaluated using time-kill kinetics and crystal violet staining method respectively. The toxicity of the melittin-antibiotics combination on the HEK293 cell line was also assessed by the MTT assay method.Results: Out of 50 isolates of P. aeruginosa, 15 strains are considered to be multidrug strains. Among MDR strains of P. aeruginosa, 42.85% were resistant to cefepime and ceftazidime and all urineoriginate isolates were resistant to cotrimoxazole. A combination of MIC dose of ciprofloxacin and melittin decreased resistance against ciprofloxacin up to 33%. The ciprofloxacin-melittin combination showed a favorable synergism and anti-biofilm effect and was also 30.3% less toxic than melittin alone at 4 μg/ml against the HEK293 cell line. In contrast to ciprofloxacin, with the melittin-rifampicin and melittin-chloramphenicol combinations, an addition effect occurred respectively in 86.66% and 53.33% of MDR strains of P. aeruginosa.Combining melittin's antibacterial and anti-biofilm properties with traditional antibiotics may offer a novel strategy to address antibiotic resistance in P. aeruginosa. The simultaneous administration of melittin and ciprofloxacin in a single dose has shown a marked increase in antibacterial effectiveness while minimizing toxicity to the HEK293 cell line. It is advisable to conduct additional research to explore the combined antibacterial effects of melittin and ciprofloxacin in a wider range of clinical samples, animal models, and clinical trial settings.
Keywords: Melittin, antimicrobial peptides, multi drug resistance, Anti-biofilm, Synergism
Received: 13 Aug 2024; Accepted: 28 Oct 2024.
Copyright: © 2024 Sedaghati, Akbari, Lotfollahi Hagghi, Yousefi, Mesbahi and Delfi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Reza Akbari, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.