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Editorial on the Research Topic

Spiroplasma, Mycoplasma, Phytoplasma, and other genome-reduced

and wall-less mollicutes: their genetics, genomics, mechanics,

interactions and symbiosis with insects, other animals and plants

Genome-reduced, wall-less, and fastidious bacteria of the genera Spiroplasma,

Mycoplasma, “Candidatus Phytoplasma” and allies belonging to the class Mollicutes, are

known for a number of unique microbiological features, which have prompted researchers

to investigate their basic, applied, and medical aspects (Brown et al., 2018). They are

mostly parasitic or symbiotic to a variety of animals or plants, living on or within the

eukaryotic cells. Spiroplasmas, recognized by their characteristic helical shapes and active

twitching motility, are associated with diverse arthropods and plants (Gasparich et al.,

2020), and have been developed as models for the study of facultative symbionts (Anbutsu

and Fukatsu, 2011; Lo et al., 2016). Some strains of Spiroplasma poulsonii and Spiroplasma

ixodetis cause a remarkable reproductive phenotype, called male-killing, of their insect

hosts (Hurst and Frost, 2015). In contrast, some other insect-associated spiroplasmas

protect their hosts from natural enemies, including parasitoid wasps, nematodes, and

pathogenic fungi (Ballinger and Perlman, 2019). Spiroplasma citri and Spiroplasma kunkelii

are notorious as devastating pathogens of citrus and maize, respectively (Gasparich et al.,

2020). Mycoplasmas are not only medically important as human or animal pathogens

like Mycoplasma pneumoniae (Waites and Talkington, 2004) and Mycoplasma mycoides

(Teodoro et al., 2020), but also intensively investigated as minimal-genome bacterial
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models (Yus et al., 2009). Microbial genome synthesis and

engineering technologies have been developed mainly on M.

mycoides and Mycoplasma capricolum (Venter et al., 2022). Some

mycoplasmas are known for their capability of unique gliding

motility (Miyata et al., 2020). Phytoplasmas are obligatorily

parasitic to plant phloem tissues and vectored by plant-sucking

insects, often causing spectacular plant morphological changes like

phyllody, virescence, witches’ bloom, etc. (Hogenhout et al., 2008;

Bertaccini et al., 2022).

While the conventional studies have revealed fascinating

aspects of this bizarre bacterial group, the whole picture of their

diversity and versatility has long been elusive mainly due to their

reluctance to axenic cultivation. However, owing to the recent

development and availability of high-throughput DNA sequencing

technologies, our knowledge on the diversity of such fastidious

microbes in a variety of environments has been growing rapidly.

In this context, the Research Topic “Spiroplasma, Mycoplasma,

Phytoplasma, and other genome-reduced and wall-less mollicutes:

their genetics, genomics, mechanics, interactions and symbiosis

with insects, other animals and plants” is aimed to provide

an opportunity to compile the new information emerging in

this research field. In total, 10 articles and one mini review

were published, of which five, three, and three articles are

on Spiroplasma, Mycoplasma, Phytoplasma, respectively, thereby

covering this research area in a balanced manner.

As for Spiroplasma, unique articles are contributed to this

Research Topic. Mizutani, Omori et al. reported successful cloning

of the whole 1.12 Mbp genome of Spiroplasma chrysopicola, which

was originally isolated from a deer fly Chrysops sp., into the

yeast Saccharomyces cerevisiae. Now the S. chrysopicola genome

is retained in yeast cells, can be genetically engineered using

sophisticated genetic tools available for S. cerevisiae, and can be

distributed to anybody and utilized for further research. While

a series of elaborate synthetic biological technologies have been

developed using Mycoplasma spp. (Venter et al., 2022), this

study serves as an initial step toward the synthetic biological

approaches to Spiroplasma spp. Following two articles reported the

characterization of newly obtained genomes of S. ixodetis strains.

Arai et al. analyzed the genome sequence of a male-killing S.

ixodetis symbiont ofHomona magnanima. The genome harbored a

number of putative virulence-associated genes like ankyrin domain

containing genes, while no homologous sequence of spaid, a male-

killing gene of S. poulsonii in Drosophila (Harumoto and Lemaitre,

2018), was identified. This implicates the diverged mechanism of

male killing evolved in distinct Spiroplasma symbionts. The authors

also showed bacterial tropism toward host somatic tissues and

successful proliferation in various inset cell lines, which conform

to the fact that S. ixodetis strains have a broad host range.

Moore and Ballinger presented the complete genome sequence

of a defensive S. ixodetis symbiont of D. atripex and revealed a

set of toxins and virulence genes containing ribosome-inactivating

protein toxin (RIP), OTU-like cysteine protease, ankyrin, and

other bacterial toxin domains. They also performed a genus-wide

comparative analysis of toxin/virulence-related domains between

vertically transmitted and non-vertically transmitted strains, then

identified a conserved core of toxin domains that is specific to

the vertically transmitted strains. Kakizawa et al. highlighted the

diversity of Spiroplasma as a group of facultative symbiotic bacteria

of insects. The authors surveyed diverse stinkbugs representing

13 families, 69 genera, 97 species and 468 individuals, and

detected Spiroplasma infection from four families (30.8%), seven

genera (10.1%), 11 species (11.3%) and 21 individuals (4.5%).

Phylogenetically, the stinkbug-associated Spiroplasma symbionts

were placed in three distinct clades in the Spiroplasmataceae,

confirming multiple and dynamic evolutionary trajectories of the

stinkbug-Spiroplasma associations.

As for Mycoplasma, Mizutani, Sasajima et al. contributed a

sophisticated biophysical work on the bacterial unique motility.

Mycoplasma pneumoniae, known as the causative agent of

mycoplasma pneumonia, binds to sialylated oligosaccharides and

glides on host cell surface, which is essential for initiating the

infection process (Miyata and Hamaguchi, 2016). The authors

measured the stall force and the gliding speed of each M.

pneumoniae cell carrying a bead that was manipulatable using

optical tweezers. From the measurements of the faster strain

M129 and the slower strain FH, detailed parameters of the

gliding motility were measured. These results provide fundamental

parameters underlying the bacterial gliding movement. Ras et al.

conducted comparative genomic survey of Mycoplasma spp.

for biosynthesis pathway genes of coenzyme A. The authors

showed that most Mycoplasma genomes retain the genetic

capacity to synthesize coenzyme A, but there was a differentiated

prevalence of these genes across species. The final enzyme

gene in the biosynthesis pathway encoding dephospho-coenzyme

A kinase was found to be the most common among the

studied Mycoplasma genomes. Yang et al. contributed a mini

review about a comprehensive summary of lncRNAs and the

responses of host cells associated with M. pneumoniae infections.

With increasing literature on this topic, the review provided

insights into the protective roles of lncRNAs against various

forms of M. pneumoniae infections. They also discussed the

involvement of lncRNAs in cardiovascular diseases, neurological

disorders, cancers, and diabetes. Despite identifying key lncRNAs

linked to M. pneumoniae pneumonia, their biological roles and

mechanisms remain largely unknown. The authors emphasize

the importance of understanding the molecular mechanisms of

these lncRNAs.

As for Phytoplasma, two research articles provided

technological advancements to facilitate the whole genome

sequencing of these uncultivated pathogens from the infected

plant samples. Tan et al. described an immunoprecipitation-

based method for enriching the phytoplasma cells prior to

DNA extraction. Zhang et al. described another enrichment

method for phytoplasma cells based on serial filtration, as well

as removal of host DNA using DNase I prior to the lysis of

bacterial cells. By combining short read sequencing based on

the Illumina platform and long read sequencing based on the

Oxford Nanopore Technologies platform, both methods are

effective for obtaining complete assemblies of these repeat-

rich and compositionally biased genomes from metagenomic

sequencing. It is worth noting that another enrichment protocol

using iodixanol density gradients was developed recently and

also shown to be effective (Jardim et al., 2022). In the third

phytoplasma research article in this Research Topic, Huang et al.
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reported the first complete genome sequence of “Candidatus

Phytoplasma luffae” and found that a pair of 75 kb repeats and

at least 13 potential mobile units (PMUs) account for ∼25%

of this 769 kb chromosome. PMUs are phytoplasma-specific

mobile genetic elements that often associate with effector genes

(Bai et al., 2006, 2009) and likely contribute to the horizontal

transfer of these virulence factors (Chung et al., 2013). In this new

work, a genus-wide analysis of PMUs established a classification

scheme of these mobile elements and identified strong correlations

between PMU abundance and genome size at both within- and

between-species levels.

In conclusion, the Research Topic presents a valuable

overview of the current research coverage on Spiroplasma,

Mycoplasma, and Phytoplasma, which encompasses such

diverse areas as microbial diversity, genomics, reproductive

manipulation, defense, toxins, biophysics and synthetic biology.

These contributions highlight a variety of interesting biological

phenomena observed with this wall-less, fastidious, and host-

associated bacterial group. We hope that this Research Topic

would provide some insight into what directions are promising in

our future studies.
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