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Introduction: Scorias spongiosa is an edible fungus.

Methods: In this study, a nontargeted metabonomic analysis was conducted on the 
fruiting bodies of this fungus at five growth stages, and the differences in metabolites 
and the related metabolic pathways during growth and development were analysed.

Results: This study revealed that the five growth stages of S. spongiosa fruiting 
bodies were associated with 15 pathways. These 15 metabolic pathways are 
speculated to play important roles in the growth of S. spongiosa fruiting bodies. 
Eleven bioactive substances were identified among the differentially expressed 
compounds. The content of six bioactive substances was highest at the S1 growth 
stage among all the growth stages. The metabolites related to sugar metabolism 
were enriched in three main pathways: pentose and gluconate interconversions, 
the pentose phosphate pathway, and the citrate cycle (TCA cycle).

Discussion: These results suggested that the S1 growth stage can be selected as 
the harvest period of S. spongiosa in fruiting bodies to retain most of the bioactive 
substances. Pentose and gluconate interconversions, the pentose phosphate 
pathway, and the TCA cycle are related to changes in polysaccharide content 
during the growth of S. spongiosa fruiting bodies.
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1 Introduction

Scorias spongiosa is the only edible fungus in the Capnodiaceae family and is widespread in many 
countries and regions (Batool et al., 2015; Yang, 2014). S. spongiosa was identified for the first time as 
a new species by pure culture and ITS sequence identification in 2011 (Zhong et al., 2020), and it is 
taxonomically affiliated with the genus Scorias Fr. (1825) of the Capnodiaceae family (Zhong et al., 
2020). As a pathogen that affects bamboo, the growth of S. spongiosa depends on the honeydew 
secreted by Pseudoregma bambucicola, a pest that negatively impacts the healthy growth of bamboo 
plants (Harunobu, 1999). Although this fungus does not penetrate into and infect plant tissues, as it 
grows and ages, it forms black mycelia and thick fruiting bodies that cover plant tissues, thus 
hindering photosynthesis and, in severe cases, even leading to the death of the plant (Chomnunti 
et al., 2014; Zhang et al., 2021); thus, harvesting S. spongiosa fruiting bodies is ecologically beneficial. 
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Given that S. spongiosa is rich in nutrients, containing high amounts of 
polysaccharides, amino acids, trace elements, and vitamins (Zhong et al., 
2020; Sun et al., 2019; Wu et al., 2018; Huang et al., 2016), it has considerable 
developmental prospects. To date, S. spongiosa has not been artificially 
cultivated on a large scale, and all S. spongiosa products on the market are 
obtained from the wild (Huang et al., 2016). In our previous research, 
we found that the shape and color of S. spongiosa fruiting bodies differ at 
different growth stages. However, it is not known whether the nutritional 
components of S. spongiosa fruiting bodies also differ at different growth 
stages. A thorough and dynamic assessment of metabolites in S. spongiosa 
fruiting bodies has not yet been carried out.

The two main current branches of metabonomics studies are 
nontargeted and targeted metabonomics. Nontargeted metabonomics is an 
analytical strategy for identifying metabolites in as many samples as 
possible, which can guide the resolution of biological problems at the 
metabolic level, generally without bias (Zhao et al., 2019). In the field of 
edible mushrooms, a previous study characterized the metabolomic profiles 
of Dictyophora rubrovolvata under different drying treatments via 
nontargeted metabonomics and revealed the metabonomic profiles of 
D. rubrovolvata and potential biomarkers under different drying techniques 
(Dong et al., 2022). Related studies using nontargeted metabonomics have 
revealed the significantly different metabolic profiles of five commercial 
truffle species (Li et al., 2019). By combining nontargeted and targeted 
metabolomics, Carvalho et al. (2014) identified metabolites/metabolite 
patterns with potential species identification of 22 mushroom species.

In this study, nontargeted metabonomic analysis was conducted 
on S. spongiosa fruiting bodies at five growth stages, and the differences 
in metabolites and the related metabolic pathways during growth and 
development were analyzed. The main objective of this study was to 
provide metabonomic information to help determine the optimal 

harvesting period of S. spongiosa fruiting bodies for food processing, 
which may improve cultivation practices, enhance the quality of 
S. spongiosa fruiting bodies, and provide a theoretical basis for their 
development and utilization.

2 Materials and methods

2.1 Materials

Scorias spongiosa was planted at the S. spongiosa experimental 
base in Shaping town, Yibin city, Sichuan Province, China. The growth 
cycle of S. spongiosa is influenced by the growth environment 
(temperature, rainfall). The growth cycle of the fruiting bodies of 
S. spongiosa from October–November is 30–35 days (as observed 
during the experiment), and the primary growth stage of S. spongiosa 
is 5–7 days after fruiting bodies begin to form. Six clusters of 
S. spongiosa at the primary growth stage were handpicked on October 
11, 2019. S. spongiosa at the subsequent growth stages were then 
collected every week. The five different growth stages of S. spongiosa 
were differentiated on the basis of the fruiting body color: pale yellow, 
yellow, deep yellow, yellowish-black and black. All collected samples 
were immediately stored in liquid nitrogen and then transferred to a 
refrigerator at −80°C.

2.2 Extraction and fractionation

The S. spongiosa samples stored in a freezer at −80°C were 
transferred to another freezer at −20°C and then transferred to a 
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refrigerator at 4°C for gradual thawing. A total of 200 mg of each 
sample was accurately weighed, placed in a 2 mL EP tube, combined 
with 0.6 mL of methanol, and vortexed for 30 s. Glass beads were then 
added to the sample, which was then placed in a TisueLysis II tissue 
grinder, ground for 60 s at 25 Hz, ultrasonically crushed for 15 min at 
room temperature, and centrifuged at 25°C for 10 min. A total of 
300 μL of the supernatant was filtered through a 0.22 μm membrane. A 
total of 20 μL of the filtrate of each sample to be tested was mixed into 
QC samples, and the remaining samples were analyzed via LC–MS (De 
Vos et al., 2007; Sangster et al., 2006).

2.3 Analytical procedure and MS conditions

Chromatographic conditions: 2 μL aliquots were injected onto a 
Waters ACQUITY UPLC HSS T3 column (150 mm × 2.1 mm, 1.8 μm) at 
40°C and resolved via a gradient elution program with a flow rate of 
0.25 mL/min. The temperature of the automatic sampler was set at 8°C, 
and the column temperature was set at 40°C. The mobile phases in 
negative ionization mode were 5 nM ammonium formate water (solvent 
A1) and acetonitrile (solvent B1). The mobile phases in positive 
ionization mode were a mixture of water/formic acid (99.9:0.1, v/v; 
solvent A2) and acetonitrile/formic acid (99.9:0.1, v/v; solvent B2). The 
gradient elution procedure was as follows: 0–1 min, 2% B1/B2; 1–9 min, 
2–50% B1/B2; 9–12 min, 50–98% B1/B2; 12–13.5 min, 98% B1/B2; 
13.5–14 min, 98–2% B1/B2; and 14–20 min, 2% B2- positive mode 
(14–17 min, 2% B1–negative mode). The positive ionization mode 
parameters were as follows: capillary temperature, 325°C; nebulizer 
voltage, 3,200 V; sheath gas, 30 arb; and auxiliary gas, 10 arb. The negative 
ionization mode parameters were as follows: capillary temperature, 
325°C; nebulizer voltage, 2,500 V; sheath gas, 30 arb; and auxiliary gas, 
10 arb (Want et al., 2010).

2.4 Data analysis

The original data were converted into mzxml format via 
ProteoWizard software, and peak identification, filtering, and 
alignment were conducted via the xcms package of R; a data 
matrix, including information such as the mass-to-core ratio, 
retention time, and peak area, was obtained (Thévenot et  al., 
2015). A total of 22,464 precursor molecules were obtained in 
positive ionization mode, and 18,652 precursor molecules were 
obtained in negative ionization mode. The data were exported to 
EXCEL for subsequent analysis. The peak areas of the data were 

normalized in batches to compare data of different orders of 
magnitude. Principal component analysis (PCA) and partial least 
squares discriminant analysis (PLS-DA) were conducted via 
SIMCA-P  14.1 software. Orthogonal partial least-squares 
discriminant analysis (OPLS-DA) in R was used for multivariate 
statistical analysis. Metabolites were first identified on the basis of 
accurate molecular weights (molecular weight errors of less than 
20 ppm) and confirmed and annotated via databases such as 
HMDB,1 METLIN,2 and Mona3 in accordance with the MS/MS 
fragmentation patterns.

3 Results

3.1 Multivariate analysis at the five different 
growth stages

Supplementary Figure  1 presents the total base peak 
chromatograms (BPCs) in positive and negative ionization modes for 
the five different growth stages. A total of 15,397 and 11,589 metabolite 
ion features were identified in S. spongiosa in the positive and negative 
ionization modes, respectively (Figure 1).

3.2 Unsupervised statistical analysis

The metabolite profiles acquired under both ionization modes were 
analyzed through PCA. The QC samples were in the middle of the five 
groups and clustered closely, indicating that the experiment was stable 
and reproducible (Supplementary Figure 2). The score plot in Figure 2A 
shows that the growth stages (S1–S2, S2–S3, S3–S4, and S4–S5) were 
clearly separated, suggesting apparent differences in the structures and 
compositions of metabolites among the different growth stages. The 
OPLS-DA results revealed that the samples at the different growth stages 
were separated in both ionization modes and were within the 95% 
confidence interval (Figure  2B). All of the OPLS-DA models were 
validated by response permutation testing, which revealed the absence of 
overfitting (Figure 2C) and false-positives in the experimental data. The 
model can thus be used to distinguish the five different growth stages of 
S. spongiosa (Boulesteix and Strimmer, 2007).

1 http://www.hmdb.ca

2 https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage

3 https://mona.fiehnlab.ucdavis.edu

FIGURE 1

Different developmental stages of S. spongiosa. Stages 1–5 are pictures of the substrates on Days 5, 12, 19, 26, and 33 after substrate formation, 
respectively.
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3.3 Differentially abundant metabolite 
analysis

The differentially abundant metabolites at the different growth 
stages of S. spongiosa are shown in Figure  3A. The differentially 
abundant metabolites were assigned to various chemical categories, 
including carboxylic acids and derivatives (34%), fatty acyls (22%), 
organo-oxygen compounds (18%), benzene and substituted 

derivatives (9%), keto acids and derivatives (6%), phenols (6%), 
indoles and derivatives (5%) (Figure 3B). Subsequent screening for 
metabolites with significant differences between different stages 
revealed a total of 88 significantly differentially abundant metabolites 
among the five developmental stages; 137, 138, 161, and 142 
metabolites were significantly differentially expressed in the S1–S2, 
S2–S3, S3–S4, and S4–S5 comparisons, respectively 
(Supplementary File). Hierarchical heatmap clustering analysis 

FIGURE 2

Data quality analysis. (A) PCA score plots of the data obtained in positive and negative ionization modes. (B) OPLS-DA models of the data obtained in 
positive and negative ionization modes for samples: score scatter plots. (C) OPLS-DA models of the data obtained in positive and negative ionization 
modes for samples: permutation tests.
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revealed significant differences in metabolite abundance across the 
five developmental stages of S. spongiosa, and all the biological 
replicates were grouped together, indicating the good quality and 
high reliability of the metabolome data (Figure 4).

3.4 KEGG enrichment analysis

KEGG pathway enrichment analysis was used to illustrate the 
biological functions of the proteins that were differentially 
expressed at the different growth stages. The metabolites that 
were differentially expressed in the S1–S2, S2–S3, S3–S4, and S4–
S5 comparisons were enriched in 45, 41, 48, and 45 metabolic 
pathways, respectively. The differentially abundant metabolites 
were enriched in 38 metabolic pathways during the entire growth 
period of S. spongiosa (Figure  5). Among all the enriched 
pathways, 15 metabolic pathways were common to all the analysis 
groups (Supplementary Table 2).

3.5 Distribution of bioactive compounds in 
Scorias spongiosa fruiting bodies

Eleven compounds with biological activities were identified 
from among the significantly differentially abundant compounds. 
The contents of these eleven active substances during the five 
growth stages are shown in Figure  6. The levels of trehalose, 
spermidine, squalene, AICAR, protocatechuic acid, and stachyose 
were high at the S1 stage, of which the levels of squalene, 
protocatechuic acid, and stachyose were significantly higher than 
those at the other stages (p < 0.05). These six bioactive compounds 
tended to decrease after the S1 stage. Moreover, the contents of 
ascorbate at S3 and S4 were significantly higher than those at the 
other stages (p < 0.05). The carnosine content did not significantly 
differ among the five growth stages (p > 0.05). The results showed 
that there are differences in the bioactive substances contained in 
S. spongiosa fruiting bodies at different stages; therefore, the 
efficacy of different stages may differ.

FIGURE 3

(A) Quantitative statistics of the different metabolites in positive and negative ionization modes. (B) Category statistics of differentially abundant 
metabolites.
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3.6 Carbohydrate metabolism-related 
metabolites in Scorias spongiosa fruiting 
bodies

Sugar metabolism provides an essential source of energy and 
metabolites for fruiting body induction, development and maturation 

(Sakamota, 2018). Therefore, in the present study, by comparing the five 
growth stages of S. spongiosa, 55 metabolites related to sugar metabolism 
were identified, among which 44 compounds were significantly 
differentially abundant and 11 substances were not significantly 
differentially abundant (Figure 7). Among the 55 metabolites related to 
sugar metabolism, ten, seven, and six were enriched in pentose and 

FIGURE 4

Heatmap of the differentially abundant metabolites in the different growth stages of Scorias spongiosa. Heatmap of the significantly differentially 
abundant metabolites at the five developmental stages of S. spongiosa identified in the LC/MS analysis. Each column represents the developmental 
stage, and the fold change in the average peak area is denoted by the number and color of the heat scale. The deeper the red color is, the higher the 
level of that metabolite in the developing fruits. Similarly, the deeper the blue color is, the lower the level of that metabolite in the developing fruits.
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gluconate interconversions, the pentose phosphate pathway, and the 
TCA cycle, respectively (Supplementary File 1 and Figure 8).

4 Discussion

The edible fungus S. spongiosa has attracted attention in recent 
years because of its unique flavor and high nutritional value; however, 
related research is still in its infancy. Therefore, it is important to 
collect metabolic data to further explore the nutritional value, 
biological activity and potential medicinal value of S. spongiosa. With 
the development of histological technology, liquid chromatography–
mass spectrometry (LC–MS) has been widely used in metabolomics 

research. A previous study analyzed the metabolic profiles of five 
commercial truffle species via nontargeted metabolomics and 
reported that Tuber melanosporum contains more compounds at 
higher concentrations, suggesting that T. melanosporum has a greater 
value for utilization as a drug or a foodstuff. In this study, we analyzed 
the dynamics of metabolites in S. spongiosa substrates at five growth 
stages via LC/MS-based nontargeted metabolomics, and the results 
revealed that the five growth stages of S. spongiosa shared 15 enriched 
pathways. These 15 metabolic pathways are speculated to play 
important roles in the growth of S. spongiosa. The growth of 
S. spongiosa can be regulated by modulating these metabolic pathways. 
This finding is highly important for further studies on the growth 
regulatory mechanisms of S. spongiosa.

FIGURE 5

Distribution of the differentially abundant metabolites in various metabolic pathways. (A–E) Present the distributions of the differentially expressed 
metabolites in the S1–S2, S2–S3, S3–S4, S4–S5, and S1–S5 comparisons, respectively.

https://doi.org/10.3389/fmicb.2024.1478887
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Nong et al. 10.3389/fmicb.2024.1478887

Frontiers in Microbiology 08 frontiersin.org

By analyzing the bioactive components and sugar-related 
metabolism, we  attempted to explain the antitumour, anti-
inflammatory, bacteriostatic and antioxidant effects of S. spongiosa 
from a metabolic point of view, as well as to determine the ideal 
harvest time for the desired S. spongiosa fruiting bodies. In this study, 
11 bioactive compounds were identified from among the differentially 
abundant compounds (Table 1). Trehalose can protect motor neurons 
and improve neuroinflammation (Liu et al., 2019; Li et al., 2020). 
Squalene is a terpenoid with antioxidant, anticancer and antifatigue 
activities (Ramli et al., 2018; Sakul et al., 2019). Protocatechuic acid, a 

phenolic acid, has antioxidant and antiaging effects (Girsang et al., 
2020; Sinha et  al., 2020; Al Olayan et al., 2020). Stachyose has 
antidiabetic and immunomodulatory effects (Liang et al., 2019; Shang 
et al., 2020). Gentisic acid, a phenolic acid, has numerous functions, 
such as antioxidation, anti-inflammatory, and bacteriostatic effects 
(Abedi et  al., 2020; Cavalcante et  al., 2018; Kabra et  al., 2014).
Ascorbate, a polyhydroxy compound, has antioxidation and 
immunity-enhancing functions (Thomas et al., 2020; Escobar and 
Paltas, 2019). Capsidiol has anti-inflammatory, anticancer and 
antifatigue effects (Yang and Song, 2020). In the present study, the 

FIGURE 6

Differences in the contents of bioactive metabolites at the five different developmental stages. Different superscripts (a, b, c, d, e) indicate a significant 
difference (p  <  0.05). The same superscript indicates no significant difference (p  >  0.05).
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levels of six bioactive compounds (trehalose, spermidine, squalene, 
AICAR, protocatechuic acid, and stachyose) were high at the S1 stage, 
of which the levels of squalene, protocatechuic acid, and stachyose 
were significantly higher than those at the other stages. These six 
bioactive compounds tended to decrease after the S1 stage. Therefore, 
S. spongiosa can be harvested during the S1 period to retain most of 
the bioactive substances, especially for the development of 
nutraceuticals because of its antioxidant, antidiabetic, and 
immunoregulatory properties. Moreover, the contents of ascorbate at 
S3 and S4 were significantly higher than those at the other stages, so 
S. spongiosa can be harvested at this stage to develop antioxidant and 
immune-boosting nutraceuticals.

Sugars serve as important carbon sources for fruiting body 
development, and they may be used as energy donors or raw materials 
for polysaccharide synthesis to promote the rapid growth of fruiting 
bodies (Sakamota, 2018). S. spongiosa is rich in polysaccharides (Zhong 
et al., 2020). Xu et al. (2022) treated C57BL/6 J mice with low-dose and 
high-dose S. spongiosa polysaccharides and reported that these 
polysaccharides had no effect on the growth performance of the mice 
regardless of dose, and that their antioxidant and anti-inflammatory 
activities were elevated. In subsequent studies, S. spongiosa 
polysaccharides were shown to have protective effects against colitis in 
mice by reshaping the intestinal microbiome and maintaining the 
balance of intestinal barrier integrity (Xu et al., 2023). In this study, the 
results revealed that the metabolites related to sugar metabolism are 
involved in three main pathways: pentose and gluconate interconversions, 
the pentose phosphate pathway, and the TCA cycle. Polysaccharides, 
pentoses and glucose are all saccharides that can be interconverted via 
different carbohydrate metabolic pathways, although these pathways are 
linked via common intermediates (such as glucose 6-phosphate and 
glyceraldehyde 3-phosphate, etc.) (Chandel et al., 2021). In particular, the 
pentose phosphate pathway linked pentose to hexose, and the 
interconversions of different hexoses with glucose mediate the 
metabolism of hexoses, and the activated glucose can be further 
synthesized and become polysaccharides (Wang et al., 2017; Stincone et 
al., 2015). These linkages allow S. spongiosa to efficiently use and convert 
sugars to meet its energy and biosynthetic needs. Therefore, these three 
pathways were speculated to be related to the change in polysaccharide 
content during the growth of S. spongiosa in the present study. The TCA 
cycle provides energy for biological activities and is the most effective 
way for the body to obtain energy through the use of sugar (Avila et al., 
2017). With the growth of S. spongiosa, the contents of oxoglutarate, 
cis-aconitic acid, and citric acid involved in the TCA cycle all decreased, 
indicating that the energy supply decreased gradually at the later stages 
of growth. For this reason, S. spongiosa can be harvested at the early 
growth stage to retain a higher saccharides content, thus ensuring its 
nutritional value.

Moreover, we  found that S. spongiosa fruiting bodies presented 
different colors at different stages of development, with the color gradually 
changing to black as the fruiting bodies matured. Previous studies showed 
that the production of melanin is linked to the metabolism of amino acids, 
such as tyrosine, phenylalanine, and tryptophan. For example, under the 
catalytic reaction of tyrosinase, the tyrosine can synthesize melanin through 
a series of complex biological processes, in contrast, the phenylalanine can 
inhibits the tyrosinase activity, thereby inhibiting the melanin formation 
(Faure et al., 2024; Rzepka et al., 2016; Farishian et al., 1980). Moreover, 
tryptophan is also involved in the synthesis of melatonin (Murch et al., 
2000), and L-tryptophan is proven to be a precursor for the synthesis of 

FIGURE 7

Differences in the contents of carbohydrate metabolites at the five 
different developmental stages. Different superscripts (a, b, c, d, e) 
indicate a significant difference (p  <  0.05). The same superscript 
indicates no significant difference (p  >  0.05).
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melatonin, as described by the physician Lerner et al. (1958). In this study, 
our differentially abundant metabolite analysis revealed that tyrosine was 
distributed across all five stages of S. spongiosa, with a high level in S1, S2, 
or S3 stages (1.21 ~ 1.71 × 108) and a significant decreased level in S4 and S5 
stages (6.60 ~ 6.87 × 107), a similar decrease was also observed in 
phenylalanine. In addition, the level of tryptophan was high in each of the 
first three stages (S1, S2, and S3), but such level significantly dropped in 
stage S4 and even disappeared in stage S5 (Supplementary File 2). 
Therefore, we speculated that as the fruiting bodies grow, the levels of 
phenylalanine decreased, which recovered the activity if the tyrosinase and 
catalyzed a large amount of tyrosine into melanin; conversely, tryptophan 
greatly reduced or even disappeared in stages S4 and S5, resulting in a 
significant reduction of melatonin, which ultimately reduced a black color 
in the later stages of the fruiting bodies of S. spongiosa (S4 and S5). The 
yellow color of the fruiting bodies in stages S1, S2, S3 may be due to the 
relatively high levels of tyrosine and tryptophan.

5 Conclusion

Nontargeted metabonomics analysis revealed that the five growth 
stages of S. spongiosa shared 15 enriched pathways. These 15 metabolic 
pathways are speculated to play important roles in the growth of 
S. spongiosa. Eleven bioactive substances were identified from among the 
differentially expressed compounds. The content of bioactive substances 
differed during the different growth stages. S. spongiosa can be harvested 
during the S1 period to retain most of the bioactive substances. The 
results of the analysis revealed that the metabolites related to sugar 
metabolism are involved in three main pathways: pentose and gluconate 
interconversions, the pentose phosphate pathway, and the TCA cycle. 
These three pathways are speculated to be  related to the change in 
polysaccharide content during the growth of S. spongiosa.
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TABLE 1 Specific nutritional components and functions of S. spongiosa.

Chemical compound Function

Trehalose Protecting motor neurons, Anti-inflammatory (Sinha et al., 2020; Li et al., 2020)

Carnosine Antioxidant, Anti-brain aging, Protecting nerves (Tanaka and Kawahara, 2019; Kim and Kim, 2020; Scuto et al., 2020)

Gentisic acid Antioxidant, Anti-inflammatory, Antibacterial, Protecting nerves (Abedi et al., 2020; Cavalcante et al., 2018; Kabra et al., 2014)

Spermidine Antiageing (Thomas et al., 2020; Metur and Klionsky, 2020)

Nicotinamide ribotide Antiageing (Tamas et al., 2020)

Ascorbate Antioxidant, Immune-boosting, Relieve muscle fatigue (Hureau et al., 2020; Escobar and Paltas, 2019)

Capsidiol Anti-inflammatory, Anticancer, Resist fatigue (Yang and Song, 2020)

Squalene Antioxidant, Anti-cancer, Resist fatigue (Ramli et al., 2018; Sakul et al., 2019)

AICAR Antiageing, Anti-inflammatory (Mohammadhossein et al., 2020; Martin et al., 2019)

Protocatechuic acid Antioxidant, Antiageing, Antidiabetic, Anti-inflammatory, Antiapoptotic (Al Olayan et al., 2020; Girsang et al., 2020; Seoungwoo et al., 2020)

Stachyose Antidiabetic, Immunoregulation (Liang et al., 2019; Shang et al., 2020)
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