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Long-term sheep grazing reduces 
fungal necromass carbon 
contribution to soil organic 
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Grazing has been shown to impact the soil environment and microbial necromass 
carbon (MNC), which in turn regulates soil organic carbon (SOC). However, the 
carbon sequestration potential of fungi and bacteria under different stocking 
rates remains unclear, limiting our understanding of soil carbon sequestration in 
grazing management. In 2004, we established grazing experiments in the desert 
steppe of northern China with four stocking rates. Our findings indicate that 
MNC decreased under moderate and heavy grazing, while light grazing did not 
significantly differ from no grazing. Notably, the reduction in fungal necromass 
carbon, rather than bacterial necromass carbon, was primarily responsible for 
the decreased contribution of MNC to SOC. This difference is attributed to the 
varying effects of sheep grazing on fungal and bacterial community characteristics, 
including richness, diversity, and composition. Thus, to accurately predict carbon 
dynamics in grassland ecosystems, it is essential to consider that the ecological 
impacts and carbon sequestration potential of microbial communities may vary 
with different grazing management practices.
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1 Introduction

Grasslands play an integral role in the Earth’s terrestrial carbon cycle, functioning as significant 
carbon sinks (Bardgett et al., 2021). Grazing, as a grassland management practices, induces small 
changes in soil organic carbon (SOC) that can significantly impact global climate change and food 
security (Bai and Cotrufo, 2022). Historically, a substantial portion of research on grazing has 
focused on developing strategies to enhance economic returns (Zhang M. et al., 2023). However, 
in the context of global climate change and the urgent need for sustainable development (Soergel 
et al., 2021), the scientific management and regulation of grazing intensity to optimize the carbon 
sequestration capacity of grasslands has become a pressing and challenging issue (Hao et al., 2024).

Soil microbial necromass, mainly composed of particulate organic matter from microbial 
cell membrane fragments, is defined by its carbon content, known as microbial necromass 
carbon (MNC) (Sokol et  al., 2022). A growing body of research has demonstrated that 
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microbial necromass is a significant component of soil organic matter 
(Wang et  al., 2021a). Carbon fractions generated by microbial 
metabolism exist in soils in a very stable form, allowing them to 
persist in natural settings for extended periods, often lasting years or 
even decades (Romanowicz et al., 2023). However, it remains unclear 
whether MNC content and its contribution to SOC are altered when 
comparing ungrazed soils with those subjected to long-term grazing 
disturbances and varying stocking rates.

Previous studies have identified three primary factors driving 
MNC content: plant carbon input, soil physicochemical properties, 
and microbial communities (Wang et al., 2023). Plant-derived carbon 
inputs, particularly from root systems, are crucial for stimulating 
microbial activity and the generation of MNC and SOC (Lange et al., 
2015). Plant-derived organic matter undergoes a series of biochemical 
transformations within the soil, including microbial metabolic activity 
and extracellular enzyme-catalyzed breakdown, before it can 
be converted into stable MNC (Angst et al., 2021). Grazing can also 
alter the microbial habitat by influencing soil physicochemical 
properties, such as pH, soil bulk density, and aggregate fraction, which 
in turn affects the accumulation of MNC (Bastida et al., 2021).

The biological characteristic of microbial necromass leads to diverse 
decomposition rates, as fungi and bacteria differ in the structure of their 
cell walls and their chemical composition (Gentry et al., 2015). Changes in 
microbial community composition may influence carbon accumulation 
in microbial necromass, as evidenced by the considerable differences in 
decomposition rates between bacterial and fungal communities (Jiao et al., 
2020). The principal tenets of the ‘microbial carbon pump’ theory, which 
have been corroborated by studies on SOC and MNC (Jiao et al., 2024), 
suggest that substances synthesized by microbial cells are integrated into 
SOC and stabilized through intricate interactions (Niehaus et al., 2019). 
Additionally, Yang et  al. (2022b) found that enhanced microbial 
community abundance can improve microbial activity and carbon 
turnover efficiency, thereby accelerating MNC accumulation. A substantial 
body of evidence suggests that MNC and its components exhibit 
considerable heterogeneity across diverse habitats (Wang et al., 2021a). 
Therefore, understanding the formation of MNC fractions and 
characterizing microbial community structures are essential steps toward 
comprehending MNC accumulation in ecosystems (Wang et al., 2021b).

Based on these findings, this study hypothesizes that grazing could 
reduces MNC content and its contribution to SOC, with this reduction 
increasing as stocking rates (H1). Additionally, it is hypothesized that 
grazing regulates the reduction of fungal and bacterial necromass 
carbon by altering plant carbon inputs, the soil environment, and 
microbial community structure (H2). In carbon cycle models, 
clarifying the relationship between indicators such as MNC and SOC 
is crucial for evaluating the capacity of soil carbon sequestration under 
grazing conditions (Crowther et al., 2015; Buckeridge et al., 2022). 
Understanding these mechanisms will lead to a better understanding 
of carbon sequestration processes under long-term grazing.

2 Materials and methods

2.1 Study site and experimental design

The study site was located in the desert steppe of Siziwang 
Banner, Inner Mongolia, China (41°46′44″N, 111°53′42″E, 

elevation 1,456 m, Supplementary Figure S1). The region 
experiences a semi-arid climate, characterized by an annual mean 
temperature of 3.7°C and an annual mean precipitation of 228 mm 
(Zhang B. et  al., 2023). Most precipitation occurs during the 
summer months, which are marked by high temperatures and low 
humidity, while spring is typically dry with strong winds. The 
dominant vegetation in the area includes Stipa breviflora, 
Cleistogenes songorica, and Artemisia frigida. The soil at the study 
site is classified as sandy loam and is categorized as Kastanozem 
according to the Food and Agriculture Organization classification 
system (Zhao et al., 2024).

In June 2004, a randomized complete block design with three 
replicates was implemented for a sheep grazing management 
experiment across 52.8 hectares (ha) of pasture. The experiment was 
arranged in 12 plots, each measuring 4.4 ha (Supplementary Figure S1). 
Four different stocking rates were tested: 0, 0.15, 0.30, and 0.45 sheep 
hectare ha−1  month−1. The corresponding treatments were: (i) no 
grazing (NG); (ii) light grazing (LG) with 4 sheep per plot; (iii) 
moderate grazing (MG) with 8 sheep per plot; and (iv) heavy grazing 
(HG) with 12 sheep per plot. During the grazing period from June to 
November, sheep were allowed to graze freely from 6:00 to 18:00 and 
were relocated to enclosed pens at night.

2.2 Sampling and measurements

In July 2021, plant species within three 1-m2 quadrats were 
mowed to ground level. For each quadrant, three soil samples were 
taken to assess root biomass at a depth of 0–10 cm. After carefully 
washing the soil from the roots, they were dried in an oven at 65°C for 
48 h. Plant carbon inputs (grams (g) C m−2) from the shoots and roots 
were calculated using Equation 1 as follows (Liu et al., 2021):

 ∆ = ×Lc Mx Cx  (1)

The variable Mx represents the mass of shoots and roots (in grams 
per square meter), while Cx denotes the carbon content (in grams of 
carbon per gram of dry matter) of the shoots and roots. The term ∆Lc 
signifies the carbon input (in grams of carbon per square meter) from 
the shoots and roots. The carbon content of the shoots and roots was 
determined using a C/N elemental analyzer (Multi-N/C 2100, 
Analytik Jena AG, Jena, Germany).

After the plant samples were collected, soil samples were taken 
from the 0–10 cm layer within each quadrat. A 7.5 cm diameter 
soil corer was used to collect samples diagonally between the 
corners of each quadrant. Five soil cores were taken from each 
quadrat and combined into a single sample. Additionally, a 100cm3 
stainless steel ring was used to obtain soil samples for calculating 
soil bulk density and capillary water capacity. The 36 soil core 
samples were stored on ice for 24 h before being transported to the 
laboratory, where they were sieved through a 2-mm mesh to 
remove stones and root fragments. A 100-grams portion of each 
soil sample was stored at −80°C for DNA extraction. The 
remaining soil samples were air-dried and subsequently analyzed 
for their physicochemical properties.
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2.3 Soil physicochemical properties

Soil pH was measured using a pH electrode (Analytik Jena, 
Jena, Germany) at a fresh soil-to-water ratio of 1:2.5. The air-dried 
soils samples were then analyzed for total carbon content using an 
elemental analyzer (Shimadzu Corp., Kyoto, Japan), following 
grinding in a ball mill (MAT-253, Thermo Fisher Scientific, USA). 
Soil organic carbon was calculated by subtracting inorganic 
carbon from total carbon, with inorganic carbon being determined 
through volumetric analysis using the hydrochloric acid (HCl) 
reaction, as previously described by Zhang et  al. (2020). The 
capillary water holding capacity was determined following the 
methods described by Zhang et  al. (2006), and outlined in 
Equation 2 and subsequent steps. Initially, water was applied to 
the soil within a stainless steel ring for 2 h. The samples were then 
weighed (m1) after being left on dry sand for 48 h to allow 
complete drainage of water. Finally, the soil was removed from the 
ring, placed in an aluminum box, and dried to a constant 
weight (m0).

 ( ) 1 0 0Capillary water holding capacity % (m – m ) / m 100= ×  (2)

To collect the soil aggregates in situ, a pit was excavated in each 
quadrant to a depth of 0–10 cm. The soil samples were placed in 
aluminum boxes and allowed to air dry in the laboratory. The wet-sieving 
procedure outlined by Elliott (1986) was then used to separate the soil 
samples into three aggregate-size fractions: large aggregates (>0.25 mm), 
small aggregates (0.053–0.25 mm), and microaggregates (<0.053 mm).

2.4 Microbial biomass carbon and MNC

Microbial biomass carbon was determined using a fumigation 
extraction method with chloroform (Oren et  al., 2018). After 
fumigation, soils (fumigated and non-fumigated) were extracted with 
0.5 M K2SO4, and the dissolved organic carbon (DOC) concentrations 
were measured using a C/N analyzer (Analytik Jena, Jena, Germany). 
The difference in DOC between the fumigated and non-fumigated 
soils was used to calculate microbial biomass carbon, applying a 
conversion coefficient of 0.45.

To determine MNC, the soil’s amino sugar carbon content was 
analyzed (Zhang and Amelung, 1996). Amino sugars, including 
glucosamine (GluN), galactosamine (GalN), mannosamine (ManN), 
and muramic acid (MurA), were identified and quantified following the 
methodology of Zhang and Amelung (1996). Soil samples were 
hydrolyzed with 10 milliliters of 6 M HCl for 8 h, after which the solution 
was freeze-dried. Methanol was added to the freeze-dried supernatants, 
and the residues were centrifuged to extract the amino sugars. These 
sugars were than reacted with acetic anhydride, 4-(dimethylamino) 
pyridine, and hydroxylamine hydrochloride to form derivatives. The 
resulting amino sugars derivatives were separated on a regular 
polysiloxane DB-5MS column using an Agilent 6,890 gas chromatograph 
(Agilent Technologies, Wilmington, DE, USA). The derivatives were 
identified by comparing their retention times to internal standards 
containing GluN, GalN, ManN, and MurA. Fungal necromass carbon 
was calculated using Equation 3, and bacterial necromass carbon was 
calculated using Equation 4, as follows (Li Y. Z. et al., 2024).

 

MurAFungal necromass carbom 2 179.17 9
179.17 251.23
GluN = − × × × 

   
(3)

 Bacterial necromass carbom MurA 45= ×  (4)

The molecular weights of GluN and MurA are 179.17 and 251.23, 
respectively. Their conversion coefficients to fungal necromass carbon 
and bacterial necromass carbon are 9 and 45, respectively. The sum of 
fungal and bacterial necromass carbon represents the total microbial 
necromass carbon (Liu et al., 2024).

2.5 Soil extracellular enzyme assays

The hydrolytic enzymes α-1,4-glucosidase, β-1,4-glucosidase, and 
β-1,4-N-acetylglucosaminidase present in fresh soil samples were 
evaluated fluorometrically using methylumbelliferone-labeled 
substrates (Mori et al., 2021). Briefly, 1 g of dry soil was combined with 
50 mL of 50-mM acetate buffer (pH 5.0) in a 100-mL centrifuge tube 
using a Polytron homogenizer. The mixture was then transferred to a 
round, wide-mouthed beaker. The centrifuge tube was rinsed, and an 
additional 50 mL of acetate buffer was added to the beaker containing 
the soil suspension. Next, the soil suspension, along with the buffer, 
10-μM references standards, and 200-μM substrates, was pipetted into 
the wells of a black 96-well microplate. Fluorescence was measured 
using a microplate fluorometer equipped with 365-nanometer (nm) 
excitation and 450-nm emission filters.

2.6 DNA extraction and amplicon 
generation

DNA was extracted from each of the 226 soil samples using the Fast 
DNA® SPIN Kit for Soil (MP Biomedicals). The concentration and 
purity of the extracted DNA were assessed using a NanoDrop One 
spectrophotometer (Thermo Fisher Scientific, Massachusetts, USA). 
Specific primer sets were used to amplify the 16S rRNA and its genes in 
two distinct regions: bacterial 16S (V3-V4, primers 338F, and 806R) and 
fungal 18S (ITS2, primers ITS5-1737F and ITS2-2043R), with a 12-base 
pair (bp) barcode incorporated for identification (Gong et al., 2021). 
These primers were synthesized according to the specifications provided 
by Invitrogen (Invitrogen, Carlsbad, CA, USA). The PCR reaction 
mixture contained 50 microliters of 2x Premix Taq (Guangdong 
Magigene Biotechnology Co. Ltd., Guangzhou, China), 1 μL of each 
primer (forward and reverse, 10 μM), and 3 μL of DNA template (20 ng/
μL). The amplification process was carried out as follows: an initial 
denaturation step at 94°C for 5 min, followed by 30 cycles of 30 s at 94°C 
for denaturation, 30 s for annealing, 30 s for extension, and a final 
elongation step of 30 s at 72°C. The Bio-Rad S1000 thermocycler 
(Bio-Rad Laboratory, CA, USA) was used for the PCR process.

2.7 High-throughput sequencing

The NEBNext® UltraTM II DNA Library Prep Kit for Illumina® 
(New England Biolabs, MA, USA) was used to construct sequencing 
libraries, with library quality assessed using a Qubit@ 2.0 Fluorometer 
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(Thermo Fisher Scientific, MA, USA.) Amplicon libries were 
sequenced on an Illumina Nova6000 platform (Guangdong Magigene 
Biotechnology Co. Ltd., Guangzhou, China) using 250 bp paired-end 
reads. To ensure high-quality raw data, a sliding window approach 
(-W 4 -M 20) was applied, and Fastp (version 0.14.1)1 was selected for 
data filtering. Primers were removed from the raw reads using 
cutadapt,2 which eliminates primer information from both ends of the 
sequences, resulting in clean paired-end reads. The UCHIME 
algorithm was then used to detect and remove chimeric sequences, 
producing the final set of clean reads. For taxonomic classification, soil 
bacteria amplicon sequences were compared against the Silva 
database,3 while fungal reads were aligned with the Unite database.4 
Sequences with >97% similarity were grouped into the same 
operational taxonomic unit (OTU) using UPARSE (version 7.0.1001).5 
OTUs with fewer than three reads, which could result from sequencing 
artifacts, were excluded from further analysis. The representative 
sequence for each OTU was then identified. To determine the 
taxonomic classification of bacterial and fungal communities, the Silva 
and Unite databases were analyzed using Mothur v. 1.48.0 and the 
National Center for Biotechnology Information’s Basic Local 
Alignment Search Tool (NCBI BLAST) algorithms. OTU abundance 
data were normalized to the sample with the fewest sequences, 
enabling accurate determination of the bacterial and fungal 
community compositions across samples.

2.8 Statistical analysis and modeling

A mixed-effects model was applied using the lme4 package to 
assess the influence of different stocking rates on MNC, soil 
environments, plant carbon inputs, and microbial community indices. 
In this model, stocking rates were treated as fixed effects, while blocks 
were treated as random effects. Multiple comparisons were performed 
using an LSD test, with a significance threshold set at p <  0.05. 
Regression analysis was utilized to evaluate the relationships between 
plant carbon input, soil physicochemical properties, MNC fractions, 
and microbial community indices. All statistical analyses were 
executed in the R software environment, version 4.1.2.6

The study aimed to determine the relative impacts of plant carbon 
input, microbial community structure, microbial biomass carbon, 
and soil environmental factors on MNC under varying stocking rates. 
This analysis was conducted using structural equation modeling 
(SEM), with the initial model illustrated in Supplementary Figure S2. 
Before performing SEM, data processing was undertaken as follows: 
a multivariate function index was constructed for each group using 
principal component analysis (PCA), which included tightly 
correlated variables representing plant carbon input, soil 
environment, and microbial community structure. Only factors 
significantly correlated with soil organic carbon (SOC) were retained 
in the PCA for each group. In the subsequent SEM analysis, the first 

1 https://github.com/OpenGene/fastp

2 https://github.com/marcelm/cutadapt/

3 http://www.arb-silva.de/

4 https://unite.ut.ee/

5 http://www.drive5.com/uparse/

6 https://www.r-project.org/

principal component was integrated as a new variable. Model fit was 
evaluated using Chi-square tests, p-values, comparative fit indices, 
AIC values, and the root mean square error of approximation. 
Structural equation modeling analysis was carried out using the 
AMOS software, version 2.0 (AMOS Development Corporation, 
Chicago, IL, USA).

3 Results

3.1 Effect of different stocking rates on 
fungal and bacterial necromass carbon and 
soil organic carbon

After 17 years of grazing, SOC levels were significantly lower 
under both moderate and heavy grazing compared to no grazing. 
Specifically, SOC was approximately 4% lower in moderate grazing 
(15.4 g/kg) and heavy grazing (15.3 g/kg) compared to no grazing 
(16.1 g/kg), while light grazing (16.4 g/kg) showed no significant 
difference from no grazing (Figure 1). Similarly, microbial necromass 
carbon (MNC), which includes fungal necromass carbon and bacterial 
necromass carbon, exhibited a comparable trend. MNC ranged from 
5.89 to 6.96 g/kg, with fungal necromass carbon ranging from 4.02 to 
4.74 g/kg and bacterial necromass carbon from 1.87 to 2.26 g/kg. All 
these indicators decreased significantly with increasing stocking rates 
(p < 0.05, Figure 1).

The contributions of MNC to SOC was notably affected by grazing 
intensity (Figure 2a). The proportion of MNC contributing to SOC 
decreased with higher stocking rates. For no grazing, MNC 
contributed 43.2% to SOC, which decreased to 41.6% under light 
grazing, 41.2% under moderate grazing, and 38.6% under heavy 
grazing (p < 0.05, Figure 2a). The pattern for fungal necromass carbon 
contributions to SOC and total MNC was similar, showing a 
significant decrease under higher stocking rates (p < 0.05, Figure 2b). 
Additionally, the contribution of bacterial necromass carbon to SOC 
was significantly reduced under heavy grazing conditions (p < 0.05, 
Figure 2c).

3.2 Response of fungal and bacterial 
necromass carbon to abiotic and biotic 
factors

A significant increase in MNC was observed with increasing plant 
carbon inputs (p < 0.05, Figure 3; Supplementary Figure S3). Both 
fungal and bacterial necromass carbon showed positive correlations 
with plant carbon input, with fungal necromass carbon (R2 = 0.54, 
p < 0.05) and bacterial necromass carbon (R2 = 0.31, p < 0.05) increasing 
as plant carbon inputs increased (Figure 3a; Supplementary Figure S3). 
The impacts of different sheep stocking rates on soil physicochemical 
properties were also significant (p < 0.01, Supplementary Table S1; 
Supplementary Figure S3). Fungal necromass carbon did not show a 
significant correlation with soil pH (p > 0.05, Figure 3b). However, 
bacterial necromass carbon decreased significantly with increasing 
soil pH (R2 = 0.11, p < 0.05, Figure  3b). Both fungal and bacterial 
necromass carbon were significantly positively correlated with soil 
capillary water holding capacity (R2 = 0.25 and 0.23, p < 0.05, 
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FIGURE 1

Effects of different stocking rates on soil organic carbon (SOC) and microbial necromass carbon content. Each panel represents (a) SOC content, (b) 
total microbial necromass carbon content, (c) fungal necromass carbon content, and (d) bacterial necromass carbon content at varying stocking rates. 
Different lowercase letters represent significant differences among grazing treatments (p  <  0.05). The box boundaries represent the 25th and 75th 
percentiles, while the black lines indicate the means (averages).
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FIGURE 2

Ratios and contents of microbial necromass carbon (MNC) and its components at different stocking rates. Each panel represents the ratios of (a) 
microbial necromass carbon to SOC, (b) fungal necromass carbon to SOC, and (c) bacterial necromass carbon to SOC at different stocking rates. 
Different lowercase letters represent significant differences among grazing treatments (p  <  0.05). The box boundaries represent the 25th and 75th 
percentiles, while the black lines indicate the means (averages).
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respectively, Figure 3c). Conversely, the MNC decreased significantly 
with increasing soil bulk density (R2 = 0.15, p < 0.05, Figure 3d).

Soil microbial factors, including community richness, diversity, 
and composition, decreased significantly with increasing stocking rate 
(p < 0.05, Supplementary Table S1). There was a significant positive 
correlation between fungal richness, bacterial diversity, and MNC 
(p <  0.01, Figure  4). Additionally, a strong correlation was found 
between MNC and certain dominant bacteria 
(Supplementary Figure S3). Specifically, MNC was negatively 
correlated with Actinobacteria and positively correlated with 
Proteobacteria (p < 0.05, Supplementary Figure S3).

3.3 Mechanisms governing fungal and 
bacterial necromass carbon

SEM models revealed that the combined effects of plant carbon 
input, soil environment, and soil microbes significantly influenced 
fungal and bacterial necromass carbon under long-term grazing in the 
desert steppe (Figure 5; Supplementary Table S2). As stocking rates 
increased, plant carbon input decreased, while soil environmental 
factors such as, capillary water holding capacity and large aggregate 
fractions also declined. Concurrently, bulk density and microaggregate 
fractions increased. These changes directly led to a reduction in the 
richness of fungal and microbial biomass carbon, which in turn, 
caused a decrease in fungal necromass carbon (R2 = 0.83, Figure 5). For 
bacterial necromass carbon, increased stocking rates were associated 

with lower soil pH and higher small aggregate fractions. These changes 
reduced the diversity and composition of bacterial and microbial 
biomass carbon, resulting in a decrease in bacterial necromass carbon 
(R2 = 0.58, Figure  5). Interestingly, microbial factors had a strong 
positive influence on necromass carbon, with path coefficients of 0.85 
for fungal necromass carbon and 0.76 for bacterial necromass carbon, 
indicating their significant regulatory role (Figure 5).

4 Discussion

4.1 Grazing reduces MNC and its 
contribution to SOC

Our findings align with previous studies and conceptual models 
that have demonstrated grazing’s risk of reducing microbial necromass 
carbon (MNC) and soil organic carbon (SOC) (Wang et al., 2021a; Ni 
et al., 2021; Buckeridge et al., 2022). The study observed a significant 
decrease in the MNC to SOC ratio, indicating that grazing led to a 
faster reduction in MNC compared to SOC. Specifically, sheep grazing 
considerably reduces MNC’s contribution to SOC, with this effect 
becoming more pronounced at higher stocking rates. Despite a 4% 
reduction in SOC content over 17 years of intensive grazing, the desert 
steppe’s low soil organic matter content means that short-term 
disturbances have minimal impact on SOC levels (Zhuo et al., 2022). 
Additionally, the presence of sheep dung and undecomposed plant 
residues from grazing had minimal effect on SOC variation (Zhu 
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et al., 2020). The study indicates a potential 15% reduction in MNC 
due to grazing. This decline in MNC may be attributed to reduced 
microbial carbon pumping efficiency caused by changes in plant 
carbon supply, soil physicochemical characteristics, and microbial 
populations following grazing (Qian et al., 2023).

Root deposition carbon is represents the primary source of 
organic carbon in grassland soils. The sharp decline in plant carbon 
input due to increased grazing intensity significantly reduces microbial 
residue production efficiency (Shen et al., 2020). Grazing can also 
decrease microbial turnover and activity, leading to a delayed 
accumulation of MNC (Bai and Cotrufo, 2022). According to the 
microbial carbon pump theory, microbial enzymes modify some of 
the newly added organic matter in the soil (Yang et al., 2024). Our 
investigation found a reduction in the activities of three carbon-
cycling-related enzymes as stocking rates increased 
(Supplementary Table S1). These findings are consistent with Yang 
et  al. (2022a), who observed a positive correlation between plant 
carbon input and soil enzyme activity (Supplementary Figure S3). 
Therefore, grazing supports our first hypothesis by reducing plant 
carbon input, which subsequently lowers enzyme activity and 
potentially limits MNC accumulation (Roy and Bagchi, 2022).

It is reasonable to conclude that grazing can significantly alter soil 
physicochemical characteristics. Trampling increases bulk density and 
compaction, leading to reduced habitat suitability for microbes due to 
limited oxygen and water availability (Pan et  al., 2021). Higher 
stocking rates further degrade the microbial survival environment, 
resulting in decreased efficiency of microbial necromass accumulation 
(Han et  al., 2024). This degradation negatively impacts the 
accumulation of new microbial biomass carbon (Mason-Jones et al., 
2022). Furthermore, increased stocking rates lead to fragmentation of 
soil aggregates, releasing more carbon into the soil for decomposition 
(Mustafa et  al., 2020). Consequently, the production of microbial 
necromass is constrained by the reduction in microbially-derived 
carbon (Hou et al., 2024). Our preliminary hypothesis is supported by 
these findings, as the process of microbial necromass reduction is 
exacerbated with higher stocking rates.

Our research shows that grazing has led to significant changes in 
the richness, diversity, and composition of bacterial and fungal 
communities, which are closely linked to overall MNC content. This 
effect is attributed to the reduction in root carbon deposition caused 
by grazing, which decreases microbial abundance and their resilience 
to environmental changes (Zeng et al., 2024). As a result, there is a 
reduced production of microbial residues (Yang et al., 2020). Grazing 
has been found to simplify microbial community structure, negatively 
impacting microbial turnover and biomass accumulation, as noted by 
Wilson et al. (2018). Furthermore, Wang et al. (2021a) highlighted 
that soil microbial diversity is a crucial indicator of soil organic carbon 
(SOC) formation in a global context. Consequently, our findings align 
with previous research, reinforcing the positive correlation between 
MNC and microbial richness.

4.2 Grazing affects SOC mainly through 
fungal necromass carbon rather than 
bacterial necromass carbon

Previous literature, including field studies and meta-analyses, has 
shown that in global grassland ecosystems, MNC tends to increase 
alongside SOC content (Beillouin et al., 2023). Our current study 

revealed that fungal necromass carbon exhibited variation in response 
to stocking rates, contributing a greater proportion to SOC compared 
to bacterial necromass carbon. Two potential explanations are 
proposed for this phenomenon. First, fungal organisms contribute 
more to SOC than bacterial organisms (27.8% vs. 13.3%, respectively). 
Second, fungal necromass is more sensitive to grazing disturbances 
compared to bacterial necromass. Our findings indicate that while 
bacterial necromass carbon was significantly reduced under heavy 
grazing conditions, fungal necromass carbon contributed less to SOC 
across all stocking rates. This outcome may be  attributed to the 
inherent differences between bacteria and fungi: fungal species 
richness is positively correlated with grazing, whereas bacterial 
richness and MNC are negatively affected. Grazing impacts fungi 
more severely because they function predominantly in the mycelial 
state, whereas bacteria exist primarily as single cells (Lekberg et al., 
2021). According to Yang et al. (2022b), fungi play a crucial role in 
breaking down complex organic matter in soils and produce 
carbohydrate-active hydrolases and oxidases that accelerate the 
turnover of necromass and live microbial biomass (Yan et al., 2020). 
Thus, high stocking rates in grazing management can significantly 
disrupt microbial community structure and functions, ultimately 
impairing carbon sequestration, as evidenced by the decreased 
contributions of both bacterial and fungal necromass carbon to SOC 
(Savian et al., 2018).

Sheep excreta and trampling have been shown to significantly 
alter the soil environment, impacting factors such as soil capillary 
water holding capacity, bulk density, and pH, as well as the structure 
of grassland soils, including aggregate fractions (Mosier et al., 2021; 
Reinhart et  al., 2021). A study in semiarid grasslands found that 
elevated soil moisture can enhance the accumulation of microbial 
residues (Li Y. et al., 2024). Additionally, Ilek et al. (2015) identified a 
strong correlation between soil capillary water holding capacity and 
organic matter. Similarly, a robust positive correlation was observed 
between fungal and bacterial necromass carbon and soil capillary 
water retention capacity (Bickel and Or, 2020). In arid and semi-arid 
grasslands, soil water is the primary environmental factor limiting soil 
microbial activity, especially during the growth season (Huang et al., 
2019). In non-grazed and lightly grazed soils with adequate water 
holding capacity, the energy and nutrients from organic matter 
decomposition support microbial growth and reproduction, 
promoting the accumulation of microbial necromass (Hayer et al., 
2022). Conversely, moderate and heavy grazing leads to increased soil 
bulk density and reduced water-holding capacity due to trampling, 
resulting in poorer soil conditions and reduced microbial necromass 
contribution to SOC (Zhao et al., 2024). Our study revealed a negative 
correlation between soil pH and bacterial necromass carbon, with 
higher pH levels observed in soils under increased stocking rates. 
Previous research has shown that soil pH is a key factor influencing 
the structure of soil microbial communities, particularly bacterial 
(Kang et  al., 2021). Our findings also demonstrate a significant 
correlation between the relative abundance of Proteobacteria, the 
dominant soil bacteria, and soil pH, MNC, and SOC 
(Supplementary Figure S3).

The long-term accumulation of SOC from microbial activity is 
physically protected by soil microaggregate fractions (Bronick and Lal, 
2005; Ma et al., 2018; Wang et al., 2021a). Our research found that 
while soil microaggregates increased with higher stocking rates, there 
was a negative correlation between microaggregate fractions and 
MNC (Supplementary Figure S3). In contrast, MNC was positively 
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correlated with both large and small soil aggregates. This can 
be attributed to the increased soil bulk density and the protective role 
of microaggregates in preserving organic matter due to heavy grazing 
and intense livestock trampling (Saini, 1966; Stavi et al., 2008; Wu 
et al., 2012). Heavy grazing and trampling constrain water availability 
and fine root growth (Schmitz et al., 2018), which in turn diminishes 
microbial activity (Buckeridge et al., 2022; Ni et al., 2020). Previous 
studies suggest that improved grazing management practices, such as 
rotational grazing and reduced stocking rates, can enhance microbial 
necromass accumulation and carbon sequestration in temperate 
grasslands (Buckeridge et al., 2020; Hou et al., 2024; Lauer et al., 2011; 
Wang et al., 2024). Therefore, effective grazing management is crucial 
when evaluating soil carbon sequestration and running model 
simulations. The evidence underscores that implementing sound 
grazing practices can promote the accumulation of microbial 
necromass and SOC in pasture ecosystems (Peng et  al., 2024). 
Understanding the complex process of soil organic carbon 
accumulation requires considering a network of interacting 
mechanisms (Lehmann et al., 2020). Empirical evidence from long-
term disturbances provides valuable insights into these 
underlying processes.

5 Conclusion

Based on our long-term grazing experiment, we found that an 
appropriate stocking rate (light grazing: 0.15 sheep ha−1 month−1) 
effectively maintained soil organic carbon (SOC). Our results 
indicated that fungal necromass carbon (C) had a greater impact on 
SOC than bacterial necromass C, due to differing responses of 
microbial communities to sheep grazing. Increased grazing intensity 
led to reduced plant carbon input, deterioration of soil conditions, and 
disruption of soil structure, all of which were significant factors in the 
decreased formation of microbial residues and their contribution to 
organic carbon. In conclusion, our research highlights the importance 
of considering the ecological impacts and potential for carbon 
sequestration of microbial communities when predicting carbon 
dynamics in grassland ecosystems. Different grazing regimes can 
significantly alter these dynamics, emphasizing the need for tailored 
management strategies to optimize carbon sequestration.
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