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Introduction: In riverine ecosystems, dynamic interplay between hydrological 
conditions, such as flow rate, water level, and rainfall, significantly shape the 
structure and function of bacterial and microeukaryotic communities, with 
consequences for biogeochemical cycles and ecological stability. Lake Taihu, 
one of China’s largest freshwater lakes, frequently experiences cyanobacterial 
blooms primarily driven by nutrient over-enrichment and hydrological changes, 
posing severe threats to water quality, aquatic life, and surrounding human 
populations. This study explored how varying water flow disturbances influence 
microbial diversity and community assembly within the interconnected river–
lake systems of the East and South of Lake Taihu (ET&ST). The Taipu River in 
the ET region accounts for nearly one-third of Lake Taihu’s outflow, while the 
ST region includes the Changdougang and Xiaomeigang rivers, which act as 
inflow rivers. These two rivers not only channel water into Lake Taihu but can 
also cause the backflow of lake water into the rivers, creating distinct river–lake 
systems subjected to different intensities of water flow disturbances.

Methods: Utilizing high-throughput sequencing, we selected 22 sampling sites 
in the ET and ST interconnected river-lake systems and conducted seasonally 
assessments of bacterial and microeukaryotic community dynamics. We then 
compared differences in microbial diversity, community assembly, and co-
occurrence networks between the two regions under varying hydrological regimes.

Results and discussion:  This study demonstrated that water flow intensity and 
temperature disturbances significantly influenced diversity, community structure, 
community assembly, ecological niches, and coexistence networks of bacterial 
and eukaryotic microbes. In the ET region, where water flow disturbances were 
stronger, microbial richness significantly increased, and phylogenetic relationships 
were closer, yet variations in community structure were greater than in the ST 
region, which experienced milder water flow disturbances. Additionally, migration 
and dispersal rates of microbes in the ET region, along with the impact of dispersal 
limitations, were significantly higher than in the ST region. High flow disturbances 
notably reduced microbial niche width and overlap, decreasing the complexity 

OPEN ACCESS

EDITED BY

Yonghong Bi,  
Chinese Academy of Sciences (CAS), China

REVIEWED BY

Zixi Chen,  
Shenzhen University, China
Ze Ren,  
Beijing Normal University, China

*CORRESPONDENCE

Renhui Li  
 renhui.li@wzu.edu.cn  

Ailing Yan  
 yailing99@163.com

†These authors share first authorship

RECEIVED 11 August 2024
ACCEPTED 09 September 2024
PUBLISHED 30 September 2024

CITATION

Xiao P, Wu Y, Zuo J, Grossart H-P, Sun R, Li G, 
Jiang H, Cheng Y, Wang Z, Geng R, 
Zhang H, Ma Z, Yan A and Li R (2024) 
Differential microbiome features in lake–river 
systems of Taihu basin in response to water 
flow disturbance.
Front. Microbiol. 15:1479158.
doi: 10.3389/fmicb.2024.1479158

COPYRIGHT

© 2024 Xiao, Wu, Zuo, Grossart, Sun, Li, 
Jiang, Cheng, Wang, Geng, Zhang, Ma, 
Yan and Li. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 30 September 2024
DOI 10.3389/fmicb.2024.1479158

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2024.1479158&domain=pdf&date_stamp=2024-09-30
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1479158/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1479158/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1479158/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1479158/full
mailto:renhui.li@wzu.edu.cn
mailto:yailing99@163.com
https://doi.org/10.3389/fmicb.2024.1479158
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2024.1479158


Xiao et al. 10.3389/fmicb.2024.1479158

Frontiers in Microbiology 02 frontiersin.org

and stability of microbial coexistence networks. Moreover, path analysis indicated 
that microeukaryotic communities exhibited a stronger response to water flow 
disturbances than bacterial communities. Our findings underscore the critical need 
to consider the effects of hydrological disturbance on microbial diversity, community 
assembly, and coexistence networks when developing strategies to manage and 
protect river–lake ecosystems, particularly in efforts to control cyanobacterial 
blooms in Lake Taihu.

KEYWORDS

water flow disturbance, river–lake system, microbial community, microeukaryote, 
community assembly, Lake Taihu

1 Introduction

Running water systems, such as rivers (lotic ecosystems), and still 
water systems, such as lakes (lentic ecosystems), are key components of 
inland water ecosystems, playing essential roles in various biogeochemical 
processes on Earth (Battin et al., 2023; Maavara et al., 2020). Hydrological 
conditions including flow rate, water level, hydraulic retention time, and 
rainfall critically influence nutrient cycling and eutrophication risks, 
thereby affecting the structure and resilience of bacterial and 
microeukaryotic communities and potentially leading to loss of 
biodiversity (Chen et al., 2023; Shabarova et al., 2021; Zhang L. et al., 
2021a). These changes add uncertainty to predictions and management 
of ecological environments, underscoring the need to understand 
microbial responses to varying hydrological conditions (Palmer and 
Ruhi, 2019).

Bacterial communities in riverine waters are susceptible to 
hydrological connectivity across different watershed scales, which 
influences nutrient availability, pollution, and environmental 
parameters such as temperature and light (Fang et al., 2023; Niu et al., 
2024; Zhang et al., 2022). Fluctuations in flow velocity and water levels 
shift nutrient availability and weaken algal bloom development (Chen 
et al., 2023; Hu et al., 2024; Yang et al., 2017, 2022), while rainfall and 
water flow can introduce pathogens and other bacteria from terrestrial 
runoff and sewage, impacting the structure and interactions within 
microbial communities, especially in riverine systems (Kim et al., 
2017; Wilkes et  al., 2009; Yu et  al., 2023). Changes in flow rate, 
reflecting variations in water source, residence time, and streambed 
contact, can lead to substantial shifts in microbial diversity and 
community structure (Bambakidis et  al., 2024; Clark et  al., 2022; 
Niño-García et al., 2016; Wang et al., 2016).

Although significant, regional variations in microbial responses to 
hydrological changes are still rarely understood, highlighting the 
urgency for more integrated studies on the synergistic effects of 
hydrological and environmental factors across various spatiotemporal 
scales. Deterministic processes, such as heterogeneous and 
homogeneous selection, emphasize the role of environmental factors 
and microbial interactions within niche theory frameworks. In contrast, 
stochastic processes, including dispersal limitation, homogenizing 
dispersal, and drift, suggest that community assembly is influenced by 
random factors according to neutral theory (Ning et al., 2020; Stegen 
et al., 2013; Zhou and Ning, 2017). Analyzing microbial community 
assembly under fluctuating flow conditions elucidates ecological 
processes that govern biodiversity and ecosystem functioning, 
improving strategies for ecosystem management and conservation.

Microeukaryotic communities play diverse and critical roles within 
river ecosystems, including nutrient cycling, organic matter 

decomposition, and serving as both primary producers and consumers 
within food webs. They are influenced by environmental factors across 
different spatial and temporal scales, reflecting their short reproductive 
cycles, broad distribution, and high sensitivity to pollutants (Tamminen 
et al., 2022; Xu et al., 2020; Yang et al., 2023). Apart from microeukaryotes, 
bacterioplankton is a driver of biogeochemical cycles, such as nutrient 
cycling and degradation of pollutants in rivers (Li Y. et al., 2023a; Liu et al., 
2018; Zhang B. et al., 2021b). Despite extensive research on the gradients 
and diversity of these communities in running waters, little attention has 
been given to their dynamics due to fluctuating water flow disturbances. 
This is surprising as they hold significant roles in aquatic productivity, 
food webs, and various biogeochemical processes. Differences among 
microbial domains, suggested by initial evidence from aquatic systems, 
can be substantial (Blais et al., 2024; Siriarchawatana et al., 2024; Zhang 
L. et  al., 2021a). Furthermore, studies revealed that anthropogenic 
activities and rainfall introduce nutrients that significantly alter the 
riverine microeukaryotic rather than bacterial communities (Liu et al., 
2021; She et al., 2023). Consequently, there is a critical need to improve 
our comparative understanding of the underlying mechanisms leading to 
such differences between microeukaryotes and bacteria in 
riverine ecosystems.

Located in the middle and lower reaches of the Yangtze River, the 
Yangtze River Delta functions as both an economic indicator for the 
Yangtze River Economic Belt (YREB) and an ecological barrier to the 
sea (Chen et  al., 2017). Lake Taihu, the largest freshwater lake in 
YREB, has experienced significant ecological challenges in recent 
years, particularly the frequent occurrence of cyanobacterial blooms. 
These blooms, which are primarily driven by nutrient over-enrichment 
and hydrological alterations, pose severe threats to the lake’s water 
quality, aquatic ecosystems, and the health of surrounding human 
populations (Qin et al., 2019). As a central hub of complex river–lake 
interactions characterized by substantial organismic and material 
exchange, Lake Taihu’s ecological balance is highly sensitive to these 
environmental stressors, making the study of such dynamics critical 
for the region’s environmental management and sustainability (Lai 
et al., 2013). The lake receives inflows from over 200 rivers, including 
30 major ones, contributing to a vast water network that spans 
120,000 km2 across the Lake Taihu basin, averaging 3.2 km of river 
length per square kilometer of land (Li et al., 2021). The Taipu River, 
a key flood channel that connects Lake Taihu to the downstream 
Huangpu River, plays a pivotal role within the YREB’s green and 
integrated ecological development zone (Shao et al., 2023).

Internationally, inter-regional water diversion projects are 
commonly employed for irrigation, flood control, water supply, and 
power generation (Duan et al., 2022). Such projects often involve the 
introduction of large volumes of clean water to combat eutrophication 
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in lakes and reservoirs, a practice adopted by numerous countries 
(Eamen et al., 2021; Larsen et al., 2016; Long et al., 2024). Recently, the 
Yangtze River to Lake Taihu water diversion project has shortened 
water residence times in the lake, significantly affecting its hydrology 
by increasing its water level fluctuations and the flood discharge 
capacity of the Taipu River in the lake’s eastern region (Hu et al., 2021; 
Li et al., 2013; Zhai et al., 2010; Zhang et al., 2023a). In the southern 
part of the lake, backflow into the Changdougang and Xiaomeigang 
rivers in Huzhou City is frequent (Xu et al., 2014), highlighting the 
dynamic hydrological and hydrodynamic shifts that can substantially 
influence environmental heterogeneity and microbial dispersal 
capabilities. Despite, responses of bacterial and microeukaryotic 
communities to varied hydrological disturbance and their underlying 
mechanisms remain little understood.

To address this gap, we conducted a high-throughput sequencing 
investigation of bacterial and microeukaryotic communities within the 
interconnected East (ET) and South (ST) river–lake systems of Lake 
Taihu. Our objectives were to (1) delineate the composition and 
distribution of these microbial communities under different flow 
conditions in the ET and ST regions; (2) assess and compare their 
diversity, community assembly, and interspecies coexistence across the 
water flow-induced environmental gradients; and (3) explore the potential 
impacts of varying intensities of flow disturbances on these microbial 
communities. Thereby, we seek to enhance our understanding of flow-
induced changes in microbial dynamics within these critical 
freshwater ecosystems.

2 Materials and methods

2.1 Sample collection

Lake Taihu, fed by the Yangtze River, is China’s third largest 
freshwater lake. It is located in one of the most developed areas of 
China, the Yangtze River Delta. The Taipu River, located in the 
southeast of Lake Taihu, is one of the lake’s largest outflow rivers, 
accounting for nearly 2/3 of its total outflow. It is also a crucial source 
of drinking water for downstream provinces and cities, including 
Zhejiang, Jiangsu, and Shanghai City, supplying drinking water to 
nearly 20 million people. It thus plays an important role in regulating 
and supplying water in eastern China (Yan et al., 2024). Both the 
Changdougang River and Xiaomeigang River are located in the 
southwest of Lake Taihu. These inflow rivers not only discharge water 
from Lake Taihu but can also hold the potential to channel water back 
into the lake when their water levels are relatively high. In contrast, the 
Taipu River exclusively draws water from Lake Taihu. The Taipu River 
in the ET region accounts for nearly one-third of Lake Taihu’s outflow. 
In contrast, the rivers Changdougang and Xiaomeigang in the ST 
region contribute to only a small portion of the outflow and transport 
water into Lake Taihu during heavy rainfall. While rainfall between 
the two regions showed no significant difference, discharge did.

In winter (February) of 2022 and spring (May), summer (August) 
and autumn (November) of 2023, surface water samples (upper 0.5 m) 
were collected from 22 sites, totaling 88 samples. These included four 
sites in the south of Lake Taihu, seven inflow river sites into Lake 
Taihu (four at Changdougang River and three at Xiaomeigang River), 
three sites in the east of Lake Taihu, and eight outflow river sites from 
Lake Taihu (all at Taipu River). Water temperature (WT), pH, 

dissolved oxygen (DO), and electrical conductivity (EC) were also 
measured in situ using a multi-parameter probe system (Hach 
Company, Loveland, CO, USA). The water transparency (SD) was 
measured using a Secchi disk. One liter of surface water was sampled 
at each site and sealed in glass bottles for further analysis of total 
nitrogen (TN), ammonium nitrogen (NH4N), nitrate nitrogen 
(NO3N), total phosphorus (TP), phosphate phosphorus (PO4P), 
permanganate index (CODMn), and chlorophyll-a (Chla) according to 
the standard methods described in our previous study (Mo et al., 
2021). Approximately 500 mL of each water sample were filtered 
through 0.22 μm filters (GTTP, Millipore, Billerica, MA, USA) for 
microbial community analyses. Filters were then stored at −80°C for 
DNA extraction. One liter of surface water sample was preserved with 
Lugol’s iodine solution. After sitting for at least 24 h, phytoplankton 
(Phy_biomass) and cyanobacteria (Cya_biomass) identification and 
biomass quantification were performed using an optical microscope 
(DM2000, Leica Microsystems, Deerfield, IL, USA) according to our 
previous study (Li et al., 2020). The rainfall data (Rain_fall) for both 
South and East Lake Taihu regions, the net inflow water volume of 
Lake Taihu (Inflow), and the outflow discharge data of rivers (Outflow) 
in the study area were downloaded from the website of the Taihu 
Basin Authority of the Ministry of Water Resources1. The spatial 
distribution maps were improved using ArcMap 10.5 (ESRI, 
Redlands, USA).

2.2 DNA extraction, PCR, and Illumina 
sequencing

DNA extraction from the filters were performed using the FastDNA 
Spin kit (MP Biomedicals, Santa Ana, CA, USA) according to the 
manufacturer’s instructions. For the prokaryotic microbial community, 
the V3-V4 hypervariable regions of the 16S rRNA gene were amplified 
using the primers 341F and 806R following our previous procedure 
(Herlemann et al., 2011; Zuo et al., 2023). For microeukaryotic microbial 
communities, the V9 hypervariable region of the 18S rRNA gene was 
amplified using primers 1380F and 1510R (Amaral-Zettler et al., 2009). 
The PCR reaction mixture included 10 μL of high-fidelity Taq PCR Mix 
(Takara, Dalian, China), 0.2 μM of each primer, approximately 10 ng of 
sample DNA, and sterile ddH2O to yield a final volume of 20 μL. The PCR 
protocol consisted of an initial denaturation at 95°C for 2 min, followed 
by 30 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 30 s, with a final 
extension at 72°C for 10 min. The PCR products from three replicates per 
sample were combined and subjected to agarose gel electrophoresis. The 
PCR products were then sequenced on an Illumina NovaSeq platform 
using PE250 (prokaryotic) and PE150 (microeukaryotic) sequencing.

2.3 Bioinformatics

The sequenced raw reads were processed using the dada2 package 
in R (v4.102), including primer and adapter removal, quality filtering, 
and chimera removal (Callahan et  al., 2016). Bacterial and 

1 https://www.tba.gov.cn/

2 http://www.r-project.org
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microeukaryotic ASVs (amplicon sequence variants) were annotated 
using the Silva v138.1 (Quast et al., 2012) and PR2 v5.0.0 (Guillou 
et al., 2012) databases, respectively, with the sintax algorithm in the 
Vsearch v2.28.1 software (Rognes et  al., 2016). After removing 
non-target sequences, the prokaryotic and microeukaryotic microbial 
communities were normalized to 18,984 and 134,852 reads across all 
samples, respectively, using the vegan package in R v4.10.

2.4 Statistical analysis

Phylogenetic trees of bacterial and microeukaryotic ASVs were 
constructed using the align-to-tree-mafft-fasttree module of QIIME2. 
The richness and Bray-Curtis diversity indices were calculated using 
the core-metrics-phylogenetic module of the QIIME2 platform 
(Bolyen et al., 2019). Non-metric multidimensional scaling (NMDS), 
analysis of similarity statistics (ANOSIM), and the non-parametric 
Kruskal–Wallis test were performed to assess group significance using 
the “vegan” package in R v4.10.

Community distance-decay relationships were linearly fitted 
based on geographical and dendritic distances. The Local Contribution 
to Beta Diversity (LCBD) was computed using the “adespatial” 
package in R v4.10 to quantify the contributions of the 22 sample sites 
to the overall diversity of bacterial and microeukaryotic communities 
in the interconnected river–lake system of South and East Lake Taihu 
(Legendre and De Cáceres, 2013). The correlation between microbial 
community (Bray-Curtis distance) and environmental factors was 
assessed using the Mantel test with the “linkET” package3. Hierarchical 
partitioning (HP) calculated the proportion of environmental factors 
explaining microbial community variation in ET and ST habitats 
using the “rdacca.hp” package (Lai et al., 2022).

The nearest taxon index (NTI), calculated by using the “picante” 
package, represents the standardized effect size of the mean nearest 
taxon distance (MNTD) in the community, indicating phylogenetic 
clustering (positive NTI) or overdispersion (negative NTI). An NTI 
of 0 signifies random phylogenetic relationships (Webb, 2000). The 
normalized stochasticity ratio (NST), β-nearest taxon index (βNTI), 
and the Bray-Curtis-based Raup-Crick metric (RCbray) were calculated 
using the NST package (Ning et  al., 2019). The fit of the neutral 
community model was assessed using the “Hmisc” package (Chen 
et  al., 2019). Habitat niche width and overlap of bacterial and 
microeukaryotic communities were calculated using the “spaa” 
package following our previous study (Zuo et al., 2023).

Co-occurrence networks were constructed based on robust 
Spearman correlations (|r| > 0.8, p < 0.01) and RMT analysis (Feng 
et al., 2022; Xue et al., 2018). ASVs, occurring in <50% of all samples, 
were removed to reduce rare ASVs. Networks were constructed using 
the “igraph” package (Csardi and Nepusz, 2005) and visualized with 
Gephi v0.9.2 (Bastian et  al., 2009). Module hubs (Zi-score > 2.5, 
Pi-score < 0.62), connectors (Zi-score < 2.5, Pi-score > 0.62), and 
peripherals (Zi-score < 2.5, Pi-score < 0.62) were identified (Strogatz, 
2001). Additionally, 1,000 Erdös-Rényi random networks, matching 
real networks in nodes and edges, were generated using the “igraph” 
package. Topological characteristics, including modularity, clustering 

3 https://github.com/Hy4m/linkET

coefficient, and average path length, were compared between real and 
random networks with Gephi.

We utilized partial least squares path modeling (PLS-PM) to 
analyze the relationships among water temperature (WT), hydrology, 
physicochemical factors, microbial richness, microbial phylogenetic 
diversity, ecological niches, and composition of both bacterial and 
microeukaryotic communities in the ET and ST regions. The PLS-PM 
analysis was performed using the ‘plspm’ package (Tenenhaus et al., 
2005). Random forest (RF) machine learning assessed the effects of 
environmental factors on alpha-and beta-diversity indices (Breiman, 
2001). Checkerboard score (C-score) analysis was conducted to test 
clustering or overdispersion of microbial communities using the 
“EcoSimR” package, following our previous study (Mo et al., 2021).

3 Results

3.1 Physicochemical properties of the east 
and south regions of Lake Taihu (ET&ST)

The river–lake interconnected ET and ST regions are located in 
the southeastern and southwestern parts of the lake, respectively 
(Figure 1A). The monthly average rainfall between the ET and ST 
regions showed no significant difference. However, there was a 
significant difference in the monthly average discharge into the lake, 
with the ET region’s discharge (165 ± 15 million tons per month) 
being nearly ten times that of the ST region (19 ± 17 million tons 
per month). Other environmental factors between the two regions 
did not show significant differences, except for NO3N, SD, and 
EC. The average values in the ET region were 0.69 (0.17–1.75) mg/L 
for NO3N, 50.23 (13–76) cm for SD, and 429.07 (279–572) μS/cm 
for EC, compared to the ST region’s averages of 0.45 (0.04–0.98) 
mg/L, 36.84 (13–60) cm, and 345.20 (216–498) μS/cm, respectively 
(Figures 1B,C).

3.2 Microbial diversity in ET vs. ST regions

We analyzed a total of 1,670,592 bacterial and 11,866,976 
microeukaryotic quality-filtered sequences across all samples, 
grouped into 13,464 and 17,552 ASVs, respectively. Rarefaction 
curves for both bacterial and microeukaryotic richness reached 
saturation (Supplementary Figure S1), suggesting comprehensive 
retrieval of ASVs. Bacterial and microeukaryotic community 
richness was significantly higher in the ET than in the ST region. 
Furthermore, NTI diversity for bacterial communities was 
significantly higher in ET than in ST, although NTI diversity for 
microeukaryotic communities showed no significant regional 
differences (Figures  2A,B). These results suggested that the ET 
region, which experienced higher water flow disturbances, harbored 
a greater diversity of bacterial and eukaryotic species that exhibited 
closer phylogenetic relationships, indicating a potential influence 
of species sorting when compared to the ST region. Using NMDS 
analysis, we  observed significant seasonal variations in the 
spatiotemporal dynamics of both bacterial and microeukaryotic 
communities in both ET and ST regions (ANOSIM R values were 
0.768 and 0.741, respectively; both p-values were 0.001). The 
ANOSIM analysis results suggested that seasonal variation was 
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FIGURE 1

Locations and hydrological characteristics of the study area. (A) Locations of sampling sites. Bold arrows indicate major inflow and outflow regions of 
Lake Taihu. ST represents the South Taihu river–lake system, and ET represents the East Taihu rive-laker system. (B) Monthly cumulative rainfall and 
outflow water volume for the two regions from 2022 to 2024. (C) Monthly rainfall and outflow water volume in both locations during the sampling 
period. ***p  <  0.001; Kruskal–Wallis test; ns, non-significant.
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more pronounced in the ST region than in the ET region 
(Supplementary Figure S2). Additionally, significant differences 
were noted between the bacterial and microeukaryotic communities 
of the ET and ST regions (ANOSIM R values were 0.198 and 0.197, 
respectively; both p values were 0.001) (Figure 2C), with higher 
dissimilarities observed in the ST region (Figure 2D).

Bacterial and microeukaryotic ASVs were classified into 69 and 
50 phyla/supergroups, respectively. Proteobacteria was the most 
prevalent bacterial phylum in both the ET and ST regions, 
comprising 40.03 ± 13.12% in ET and 36.53 ± 10.83% in ST. In ET, 
the next most abundant bacterial phyla were Actinobacteria 
(24.81 ± 10.96%), Bacteroidota (10.83 ± 12.47%), and Cyanobacteria 
(9.54 ± 10.45%). Similarly, in ST, Actinobacteria (30.43 ± 9.35%) 
were followed by Bacteroidota (10.89 ± 6.86%) and Cyanobacteria 
(12.59 ± 8.53%). For microeukaryotes, the ET region had high 
abundances of Gyrista (33.27 ± 14.12%), Metazoa (18.75 ± 15.41%), 
Chlorophyta (12.55 ± 6.77%), and Fungi (11.01 ± 9.82%), whereas 
in ST, Gyrista (30.15 ± 11.50%), Metazoa (21.84 ± 13.41%), 
Cryptophyta (9.57 ± 4.15%), and Fungi (7.93 ± 5.43%) were 
prevalent (Supplementary Figure S3). Additionally, the 
cyanobacterial biomass, predominantly composed of Microcystis 
and Dolichospermum species, did not differ significantly between 
the ET and ST regions; however, it was significantly higher in Lake 
Taihu than in the adjacent riverine waters (Supplementary Table S1).

3.3 Microbial community assembly 
processes and potential environmental 
drivers

We applied the neutral community model (NCM) to assess the 
impact of stochastic processes on bacterial and microeukaryotic 
community assembly in ET and ST regions. The quality fit (R2) for all 
communities exceeded 0.5, demonstrating a significant influence of 
stochastic processes in both regions. Specifically, R2 and migration 
rates (m) were higher in the ET than in the ST region, indicating 
greater stochasticity and dispersal capability of microbial taxa in the 
ET region. In contrast, taxa exceeding NCM predictions occurred less 
frequently in bacterial and microeukaryotic communities in the ET 
than in the ST region (Figure  3A). The null model revealed that 
homogenizing selection primarily shaped bacterial communities, 
followed by dispersal limitation in both regions, with the opposite 
pattern in microeukaryotic communities. Dispersal limitation had a 
more pronounced effect on both microbial communities in the ET 
than in the ST region, indicating that microbial communities in the 
ET region were more influenced by dispersal limitations. Furthermore, 
unexplained community assembly processes were more prevalent in 
the ST region (Figure 3B). Stochastic contributions to community 
assembly were also found to be  higher in the ET region for both 
microbial communities, as confirmed by the sorting/dispersal effect 
ratio and normalized stochasticity ratio (NST) analysis (Figure 3C). 
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non-parameter Kruskal–Wallis test; ns, non-significant). (D) R-values from ANOSIM analyses between different regions are displayed in the top left 
corner, while the R-values from ANOSIM analyses between different seasons are shown in the bottom right corner (***p  <  0.001). Regional variation of 
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Additionally, in the ET region, the explanatory power of environmental 
factors for both bacterial and microeukaryotic communities was lower 
than in the ST region based on hierarchical partitioning analysis 
(Supplementary Figure S4), implies that both bacterial and 
microeukaryotic communities in ET region were less influenced by 
the measured environmental variables than those in ST region.

We also assessed the heterogeneity of physicochemical factors in 
the ET and ST regions, revealing significant regional differences 
(ANOSIM R = 0.154, p = 0.001; Figure  3D) with a notably higher 
variation in the ET region. To identify the environmental drivers of 
bacterial and microeukaryotic distribution, we correlated both alpha 
and beta diversity indices with differences in the physicochemical 
properties using Mantel tests and random forest analyses. Water 
temperature (WT), inflow, outflow, and rainfall emerged as strong, 
positive predictors for the observed variations in microbial taxa of the 
two regions (Figures 3E,F and Supplementary Figure S4). In both ET 
and ST regions, positive correlations were observed between microbial 

community dissimilarity and WT, Outflow, Inflow, and Rain_fall, 
implying that alterations in these environmental factors also increased 
the heterogeneity of microbial communities. Among all measured 
factors, Outflow had the most significant effect, which was higher in 
the ET than in the ST region for both bacterial and microeukaryotic 
communities (Supplementary Figure S5). Further, both bacterial and 
microeukaryotic communities exhibited significantly narrower niche 
width and overlap in the ET region than in the ST region (Figure 3G). 
More importantly, the C-score showed that the value of standardized 
effect size (SES) increased more in the ST than in the ET region in 
both bacterial and microeukaryotic communities. This indicated that 
the community assembly was more strongly influenced by 
deterministic processes in the ST than in the ET region 
(Supplementary Table S2). In addition, the contributions of different 
local communities to microbial diversity in the ST and ET regions 
were evaluated by Local Contribution to Beta Diversity (LCBD) 
analysis. In the ET region, throughout three sampling seasons of the 
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non-parameter Kruskal–Wallis test).
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year (excluding spring), both bacterial and microeukaryotic 
communities at upstream of Lake Taihu sampling points contributed 
more to community beta diversity than downstream river points. 
Conversely, in the ST region, no such trend was observed for either 
bacterial or microeukaryotic communities (Supplementary Figure S6). 
These results suggested that in the ET region, where the outflow 
direction was constant, headwater May significantly influence 
microbial community diversity. In contrast, in the ST region, where 
the flow direction repeatedly changed, the impact of Lake Taihu end 
and the river end on microbial community diversity was weaker.

3.4 Co-occurrence networks and stability 
of bacterial and microeukaryotic 
communities in the ET vs. ST regions

We constructed and analyzed distinct microbial co-occurrence 
networks based on Spearman correlations (|r| > 0.8, and p < 0.01) 
among bacterial and microeukaryotic ASVs in the ET and ST 
regions, respectively. The observed modularity, average clustering 
coefficient, and average path length in the networks were higher 
than those in the corresponding Erdös–Réyni random networks, 
suggesting that all networks exhibited “small-world” properties 
and non-random modular structures (Supplementary Table S3). 
All networks were divided into 4 major modules that accounted for 
80 and 91.14% of the bacterial community (in ET and ST, 
respectively) and 88.54 and 88.52% of the microeukaryotic 
communities (in ET and ST, respectively). Hydrological factors like 
Outflow and Inflow, as well as water temperature (WT), displayed 
high degrees within these networks, indicating that hydrological 
factors and WT had strong relationships with microbial ASVs 
compared to other environmental parameters (Figure  4A). 
Bacterial and microeukaryotic networks in the ET region contained 
fewer nodes and edges compared to the ST region (Figure 4A) and 
demonstrated significantly lower values of degree betweenness 
centrality and closeness centrality (Figure 4B). This suggested a 
more simplified structure of microbial associations in the ET than 
in the ST region.

We compared network stability between both regions and found 
that the natural connectivity of bacterial and microeukaryotic 
networks was lower in the ET than in the ST region, indicating 
reduced network robustness for both bacteria and microeukaryotes in 
the ET region (Figure 4C). Cohesion analysis further assessed taxa 
associations resulting from positive and negative ASV interactions. In 
both bacterial and microeukaryotic communities, regardless of 
positive or negative relationships, association strength was 
significantly lower in the ET than in the ST region (Figure 4D). This 
indicated that cooperative (positive cohesion) and competitive 
interactions (negative cohesion) were poorly developed among 
microbes in the ET region, resulting in lower network stability in the 
ET than in the ST region.

In addition, we found that ASVs with a higher degree of centrality 
exhibited stronger correlations with hydrological factors and 
WT. There was a higher slope in those linear relationships in the ET 
than in the ST region; however, in the ST region, Outflow parameters 
did not meet the network correlation threshold criteria (Figure 4E). 
This indicates that hydrological factors and WT affect the coexistence 

networks of bacteria and microeukaryotes, with a greater impact in 
the ET than in the ST region.

In the bacterial community networks, Xanthomonadaceae, 
Moraxellaceae and Micrococcaceae exhibited high degree of 
centrality in the ET modules, while Ilumatobacteraceae, 
Sphingomonadaceae, and Mycobacteriaceae showed high degree 
of centrality in the ST modules. In microeukaryotic networks, 
Metazoa and Gyrista had high degree of centrality in the ET 
modules, while Chlorophyta showed high degree of centrality in 
most ST modules (Supplementary Tables S4–S7). This indicated 
that Xanthomonadaceae, Moraxellaceae, Micrococcaceae, 
Metazoa, and Gyrista played key roles in maintaining coexistence 
in the high-velocity ET region. In contrast, Ilumatobacteraceae, 
Sphingomonadaceae, Mycobacteriaceae, and Chlorophyta were 
more important for maintaining coexistence in the low-velocity ST 
region, as nodes with a higher degree of network centrality were 
crucial for maintaining taxa coexistence.

3.5 Associations among environment, 
community diversity, and ecological niche

The PLS-PM model revealed that WT had a minimal direct 
impact on community composition, but exerted a stronger and more 
significant influence on α-diversity and ecological niches in both 
regions (Figure  5). Hydrological factors (Inflow and Outflow) 
significantly affected community composition and niches in both 
regions and strongly influenced the α-diversity of microeukaryotic 
communities, with path coefficients of 1.045  in ET and − 1.064  in 
ST. For bacterial communities, hydrological factors had a greater 
impact on community composition and niches in the ET (path 
coefficients were 0.716 and − 1.035, respectively) than in the ST region 
(path coefficients were 0.622 and − 0.586, respectively). Conversely, in 
microeukaryotic communities, hydrological factors had a slightly 
greater impact in the ST region. Across both regions and kingdoms, 
the influence of physicochemical factors on α-diversity, β-diversity, 
and niches was minimal (Figure  5). These results indicated that 
seasonality (WT) and water flow significantly influenced the diversity 
and ecological niches of bacterial and microeukaryotic communities 
in the Lake Taihu Basin.

4 Discussion

Bacteria and microeukaryotes are critical for ecological processes 
in river ecosystems (Siriarchawatana et  al., 2024). Our current 
knowledge of how bacteria and microeukaryotes responded to 
different intensities of water flow disturbances along the urban river–
lake continuum was quite limited. In our study, we provided molecular 
insights into the comprehensive characteristics of bacterial and 
microeukaryotic communities under differing water flow and 
temperature disturbance in two interconnected urban river–lake 
systems of the Taihu basin. Our results revealed that biodiversity, 
community construction, niche breadth, and co-occurrence patterns 
of bacteria and microeukaryotes were significantly influenced by the 
intensity of water flow disturbances. This notion highlighted the 
significance of understanding the mechanisms of bacterial and 
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microeukaryotic succession in changing environments for elucidating 
ecosystem recovery processes and watershed management following 
environmental disturbances.

4.1 Effects of hydrological factors on 
microbial community richness and 
structure

Our findings indicated that hydrological conditions, specifically 
the inflow and outflow water flow of Lake Taihu, were the primary 
factors influencing community diversity and composition of both 
bacteria and microeukaryotes. Moreover, significantly higher richness 
and NTI diversity indices were observed in the higher water flow ET 
region than in the ST region with reduced water flow. This indicated 
that the microbial community in the ET region comprised closer 
phylogenetic relationships. This might be  because the microbial 
community in the ET region had undergone a stronger environmental 
filtering (Fillinger et al., 2021), enabling certain microbial species with 
specific traits to survive and proliferate more easily in this habitat 
(Gweon et al., 2021). This environmental filtering could be due to the 
higher disturbances in the riverine environment of the ET region, 
requiring microbes to possess specific adaptations, leading to 
evolutionary convergence.

Water flow can alter the effects of intensity of habitat disturbance 
intensity on microbial dynamics (Wheeler et al., 2019). In the ET 
region, larger and irreversible discharge rates likely increased the 
degree of disturbances, enhancing environmental heterogeneity. 
Conversely, in the ST region, gentler and more reversible water flow 
resulted in a lower degree of disturbances, causing a relatively stable 
microbial growth environment with greater similarity among 
environmental factors (Figure 3D). These differences in disturbance 
May significantly impact the structure of microbial communities 
within aquatic ecosystems (Yang et al., 2017), resulting in a higher 
dissimilarity of bacterial and microeukaryotic communities in the ET 
than ST region (Figure 2D). This was in line with previous findings, 
highlighting that hydrodynamic changes, e.g., flow velocity, had 
profound impacts on algal dynamics in riverine and reservoir 
ecosystems (Chen et al., 2023; Li et al., 2024; Tan et al., 2022; Yang 
et al., 2022).

Although both bacterial and microeukaryotic communities were 
significantly impacted by the examined hydrological variables, 
according to our NMDS analysis, their overall dynamics was better 
explained by seasonality (Supplementary Figure S2). Hierarchical 
partitioning and random forest analyses revealed a strong co-influence 
of temporal and environmental factors, such as WT, DO, EC, and pH, 
which can be at least partially attributed to the seasonal variability of 
the examined variables (Supplementary Figure S4). This suggested 
season-driven habitat filtering effects on the microbiota. Our findings 
implied a strong interplay between temporal, spatial, and 
environmental factors in shaping microbial communities in river–lake 

systems, similar to patterns observed in natural lakes (Ann et al., 2022; 
Liu et al., 2024; Zhang et al., 2023b; Zhu et al., 2019).

4.2 Effects of hydrological factors on 
microbial community assembly

Both the neutral community model (NCM) and Null model 
suggested that the assembly of bacterial and microeukaryotic 
communities in both ET and ST regions was predominantly influenced 
by stochastic processes. Furthermore, stochastic processes exerted a 
stronger impact in the high-flow ET region compared to the low-flow 
ST region, whereby dispersal limitation and ecological drift were 
identified as significant processes (Figure  3). Flow direction and 
intensity can affect microbial migration and dispersal and thus shape 
microbial diversity, leading to profound differences in community 
structure between ET and ST regions (Carrara et al., 2012; Tonkin et al., 
2018). In the ST region, high rainfall in the southwestern cities during 
rainy seasons can lead to pronounced differences in water levels between 
the rivers and Lake Taihu, often reversing the flow from rivers into the 
lake. This hydrological condition of outflow and backflow potentially 
enhanced the passive dispersal of microbial communities. Compared to 
higher flow rates and a stable outflow direction in the ET region, the 
relatively moderate water flows in the ST region May reduce 
environmental disturbances, leading to increased species sorting and 
reduced contributions from stochastic processes (Figures 3C,D). This 
finding aligned with previous mesocosm experiments (Bier et al., 2022). 
Additionally, flow alterations May alter nutrient conditions, water 
temperatures and quantity of downstream areas, shaping the structure 
of downstream microbial communities (Lambert et al., 2016; Li C. et al., 
2023b; Lynch et al., 2019; Maavara et al., 2020).

Headwaters serve as important sources of biodiversity, and 
combined with directional flow processes, May constantly influence 
the structure of downstream microbial communities (Geng et al., 
2024; Meyer et al., 2007). The Local Contribution to Beta Diversity 
(LCBD) results indeed indicated that in the ET region, where only 
outflow takes place, Lake Taihu’s headwater significantly contributed 
to the downstream community structure. Conversely, this 
phenomenon was not observed in the ST region, where water can 
flow both out and into the lake (Supplementary Figure S6). This 
suggested that headwaters with distinct terrestrial habitats might 
lead to variations in the community structure of riverine microbial 
communities at the local scale, consistent with findings from studies 
on bacterial communities in the high-altitude Ili River (Geng et al., 
2024) and urban Tsurumi River (Yokoyama and Kikuchi, 2023). 
Today, it is widely accepted that microbial community similarity 
decreases as the distance between sampling sites increases, and vice 
versa (Hayden and Beman, 2016; Martiny et al., 2006). Thereby, in 
rivers, geographic distance was particularly linked to the mass 
effect, bacterial growth competition, and predation (Read 
et al., 2015).

microeukaryotes in the ET and ST regions. (D) Positive and negative cohesion of microbes between the ET and ST regions. (E) Spearman’s correlations 
showing the significant relationship between the degree of connectedness of bacterial and microeukaryotic ASVs in the integrated network and their 
spearman’s correlation coefficients with Inflow (million tons per month), WT (°C) and Outflow (million tons per month) in the ET and ST regions.
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4.3 Effects of hydrological factors on 
microbial co-occurrence networks

Variations in the intensity of flow disturbance May result in 
different shear flow, which in turn alter the contact or adhesion among 
microbes, subsequently reducing their co-occurrence associations and 
leading to distinct composition and dynamics of microbial 
communities (Geng et al., 2024; Wheeler et al., 2019). Shear flow 
occurs when fluid volumes with different velocities, e.g., a layer of 
warm surface water over colder deep water, flow past each other. Such 
surface shear flow impacted microbial organisms near or on those 
surfaces (Geng et  al., 2024; Wheeler et  al., 2019). Moreover, flow 
velocity has been reported to destabilize the co-occurrence network 
stability of bacterial and microeukaryotic communities (Mu et al., 
2021). These findings are consistent with our results. For instance, in 
the ST region water flow disturbances were relatively mild, whereas 
intense water flow disturbances in the ET region reduced the 
complexity and stability of the coexistence networks of both bacteria 
and eukaryotic microorganisms (Figure  4). Future work should 
include larger-scale, multi-habitat studies for further validation to 

enhance the biological relevance of monitoring and assessing 
interconnected river–lake ecosystems.

4.4 Differences in tolerance to intensity of 
flow disturbances between bacterial vs. 
eukaryotic microorganisms

Unlike bacteria, microeukaryotic communities in river–lake 
systems remain largely unexplored. Stochastic processes, primarily 
dispersal limitation and drift, played a dominant role in the 
assembly of both bacterial and microeukaryotic communities. 
However, these processes had a greater impact on microeukaryotic 
communities than on bacteria. Microeukaryotes exhibited lower 
migration and dispersal rates, making their community assembly 
more susceptible to dispersal limitations than bacteria 
(Figures 3A–C and Supplementary Figure S4). One reason could 
be  the generally larger size of microeukaryotes compared to 
bacteria, which increased their resistance to water flow and settling 
rates (Blais et al., 2024). Additionally, due to their more complex 
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Predicted partial least squares path modeling (PLS-PM) delineated both direct and indirect relationships between environmental drivers and the 
diversity and niche indices of bacterial and microeukaryotic communities in the ET and ST regions. The model is visualized with rounded rectangles 
representing the structural model, while corresponding measurement models are indicated by boxes. In the structural model, paths are shown with 
lines, with adjacent values representing the magnitude of path coefficients derived from PLS regression. R2 values for all endogenous latent variables 
are included within the rounded rectangles. In the measurement model, the values signify the weights, linking a latent variable to its indicators. The 
diagram displays the refined model’s post-diagnostic procedures. Positive and negative effects are depicted by orange and blue lines, respectively, with 
gray lines indicating non-significant paths (p  >  0.05). The thickness of the line correlated with the absolute values of the path coefficients. The pseudo 
goodness-of-fit (GOF) values surpassing 0.64 confirms the models’ robust fit. The model includes variables such as Water Temperature (WT), 
Physicochemical Factors (PhyChem), Monthly Net Inflow Volume (Inflow) and Outflow Volume of Lake Taihu (Outflow), Dissolved Oxygen (DO), Secchi 
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cellular structures, microeukaryotes had slower reproduction rates 
than bacteria, resulting in lower diffusion and migration 
efficiencies (Yang et al., 2023). Also, the coexistence networks of 
microeukaryotes were more stable and complex than bacteria, as 
evidenced by increased node and edge numbers (Figure  4). A 
possible reason was that microeukaryotic networks May involve 
more complex interactions, such as symbioses, predation, and 
mutualism, contributing to such network complexity and stability 
(Faust and Raes, 2012; Mathis and Bronstein, 2020). Previously, it 
has been shown that these interactions were crucial for maintaining 
community structure and function, especially under water flow 
disturbances or environmental stress (Palmer and Ruhi, 2019). 
Compared to bacterial communities, water flow significantly 
affected the alpha and beta diversity of microeukaryotic 
communities. Furthermore, water flow significantly reduced the 
ecological niche width of bacteria, but enhanced those of 
microeukaryotes (Figure 5). Whereas bacteria often adapted to 
environmental disturbances through rapid reproduction and 
metabolic flexibility (Wood et al., 2023), microeukaryotes can use 
structural and behavioral adaptations (e.g., using cilia or flagella 
for movement) to manage challenges posed by changes in water 
flow. Disturbance conditions created by strong water flow, thus, can 
reduce competition and predator pressure, allowing 
microeukaryotes to successfully colonize newly available niches. 
Previously, microcosm experiments had demonstrated that with 
increasing intensity of environmental disturbance, microeukaryotes 
experienced an accelerated tempo of competitive exclusion (Violle 
et al., 2010) and thus were more sensitive to environmental changes 
than bacteria (Li C. et al., 2023b). Such dynamics could lead to 
quicker shifts in community composition and diversity.

5 Conclusion

In this study, we  analyzed the dynamics of bacterial and 
microeukaryotic microbial communities in the interconnected river–lake 
systems of East (ET) and South Lake Taihu (ST) under different intensities 
of flow disturbances using amplicon sequencing and multiple statistical 
analyses. Diversity, community composition and assembly, as well as 
co-occurrence relationships of both bacteria and microeukaryotes in the 
ET region with higher flow disturbance, were significantly distinct from 
those in the ST region. Stochastic processes, mainly dispersal limitation 
and drift, dominated community assembly, with the proportion of 
dispersal limitation increasing alongside flow intensity. Increasing water 
flow disturbances reduced the ecological niche width and stability of the 
coexistence networks of both bacteria and microeukaryotes. Compared 
to bacteria, microeukaryotes were more sensitive to changes in water flow 
intensity. These results were particularly relevant in the context of Lake 
Taihu, which had been plagued by frequent cyanobacterial blooms in 
recent years. These blooms, driven by nutrient over-enrichment and 
hydrological changes, had led to severe ecological and public health 
challenges. Understanding the microbial dynamics under varying flow 
conditions is crucial for managing these blooms, as the interplay between 
microbial community structure and hydrological factors directly 
influences the occurrence and persistence of cyanobacterial blooms. Our 
findings expand our understanding of the diversity, construction, and 
ecological mechanisms of bacterial and microeukaryotic communities 

under differing flow conditions along the river–lake continuum, offering 
critical insights into how these processes can be leveraged to mitigate the 
impacts of cyanobacterial blooms. These findings have far-reaching 
implications for mitigation and management strategies of human 
alterations of flow conditions, especially in connected river–lake 
ecosystems like Lake Taihu, where the control of cyanobacterial blooms 
is a key environmental and public health priority.
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