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Disruption of biological
membranes by hydrophobic
molecules: a way to inhibit
bacterial growth
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With antibiotic resistance increasing in the global population every year, e�orts to
discover new strategies against microbial diseases are urgently needed. One of
the new therapeutic targets is the bacterial cell membrane since, in the event
of a drastic alteration, it can cause cell death. We propose the utilization of
hydrophobicmolecules, namely, propofol (PFL) and cannabidiol (CBD), dissolved
in nanodroplets of oil, to e�ectively strike the membrane of two well-known
pathogens: Escherichia coli and Staphylococcus aureus. First, we carried out
calorimetric measurements to evaluate the e�ects of these drugs on model
membranes formed by lipids from these bacteria. We found that the drugs
modify their transition temperature, enthalpy of cohesion, and cooperativity,
which indicates a strong alteration of themembranes. Then, inhibition of colony-
forming units is studied in incubation experiments. Finally, we demonstrate, using
atomic force and fluorescence microscopy, that the drugs, especially propofol,
produce a visible disruption in real bacterial membranes, explaining the observed
inhibition. These findings may have useful implications in the global e�ort to
discover new ways to e�ectively combat the growing threat of drug-resistant
pathogens, especially in skin infections.
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1 Introduction

Antimicrobial resistance (AMR) increases every day, a phenomenon that is a global
health problemmainly in immunocompromised cancer patients (Bodro et al., 2014; Gudiol
and Carratalà, 2014), organ transplant surgeries (Ye et al., 2014), infections in chronic
wounds (Kawano et al., 2020), and among others (Dadgostar, 2019). It is expected that in
the serious scenario where antibiotics become ineffective, millions of deaths could produce
a pre-antibiotic era (Davies and Davies, 2010). Investigations reveal that in 2019, 1.27
million deaths were caused by antimicrobial resistance, and 4.95 million were indirectly
associated with it (Murray et al., 2022). In addition to these human losses, the Center for
Disease Control and Prevention estimated that in the United States, the economic impact
is 55 billion dollars per year, considering not only public health spending but also the loss
of productivity (Dadgostar, 2019). Indeed, AMR is not only an exclusive public health
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problem but may trigger economic consequences worldwide. If
precautions are not taken, human deaths are expected to reach 10
million by 2050, resulting in a global cost of 100 billion dollars
(O’Neill, 2016).

The World Health Organization (WHO) has published a list
of 12 pathogens in urgent need of new antibiotics (www.who.int/
news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-
new-antibiotics-are-urgently-needed). Unfortunately, studies on
new antibiotics are scarce, as in 2020 there were only 135 preclinical
projects in development worldwide (Theuretzbacher et al., 2020).

It is known that the plasmatic membrane is crucial for the
correct functioning of a cell (Derby and Gleeson, 2007; De Rosa
et al., 2007; Adibhatla and Hatcher, 2008). The membrane protects
it, maintains the balance between the inside and outside, regulates
cell traffic, and participates in cellular responses (Malanca and
Camici, 1989; Marza et al., 2002; Ammendolia et al., 2021).
In eukaryotic cells, alterations in membrane fluidity have been
correlated with several diseases (Shinitzky, 1984; Sameni et al.,
2018), while in procaryotic cells, fluidization has been found to
cause disruption of the cell membrane (Royce et al., 2013). Thus,
the membrane is a good target to hit because it could affect
cell viability (Sudhahar et al., 2008), particularly when mutagenic
bacterial populations are confronted with new scenarios to which
they are not adapted (Salinas-Almaguer et al., 2022).

We propose propofol (PFL) and cannabidiol (CBD), two well-
known molecules employed in many biophysics experiments to
produce thermodynamic changes in lipid membranes (Momo
et al., 2002; Tsuchiya, 2001; Perez et al., 2022), as a way to
modify the elastic properties of cellular membranes. Propofol
(2,6 diisopropylphenol), a small molecule (178.2 Da), is a general
anesthetic with a high partition coefficient (logP 4.16). Since it
has poor aqueous solubility, propofol is normally solubilized in
oils and organic solvents. On the other hand, CBD is one of the
85 components of the cannabis plant without psychoactive effects
and with multiple advantages such as anti-inflammatory, appetite
stimulation in AIDS, and treatment for chronic pain, depression,
anxiety, psychosis, and recently, antimicrobial effects (Blaskovich
et al., 2021; Devinsky et al., 2017; McGuire et al., 2018). CBD is a
much heavier molecule (314 Da) with a higher partition coefficient
(logP 7.04).

In recent years, the FDA approved a new drug carrier emulsion
of propofol based on soybean, but with many disadvantages
such as an unstable emulsion in prolonged time and microbial
contamination (Shevalkar et al., 2019). Antimicrobial activity of
CBD againstN. gonorrhoeae andMoraxella catarrhalis, both Gram-
negative species, was recently reported (Blaskovich et al., 2021).
The authors proposed that the effect of CBD is produced on the
outer membrane of these bacteria, although they remark that the
main effect is on the DNA, RNA, peptidoglycan, and lipid synthesis.
In other words, they do not put any further consideration on the
possible affectation of membrane integrity.

Due to its low water solubility and bioavailability in plasma or
blood, the use of hydrophobic molecules is an interesting issue.
Normally, as in the previous referred study (Blaskovich et al., 2021),
the organosulfur compound dimethyl sulfoxide (DMSO) is used
to dissolve both polar and non-polar molecules, although due to
its toxic effect, the concentration cannot be higher than 0.5 % v/v.

In recent years, nanoemulsions, used as drug carriers, have gained
relevance because they can encapsulate molecules that are poorly
soluble in water (Tayeb and Sainsbury, 2018; Li et al., 2012; Guzmán
et al., 2021; Shakeel et al., 2012).

Nanoemulsions are colloidal dispersions composed of two
immiscible liquids (i.e., oil-in-water or water-in-oil), with
nanoscale-size droplets from 20 to 200 nm in diameter (Sagalowicz
and Leser, 2010). Their small sizes have many advantages for
drug delivery due to their high bioavailability and stability for
an extended time. In addition, since the drug is immersed in
nanodroplets it can be preserved for large periods (Karami et al.,
2019; Sánchez-L0pez et al., 2019). A previous study concluded that
a nanoemulsion of herbal plant oils modified the outer membrane
of Gram-positive and Gram-negative strains (Krishnamoorthy
et al., 2018). It seems that the plasma membrane, regardless of its
composition, is the unspecific receptor for the molecules.

In this study, we investigate two pathogens that are included
in the WHO list: E. coli and S. aureus. The first is a Gram-
negative bacterium from the Enterobactericeae family, which
shows resistance to carbapenems and also produces an extended-
spectrum of beta-lactamase (ESBL). Its double lipid membrane,
separated by a peptidoglycan layer, provides its protection to drugs.
The second is a Gram-positive spherically shaped bacterium with
a single membrane, whose natural habitat in humans is the skin
and nasopharynx.

Before investigating the effects of PFL and CBD on E. coli and
S. aureus, we performed calorimetric measurements of liposomes
formed by lipids similar to those found in these bacteria. Having
observed the strong effects that the aforementioned drugs produced
on the membranes, we examined their effects on the growth of
E. coli (K-12 MG1655) and S. aureus (Rosenbach Atcc 25923). A
great correlation was found between the degree of alteration in the
thermotropic profiles obtained by calorimetry and the effect on
the growth of bacterial colonies. We also performed atomic force
microscopy and fluorescence microscopy measurements to further
evaluate the change in the morphology of the bacterial membranes.

2 Materials and methods

2.1 Reagents

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE)
(99 %), 1,2-dipalmitoyl-sn-glycero-3-[Phospho-rac-1-glycerol]
(DPPG) (99 %), 1’,3’-bis[1,2-dimyristoyl-sn-glycero-3-phospho]-
glycerol (CL), 2,6-Diisopropylphenol (PFL) (97%), olive oil
(OO) (analytic grade), and chloroform (anhydrous, ≥99%, with
0.5 - 1.0% ethanol) were purchased from Sigma-Aldrich.
N-octadecanoyl-D-erythro-sphingosylphosphoryl choline
(sphingomyelin, brain porcine) (SM) was obtained from Avanti
Polar Lipids. Texas Red dye (1,2-dihexadecanoyl-sn-glycero-
3-phosphoethanolamine, triethylammonium salt) (TR-DHPE)
was obtained from Invitrogen. Cannabidiol (CBD) (99%) (CAS:
13956-29-1) was purchased in CrescentCanna (New Orleans,
USA). Very pure water (18.2M�cm) was obtained from a Milli-Q
IQ 7000 system.
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The LB broth and agar (Miller) were made from casein peptone
(Tryptone) (CAS: 91079-40-2), yeast extract (CAS: 8013-01-2), and
sodium chloride (NaCl) (CAS: 7647-14-5), all from MCD Lab. The
nutrient agar used was BD brand (SKU: 213000) and phosphate
buffer (PBS, pH 7.4) (MDL: MFCD00131855).

2.2 Nanoemulsions preparation

CBD and PFL were separately dissolved in analytical grade olive
oil (OO) to prepare stocks with a final concentration of 275mg/mL.
Thereafter, a mixture of the stocks and Milli-Q water was prepared
to reach emulsions with concentrations of 1% v/v for both drugs
and 3% v/v for CBD. A mixture of OO and water was prepared
under the same conditions. To form the nanoemulsions, a vigorous
manual agitation was first made. Then, we used a microfluidizer
(Microfluidics M-110P, Massachusetts, USA) device at 100 and 150
MPa for three cycles per pressure. The temperature was controlled
by adding ice to the heat exchanger container of the apparatus.
Subsequently, they were stored in the fridge at 4 ◦C.

2.3 Preparation of bacteria-like
membranes

The main lipid components of E. coli and S. aureus

are the unsaturated lipids 1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine (DOPE), 1,2-dioleoyl-sn-glycero-3-
phospho-(1-rac-glycerol) sodium salt (DOPG), and cardiolipin
(CL). However, since DPPE and DPPG have the same polar
heads as DOPE and DOPG, we used them to prepare the needed
membranes, as previously proposed by Lombardi et al. (2017). The
idea behind this exchange is to bring the transition temperatures
into a window where they are more accessible to perform the
measurements (from negative temperatures approximately –18 ◦C
for the unsaturated lipids, to temperatures between 40 and 65 ◦C
for the saturated ones). Two different liposomes were prepared,
the first one with DPPE/DPPG (80/20 % mol), simulating the
Gram-negative E. coli membrane (Lombardi et al., 2017), and the
second with DPPG/CL (95/5 %mol), mimicking the Gram-positive
S. aureusmembrane (Malanovic and Lohner, 2016).

The liposomes were prepared at a final concentration of 5 mM.
Lipids were dissolved in 1.2 mL of chloroform inside a clear amber
scintillation vial. The solvent was evaporated first with a nitrogen
flux and then using a degassing station (TA instruments, New
Castle) at 55 ◦C for 1.5 h with agitation at 130 rpm to remove any
traces of chloroform. The film was subsequently re-hydrated with
Milli-Q water at 60 ◦C with agitation (230 r.p.m.) for 2 h; the final
formed lipid vesicles were multilamellar vesicles (MLVs).

2.4 Sample preparation for antimicrobial
activity

For this study, E. coli (K12-MG1655) and S. aureus (Rosenbach
Atcc 25923) strains were selected and pre-inoculums cultivated in
Luria-Bertani (LB) medium at 37 ◦C until an optical density (OD)

of 0.4 is reached, which corresponds to the exponential growth
phase. This occurs approximately in 18 h. Thereafter, a series of four
dilutions is made. The first dilution was prepared with a relation
of 1:100 (0.2 mL bacteria and 20 mL of LB medium). Then, three
consecutive dilutions are made with a ratio of 1:1, also incubated
and mixed until the same absorbance (0.4 OD) is obtained. The
last dilution was centrifuged at 4,000 r.p.m. for 10 min; then, the
supernatant is eliminated, and the pellet was recuperated and re-
suspended in a 10 mM phosphate buffer saline (PBS). This is
repeated three consecutive times.

2.5 Di�erential scanning calorimetry

A total of 500 µL of large unilamellar vesicles (LUVs) and
500 µL of the nanoemulsion were mixed for a total of 3.7 mg/mL
lipid concentration and 2.75 mg/mL (1% v/v) or 8.25 mg/mL (3%
v/v) of the drug (PFL or CBD). Then, all of the samples stayed at
room temperature for 15 min and degassed at –635 mmHg before
calorimetric analysis in a differential scanning calorimeter (Nano
DSC, TA Instruments, New Castle). Each sample was scanned in
heating mode. After 600 s of equilibrium time, the profile was
recorded at a rate of 1 ◦C/min and cell pressure of 3 bar. Three
independent experiments were performed.

2.6 Characterization of nanoemulsions

Dynamic light scattering (DLS) was used to determine the
size distribution of the nanoemulsions. They were diluted by 10x
before carrying out size and zeta potential measurements in a zeta
sizer (Nano ZSP, Malvern Instruments, United Kingdom). The
laser wavelength and detector angle location were 633 nm and
173◦, respectively. The instrument recorded intensity fluctuations,
which were then analyzed using the Stokes-Einstein equation R =

KBT/6πηD, with R,KB, T, η, andD being the hydrodynamic radius,
Boltzmann constant, temperature, dynamic viscosity, and diffusion
coefficient, respectively. Zeta potential was calculated from the
electrophoretic mobility employing Smoluchowski equation µ =

ǫζ/η, where ǫ is the dielectric constant and η the dynamic viscosity.
All measurements were conducted at 25◦C, and each measurement
was repeated at least three times ◦C.

2.7 Colony-forming unit assay

To find the amount of dead cells, four dilution series
are performed 1:10 (100 µL suspended bacteria and 900 µL
nanoemulsion) for each case (OO 1% v/v, OO 3% v/v, CBD-OO
1 and 3% v/v, and PFL-OO 1 % v/v). Next, an aliquot of 100 µL
was placed in the petri dish, to spread it evenly across the surface
of the LB agar. The cultures were incubated for 12 h at 37◦C.
The countable ranges were between 20 and 200 colonies per plate.
Each sample was observed in triplicate (three plates were used to
incubate and then the colonies counted) to ensure accuracy and
reliability of the results. Finally, the number of formed colonies
was registered.
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2.8 Minimal inhibitory concentration

MICwas done for both cultures. A concentration scan is carried
out, considering 8, 16, 100, 300, 1,000, and 2,750µg/mL of PFL-OO
and PFL-DMSO [maximal volume (0.5% v/v)], and OO with no
drug were added to 1 mL of bacteria culture at the beginning of the
exponential growth phase, approximately 1 × 108 CFU/mL of cell
density (Optical density of 0.02 A.U. at 600 nm). Then, in a broth
plate with 96 wells, it was added 100 µL of bacterial culture with
different concentrations of drugs and then incubated at 37◦C for
12 h with gentle shaking. MIC values were obtained by measuring
optical density at 600 nm to determine changes in turbidity.

2.9 Atomic force microscopy

Three samples of bacteria culture were cultivated
independently with propofol at 2.75 mg/mL (final concentration).
DMSO at 0.5% v/v was used as a carrier. Here, it is important
to mention that, to correctly perform the AFM experiments, the
carrier was changed because the oil nanodroplets stuck on the
cantilver making the measurements difficult. This inconvenient
did not show up when using DMSO. Since it was proved that the
obtained effects are produced by the drug, nor by the carrier (see
below), DMSO was a good choice. Bacteria strains were grown
for 2 h at 37◦C with 130 r.p.m., and then, 10 mL of cells were
centrifuged at 4,000 r.p.m. for 10 min. The pellet was re-suspended
in 10 mL of PBS buffer and centrifuged at 4,000 r.p.m. for 10 min,
for three times. Finally, another three washes with deionized water
were performed. 10 µL of each solution was poured onto a glass
cover slip previously treated with 0.1% w/v poly-l-lysine. The drops
were allowed to dry overnight to be measured the next day.

Measurements were made with an atomic force microscope
(Innova Bruker, Santa Barbara, CA). The cantilever MSNL-10 was
used. The tip spring constant was 0.03 N/m which has a resonant
frequency around 15 kHz and radius of 2 nm. The images were
taken in contact mode with a resolution and scan rate of 512 ×

512 pixels and 3 Hz, respectively. The set points were: 4 V (for E.
coli) and 2 V (for S. aureus), with proportional-integral-derivative
(PID) parameters: 3,1,1. All measurements were performed at
room temperature. Image processing was done using the Gwyddion
2.62 software.

2.10 Fluorescence microscopy

Three samples of bacteria culture were cultivated
independently with propofol at 2.75 mg/mL (final concentration).
DMSO at 0.5% v/v was also used as a carrier to avoid any
interference with the measurements. Bacterial strains were grown
for 2 h at 37◦C and 130 r.p.m.; then, 10 mL of cells were centrifuged
at 4,000 r.p.m. for 10 min. The pellet was re-suspended in 10 mL
of PBS buffer and centrifuged at 4,000 r.p.m. for 10 min. This
maneuver was done three times. Finally, another three washes
with deionized water were performed. 200 µL of each solution was
mixed with 10 µL of TR-DHPE (100 µg/mL); then, all solutions
were incubated for 1.5 h in darkness at room temperature. An

inverted fluorescence microscope (Axio Observed.Z1, Zeiss,
Germany) was used to observe the interaction between the
bacterial cell membrane and TR-DHPE dye. The filter used for
TR-DHPE dye was L50 Cy5. Pixel sizes for the image are 4.54 ×

4.54 µm, mode resolution 2,752× 2,208, and exposure time of 600
ms. The images were processed using ZEN 2 Pro software.

2.11 Statistics

Three independent experiments with three replicates each
were carried out. The replicates were averaged, and the resulting
averages were subjected to the Shapiro–Wilk test to assess the
normality of the distributions. The Shapiro–Wilk test revealed that
the distributions were not normal. Therefore, we used theWilcoxon
rank test to determine significant differences between controls and
experiments. The asterisk indicates a significant difference with a
p-value ≤ 0.1.

3 Results and discussion

Before starting the experiments with the mentioned drugs, the
stability of the nanoemulsions is verified by obtaining their size
distributions and zeta potentials using dynamic light scattering
(see details in Section 2.6). The suspensions were diluted by 10x
before the measurements, to protect the electrodes of the zeta
potential cells.

All the size distributions of the nanodroplets were
predominantly centered at approximately 50 nm (Figure 1A)
and maintained their sizes for at least 15 days, which was enough
time to perform the experiments (see Figure 1B). The negative
zeta potential is the reason why coalescence is negligible (the
droplets repel each other by an electrostatic force) (see Figure 1C).
To explain the origin of the negative charge of the droplets, let
us remember that olive oil is a composition of fatty acids such
as linoleic, stearic, palmitic, and linolenic acids (Boskou et al.,
2006). Since the pK of the carboxyl groups contained in their
structure is very low (approximately 3.5), and the continuum phase
of the nanoemulsion is deionized water (pH approximately 6),
deprotonation occurs, being the cause of the negative z potential
(Yang et al., 2013).

By evaluating the effect of the nanoemulsions on the model
membrane of PE/PG as a E. coli-like-membrane and PG/CL as
a S. aureus-like-membrane, it was noted that, compared to the
calorimetric profiles of the control, the olive oil nanocarriers either
produced a small shift to higher temperatures (due to the inclusion
of the fatty acids in the membrane that increases molecular packing
and therefore stiffness) (Figure 1D, or did not so, Figure 1E, see
Table 1). Therefore, it can be presumed that they are harmless to
the profiles and good choices for preparing the nanoemulsions.
Indeed, the effects of PFL-OO and CBD-OO (1% v/v), and CBD-
OO (3% v/v) are clearly opposite: The profiles stretch, deform,
and shift at lower temperatures, indicating strong fluidization and
loss of membrane cooperativity (Figures 1D, E). The shoulders in
the profiles are associated with a phase separation due to the
presence of different domains, regions where the drugs have not
been distributed homogeneously (Korkmaz and Severcan, 2005).
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FIGURE 1

Characterization of the nanoemulsions through (A) size distribution, (B) kinetic stability, and (C) Zeta potential of the particles. The particle sizes and
electric charge are very stable. E�ects of nanoemulsions on liposomes using DSC: calorimetric profiles of E. coli (D) and S. aureus (E)-like-
membranes. In both cases, PFL-OO 1% v/v has the greatest e�ect in the modification of cooperativity and transition temperature Tm with respect to
the controls (black lines of profiles of pure liposomes) (see Table 1). Chemical structures of the evaluated drugs: propofol and CBD (F).

Although both drugs strongly affect the thermodynamic properties
of the vesicles, and therefore compromised the integrity of the
membranes, it is remarkably that PFL-OO 1% v/v has a stronger
effect than CBD-OO 3% v/v. In fact, PFL-OO 1% v/v moved the
Tm 5◦C more than CBD-OO at 3% v/v (see Table 1). The widths of
the profiles shown in Figures 1D, E were obtained by the standard
deviations of three repetitions.

To illustrate the calorimetric changes described above using a
simplistic scheme, the cartoon depicted in Figure 2 may be useful.
Indeed, the observed changes in the cohesion enthalpies produced
by the drugs give rise to a general disorder in the membranes.

It is important to remark that the effects generated by CBD
and PFL (see their molecular structures in Figure 1F) on both
PE/PG and PG/CL are driven by enthalpic and entropic forces.
This indicates that the intrusion of external molecules into the
bilayer affects the cohesive energy. Since the 1% v/v and 3% v/v
nanoemulsions in the vesicle suspensions corresponded to 2.75
mg/mL (1% v/v) or 8.25 mg/mL (3% v/v), respectively, propofol
has a higher number of molecules owing to its lower molecular
weight, which could explain its stronger effect on the membrane
integrity. However, it is important to note that these concentrations
translate into 15.42 mM for PFL-OO (1% v/v), and 8.74 and 26.22
mM for CBD-OO (1% v/v and 3% v/v), respectively. As a result,
the amount of molecules is not the unique reason for its greater
effect. In addition, since CBD is muchmore hydrophobic than PFL,
hydrophobicity is not the reason for the effect either.

The disrupting effect of PFL has been widely studied
before (Pérez-Isidoro et al., 2014; Paiva et al., 2012). Dynamic
molecular simulations revealed that PFL exhibits a preference
for localizing near the hydrocarbons tails of the phospholipids
(Hansen et al., 2013). There, the hydroxyl group of the propofol
interacts with their ester oxygens, generating perturbations that
cause the lipids to go through the gel-liquid phase with less
energy. Similarly, the CBD molecule contains two hydroxyl
groups that can interact with the ester oxygen, and the rest
of the molecule is oriented toward the hydrophobic region.
Furthermore, it is important to note that the drugs were carried
by nanodroplets. Consequently, adding hydrophobic molecules
to the dispersed phase (olive oil) prevents them from dissolving
in the continuous phase (water). Yet, PFL could diffuse better
than CBD to reach the lipid bilayer. In addition, it has
been shown that, despite being more soluble in octanol and
therefore more likely to diffuse into lipid membranes, molecules
with logP greater than 5 have reduced penetration in cells
(Lipinski et al., 2012).

If a simple membrane model like the one discussed above
undergoes a significant change in its structural condition when
interacting with PFL and CBD, which completely modify the
transition temperature and enthalpy of cohesion, as shown in
Figures 1D, E, a biological membrane may also suffer similar
modifications in its membrane integrity, compromising the
organism viability (see Figure 2).
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To test this hypothesis, the effect of the nanoemulsion on
both bacteria was evaluated by assessing the growth behavior of
colonies in agar plates. This assay consisted in proving first the

TABLE 1 Transition temperatures (temperatures of main peaks) and

enthalpies (areas under the curves), with standard deviations, obtained

from DSC profiles.

Enthalpy (kJ/mol) STD Tm (◦C) STD

E. coli membrane-like lipids

Control 79.19 3.51 63.77 0.45

OO 1% 27.20 3.78 64.53 0.65

OO 3% 16.92 1.19 64.40 1.14

CBD-OO 1% 43.22 7.25 62.97 0.89

CBD-OO 3% 21.34 0.72 63.12 0.17

PFL-OO 1% 46.73 2.64 59.12 0.51

PFL-DMSO 1% 40.54 0.74 62.42 1.64

S. aureus membrane-like lipids

Control 42.79 9.26 46 0.42

OO 1% 36.82 1.63 46.31 0.54

OO 3% 39.38 0.28 49.28 0.09

CBD-OO 1% 39.11 0.11 43.93 0.08

CBD-OO 3% 39.92 0.12 43.35 0.23

PFL-OO 1% 33.79 5.94 36.55 0.18

PFL-DMSO 1% 40.77 3.01 33.30 0.24

harmless effect of the vehicle and then performing independent
test of the bactericide effects of the drugs (see Figures 3A, B). To
see whether the incubation time was an important factor, the CFU
was measured at different periods of time. It is clear that propofol,
prepared at 1% v/v concentration, has a fully annihilation effect in
E. coli after 10 h and in S. aureus after 8 h. On the other hand, CBD
at 1% v/v produced only a mild inhibition effect on the growth of
bacteria compared to the control, but at 3% v/v reduced a bit more
than two decades in a log scale, which means a drop in viability
better than 99%.

Our findings contrast with previous studies on propofol
emulsions, where it has been reported that they promote bacterial
growth when dissolved in soybean oil. Hence, it seems that
nanoemulsions are susceptible to contamination (Baker et al.,
2005). For such a reason, efforts to reformulate the colloidal
suspensions have been undertaken, for example, the use of other
oily vehicles and/or the addition of ethylenediaminetetraacetic acid
(EDTA) (Sakuragi et al., 1999; Wang et al., 2007; Shevalkar et al.,
2019). In contrast, our results showed that, carried by olive oil
nanodroplets, PFL at 1% v/v strongly inhibits the growth of E. coli
and S. aureus bacteria.

Some action mechanisms have been studied for the bactericidal
action of hydrophobic molecules (Blaskovich et al., 2021). It is
proposed that one of the potential unexplored targets could be
the composition of the outer lipid bilayer because the membrane
is the first component found between the extracellular medium
and the cells. Indeed, to understand our findings beyond the usual
conception behind antibiotic strategies, which are mostly based on
attacking specific biochemical targets, or in creating membrane
pores that shortcut the membrane potential, it is important to

FIGURE 2

Schematic representation of the hydrophobic drug e�ects on the liposome model and bacterial membrane. The top panels depict a lipid vesicle
before and after the drug insertion, and the lower panel schematizes a Gram-negative bacteria under such conditions.
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FIGURE 3

E�ect of various agents on E. coli and S. aureus bacteria with a final concentration of 24–108 CFU/mL (Optical density of 0.04 A.U. at 600 nm). (A) For
E. coli, we show that the vehicles (OO 1% v/v and OO 3% v/v) have the same small e�ect. Propofol-OO has a full bactericide e�ect, while CBD-OO
needs to be augmented to 3% v/v to give rise to a 99% in the decrease of viability (2log reduction). In the vertical scale, –1 indicates that no bacteria
survived after 10 h. (B) For S. aureus, the antimicrobial e�ectiveness of propofol is even better since –1 is obtained at 8 h. The minimum inhibitory
concentration (MIC) of nanoemulsions (OO and PFL-OO) and PLF-DMSO was found in both bacteria after 12 h of cell culture growth (C, D). Three
independent experiments were performed in our experiments. The median and the interquartile values in the error bars are shown. Asterisks mean
the di�erence statistics tested with the Wilcoxon rank.

discuss a recent paper by some of us (Salinas-Almaguer et al., 2022).
It was studied the effect produced by pentanol as a membrane
softening by bilayer disruption. Similar to the damage produced
by fluidization (Royce et al., 2013), or lethal permeability upsurge
(Vaara, 1992), it is shown that, after a long induction phase in
which the microorganisms are striving against a bacteriostatic
action, the cells cannot proliferate due to lipid packing distortion
which results in further delocalization of membrane proteins
impairing multiple essential processes including respiration (Strahl
and Hamoen, 2010), nucleotide synthesis (Wenzel et al., 2014),
FtsZ assembly (Silber et al., 2020; Mileykovskaya et al., 1998),
and nucleoid segregation (Mileykovskaya et al., 1998; Chai et al.,
2014), with the collateral effect to harm the cytokinetic apparatus
so as to prevent and/or delay the membrane constriction need
for normal cell division and offspring generation. In summary, a
membrane disruptor such as pentanol, or propofol, compromises
the crucial role of membrane rigidity as the key regulator of
bacterial proliferation. Other studies of essential oil nanoemulsions
have found toxic effects on bacteria (Moghimi et al., 2016; Donsí
et al., 2012; Terjung et al., 2012), although themechanisms involved
are attributed to perturbation and cellular leakage caused by the
hydrophobic components of the nanodroplets (Seow et al., 2014).

As above mentioned, since PFL is much less hydrophobic than
CBD, it can be more easily solubilized in the medium. After the

exogenous molecules are internalized in the membrane, they alter
its correct functioning. The greater their ability to diffuse in the
membrane, the greater the cellular damage inflicted.

Since it is crucial to investigate whether a lower dose could
give similar results in terms of bacterial inhibition, experiments to
find the minimal inhibitory concentration (MIC) were performed.
First, the results show that the most effective carrier was PFL-
OO, compared to PFL-DMSO (see Figures 3C, D). Second, theMIC
sensitivity in both bacteria was 300 µg after 12 h of incubation,
much lower than the concentration used above in the CFU assay
(2.75mg/mL). Let us remark though thatMIC assays are performed
in liquid media Luria-Bertani (LB) Broth and the CFUs on LB agar.

As a crucial probe to confirm that the morphology of bacteria
after the treatment is similar to the one depicted in Figure 2,
AFM images were captured as shown in Figure 4. Let us remark
that we focused only on the effect produced by propofol, which
was the drug that produced the greatest effects on the viability of
the organisms.

In Figures 4A, E, it is observed the typical rod-shaped and
spherical structures of E. coli and S. aureus, whose average sizes
are shown in Figures 4D, H, which is in agreement with previous
reports (Meincken et al., 2005; Yao et al., 2012; Harris and
Theriot, 2016). Likewise, the cells with DMSO did not exhibit great
deformations on their membranes, indicating that DMSO (0.5%
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FIGURE 4

E. coli and S. aureus top images obtained by AFM. (A, E) with no treatment (controls), (B, F) with DMSO at 0.5%, and (C, G) with DMSO/PFL; E. coli
and S. aureus, respectively. The images illustrate the dramatic damages caused in the cell membranes by PFL. Lengths and widths of the cells: for E.
coli (D) and for S. aureus (H). In the case of E. coli, the histograms were obtained from 21 (no treatment), 43 (DMSO), and 27 (PFL) cells. For S. aureus,
the histograms were calculated from 39 (no treatment), 25 (DMSO), and 25 (PFL) cells.

v/v) was not harmful (see Figures 5B, F). It is important to remark
that the growth of the colonies in the experiments reported in
Figure 3 was not assessed, not only because so little concentration
of DMSO is innocuous (Lim et al., 2012; Summer et al., 2022), but
also because the evolution of the optical density for both bacteria,
with and without DMSO, was the same.

The cells with PFL were notoriously different, as observed in
Figures 4C, G. It is obvious that these changes in the membrane
compromise the viability of the cells, explaining the results shown
in Figure 3. Therefore, the mechanistic reason for bacterial death
is simply that this hydrophobic molecule completely affects the
entire membrane, inflicting drastic damages in the regulation of
bacterial proliferation.

It is enthralling that S. aureus bacteria treated with DMSO/PFL
not only lose the spherical morphology but also give rise to
small vesicles not observed in the control sample, probably
due to homeostatic and stressful conditions. Indeed, to combat
stressors and survive, pathogens have established various defensive
mechanisms, and one of them is the production of membrane
vesicles (Mozaheb and Mingeot-Leclercq, 2020).

Figure 5 shows topographic images corresponding to Figure 4.
It is clear the expected shape of both bacteria in A, B, D,
and E (Chang and Liu, 2018; Salinas-Almaguer et al., 2015;
Whitehead et al., 2006). Next, it is shown that PFL produces
height irregularities in E. coli (C) and S. aureus (F). The side
profile along the length of the bacterium, as shown in the
second column, is consistent with such 3D images. The height
(Z) profiles from the organisms are seen in the last column,

which indicates a non-random behavior. Note the dramatic
change in the topography of the cell membrane with PFL
treatment along the cross section, which modifies shape and
height. It is worth mentioning that the very low concentration
found in our MIC experiments could produce damage to
the bacteria membranes in the same way as those shown in
Figure 4, although not necessarily observable with the sensitivity of
our AFM.

As a final test to evaluate bacterial membrane damage caused
by PFL, it was performed fluorescence microscopy measurements,
using a phosphoethanolamine dye (TR-DHPE), which is employed
as an indicator for liquid disordered membranes (Krivic et al.,
2022; Skaug et al., 2011; Baumgart et al., 2007; Veatch and
Keller, 2005). We evaluated the effect in both culture strains
(see Figure 6). Brightfield and fluorescence images are depicted.
It is clear that the dye diffuses in both bacteria only when
they are treated with PFL, although in the case of S. aureus,
the dye penetration is stronger. Even in the absence of PFL
(empty DMSO carrier), the dye diffuses a little. This observation
is consistent with the fact that S. aureus does not have an
additional barrier. Furthermore, this also explains the greater
inhibition produced by PFL for the Gram-positive bacteria (see
Figures 3A, B).

It is important to note before closing that the research we report
here is not the first to explore the promising idea that hydrophobic
drugs can be used as a treatment against bacteria. In fact, growth
inhibition has been reported to occur for S. epidermidis, S.

pyogenes, and S. pneumoniaewith 2.5 mg/mL of the local anesthetic
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FIGURE 5

Contact-mode height AFM images of E. coli and S. aureus. (A, D) Show control cells, (B, E) after treatment with DMSO at 0.5%, and (C, F) after
DMSO/PFL treatment, E. coli, and S. aureus, respectively. The first column corresponds to 3D topographic images, the second corresponds to 2D,
and the third column corresponds to the height and size measurement of the selected cross-sectional line of the image. Black, green, and red lines
are repetitions for three di�erent bacteria. Despite the dispersion, it is clear the e�ect of PFL.

bupivacaine (Rosenberg and Renkonen, 1985). Furthermore, it
has been shown that nanoemulsions can significantly improve
the efficacy of the hydrophobic drugs delivery, as demonstrated

with the carbapenem-resistant K. pneumoniae (Tayeb et al., 2022).
However, to the best of our knowledge, our study is the first
to explore pathogen membrane destabilization upon insertion of
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FIGURE 6

Fluorescence images of the e�ects of propofol on the bacterial membrane of E. coli and S. aureus cultures after 1.5 h treatment. The red
fluorescence indicates that the phospholipid (TR-DHPE) penetrates the cell membranes. Clearly, in both cases, inward di�usion is promoted by the
membrane disruption caused by propofol. Three groups are shown: control, drug carrier (DMSO), and drug (PFL). A 40X objective was used.

hydrophobic drugs. We found that PFL has a remarkable effect in
this regard.

To put our findings in perspective, we claim that PFL, and
to a lesser extent CBD, could have enormous potential in skin
infections where antimicrobial resistance is already a medical
problem. In fact, despite recent advances in wound treatment,
very few topical therapies have proven effective in promoting
wound healing, especially because when recalcitrant bacteria invade
wounds, they create a cytotoxic environment that often promotes
very serious injuries (Kawano et al., 2020). Furthermore, it is worth
mentioning that the method proposed here could be combined
with other strategies to improve effectiveness. For example, since
essential oils have been found to enhance the antimicrobial activity
of drugs and also inhibit the transmission of resistance to other
populations (Bueno, 2016), our nanoemulsions could be used in
combination with antibiotics or antimicrobial peptides (AMP).
Clearly, they could act as adjuvants to increase the uptake of the
antibiotic through the bacterial membrane in topical applications.
The absorption of PFL through the skin, if it occurs, would not be
a problem, since the concentration used here (2.75 mg/mL) is less
than the injectable dose normally administered during anesthesia
(Schüttler and Ihmsen, 2000). In fact, for a person who weighs
approximately 70 kg, the propofol infusion rate is between 2
and 4 mg/mL per minute, for not less than 60 min (time for

rapid surgery). This is equivalent to at least 120 mg. Furthermore,
recent investigations on the anesthetic effects of propofol through
skin absorption found that this drug may have a potential use in
clinical practice, especially in pediatric applications (Zhang et al.,
2021), where the concentrations used are approximately 10mg/mL.
Concomitantly, this transdermal way of administering propofol
gels implies safety for cutaneous/topical applications.

Two limitations of this study are the unexpected poor outcome
of CBD and the absence of evidence on the possible medical
application of our findings. As we expected the more hydrophobic
CBD to give better results but it did not, we would like to provide
a positive electrical charge to the nanodroplets and make the
release of the drug into the bacterial membranes, which have a
negative charge, more efficient. In addition, we would like to test
PFL in model animal infections. Such a strategy could provide
us with important information about medical applications in
humans, to try to contribute to the imminent health emergency that
is approaching.

4 Conclusion

In the present study, hydrophobic nanoemulsions based
on olive oil as potential inhibitors of bacterial growth were
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investigated. We found that propofol has a greater effect than CBD
to annihilate bacteria, owing to its property to alter their membrane
integrity. Beyond their ability of survival, the pathogens cannot
cope with the stress produced by hydrophobic molecules that
diffuse in their membranes compromising the cells to proliferate.
This study could help in the search for new antimicrobial drugs
whose action is neither selective nor on a specific target but directed
non-specifically at cell membranes.
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