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The NOD-like receptor family pyrin domain-containing 3 (NLRP3) is a key pattern 
recognition receptor in the innate immune system. Its overactivation leads to 
the production of pro-inflammatory cytokines, such as IL-1β and IL-18, which 
contribute to the development and progression of various diseases. In recent years, 
evidence has shown that gut microbiota plays an important role in regulating the 
activation of NLRP3 inflammasome. Variations in the function and composition of 
gut microbiota can directly or indirectly influence NLRP3 inflammasome activation 
by influencing bacterial components and gut microbiota metabolites. Additionally, 
exercise has been shown to effectively reduce NLRP3 inflammasome overactivation 
while promoting beneficial changes in gut microbiota. This suggests that gut 
microbiota may play a key role in mediating the effects of exercise on NLRP3 
inflammasome regulation. This review explores the impact of exercise on gut 
microbiota and NLRP3 inflammasome activation, and examines the mechanisms 
through which gut microbiota mediates the anti-inflammatory effects of exercise, 
providing new avenues for research.
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1 Introduction

The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) 
inflammasome is a key component of the immune system that triggers inflammation and cell 
death by detecting harmful signals from pathogens or damaged cells, known as ‘danger signals.’ 
These signals include molecules released from infected or injured tissues, and they play a 
crucial role in the body’s defense against infection and injury (Broz and Dixit, 2016). A 
balanced inflammatory response is essential for maintaining host defense function and 
internal environment homeostasis. However, excessive inflammation from abnormal NLRP3 
inflammasome activation is closely associated with the development of inflammatory diseases 
such as atherosclerosis (AS), type 2 diabetes mellitus (T2DM), inflammatory bowel disease 
(IBD), and neurodegenerative diseases (Toldo et al., 2022; Sharma and Kanneganti, 2021; Yao 
J. et al., 2023). Therefore, understanding the mechanisms underlying NLRP3 inflammasome 
activation and developing targeted therapeutic strategies based on these mechanisms are of 
significant importance.

The gut microbiota, a large community of microorganisms in the human intestines, 
participates in food digestion and absorption, and acts as endogenous signaling molecules 
that regulate the immune system, with researchers considering it a new complex ‘organ’ of 
the human body (Lavelle and Sokol, 2020). Under normal circumstances, the gut microbiota 
and the host coexist without causing harmful immune responses. However, when the gut 
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microbiota is disrupted and gut barrier function is impaired, 
bacterial components and metabolites circulate throughout the 
body with the bloodstream, inducing NLRP3 inflammasome 
activation. This leads to chronic inflammatory responses and 
cascade effects, thereby contributing to the development and 
progression of multiple diseases (Xing et al., 2023; Pellegrini et al., 
2020; Larabi et al., 2020).

Exercise has emerged as a potent intervention that promotes 
overall health and mitigates the risk of chronic diseases (Khemka 
et  al., 2023). Increasing evidence suggests that exercise exerts 
beneficial effects on gut microbiota composition and function, 
promoting a balanced microbial environment that enhances immune 
regulation (Wegierska et al., 2022). Additionally, exercise has been 
demonstrated to inhibit NLRP3 inflammasome overactivation 
induced by various pathological conditions including metabolic 
disorders, aging, and hypoxia (Zhang et  al., 2021). Nevertheless, 
whether exercise can inhibit NLRP3 inflammasome activation 
through the regulation of gut microbiota remains to be elucidated. 
Therefore, this review outlines the effects of different forms of exercise 
on the gut microbiota and NLRP3 inflammasome activation. It 
primarily explores how exercise regulates gut microbiota to inhibit 
NLRP3 inflammasome activation, hoping to provide new target for 
relevant research.

2 Gut microbiota

The gut microbiota is the collective term for the microbial 
community residing in the human gut, encompassing bacteria, 
viruses, fungi, and protozoa. A healthy gut microbiota exhibits 
stability, abundance, and diversity, primarily comprising Firmicutes, 
Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria. Within 
Firmicutes, genera such as Lactobacillus, Bacillus, Clostridium, and 
Bacillus are prominent, while Bacteroidetes is dominated by genera 
like Bacteroides and Prevotella. Actinobacteria are less abundant, 
predominantly represented by the genus Bifidobacterium. Firmicutes 
and Bacteroidetes collectively constitute about 90% of the total gut 
microbiota (65 and 25%, respectively). The gut microbiota is 
considered healthy when the Firmicutes/Bacteroidetes (F/B) ratio is 
low (Arifuzzaman et al., 2024).

Humans and intestinal flora co-evolve cooperatively: hosts 
provide nutrients and a reproductive niche for intestinal flora, 
which in turn helps regulate host physiological functions (Barreto 
and Gordo, 2023). The gut microbiota participates in energy 
metabolism and nutrient absorption, and promotes immune system 
development in the host by producing antimicrobial peptides and 
other active substances that defend against pathogens (Zong et al., 
2020). The gut microbiota is easily influenced by various factors, 
including host dietary habits, environmental conditions, and 
intestinal infections. When the intestinal flora is exposed to adverse 
factors such as environmental pollution, antibiotic abuse, and 
gastrointestinal diseases, its diversity and stability are compromised. 
This results in a reduction of beneficial bacteria and an increase in 
pathogenic bacteria, triggering inflammatory responses and 
metabolic disorders, ultimately leading to disease (Pires et al., 2024). 
Numerous studies have shown that the NLRP3 inflammasome 
pathway plays a crucial role in the inflammatory response caused by 
the imbalance of intestinal flora homeostasis. Regulating the 

intestinal flora may be  a new direction for targeted therapy of 
related diseases (Yao H. et  al., 2023; Liu C. et  al., 2023; Xia 
et al., 2022).

3 NLRP3 inflammasome

3.1 Composition and activation of the 
NLRP3 inflammasome

The NLRP3 inflammasome is a crucial cellular multiprotein 
complex of the innate immune system, capable of recognizing 
Damage-associated molecular patterns (DAMPs) or Pathogen-
associated molecular patterns (PAMPs) via NLRs (NOD-like 
receptors) within the PRR family (Swanson et al., 2019). The NLRP3 
inflammasome comprises the receptor NLRP3, the adaptor protein 
ASC, and the effector pro-caspase-1. NLRP3 consists of three 
domains: an N-terminal pyrin domain (PYD), a C-terminal leucine-
rich repeat (LRR) domain, and a central NACHT domain containing 
an ATPase motif. ASC contains an N-terminal PYD and a C-terminal 
caspase recruitment domain (CARD). Pro-caspase-1 consists of an 
N-terminal CARD, a large catalytic subunit called p20, and a small 
catalytic subunit called p10 at the C-terminus (Xiao et al., 2023).

Upon signal stimulation, NLRP3 oligomerizes through 
ATP-dependent self-assembly mediated by the NACHT domain. 
Oligomerized NLRP3 then recruits ASC via homotypic PYD-PYD 
interactions, assembling into prion-like ASC filaments at clustered 
PYDs of NLRP3 oligomers. Multiple ASC filaments assemble into a 
speck, termed the ASC speck (Yu et al., 2024). The C-terminal CARDs 
of assembled ASC serve as a platform to recruit effector pro-caspase-1 
via CARD-CARD interactions, promoting dimerization of the 
adjacent p20 and p10 catalytic subunits of pro-caspase-1 and self-
cleavage to activate the linker between p20 and p10 (Yao J. et al., 2023). 
Activated caspase-1 cleaves and activates gasdermin-D (GSDMD), 
leading to the maturation of interleukin-1β (IL-1β) and interleukin-18 
(IL-18) cytokines, thereby initiating inflammatory responses (Fu and 
Wu, 2023).

3.2 NLRP3 inflammasome activation 
pattern

Current research indicates that the NLRP3 inflammasome can 
be  activated via two distinct pathways: the canonical and 
non-canonical NLRP3 inflammasome activation pathways. Canonical 
NLRP3 inflammasome activation involves two steps: priming and 
activation. Normally, cellular NLRP3 levels are low and insufficient to 
activate the inflammasome. During the priming step, Toll-like 
receptors (TLRs) and cytokine receptors, such as those for IL-1 and 
tumor necrosis factor (TNF), activate nuclear factor κB (NF-κB), 
which promotes the transcription of NLRP3, pro-caspase-1, and 
pro-IL-1β (Vande Walle and Lamkanfi, 2024). The activation step 
involves recognizing NLRP3 inflammasome agonists (e.g., crystals, 
bacteria, and ATP) and assembling and activating the inflammasome. 
PAMPs or DAMPs induce cellular dysfunctions such as K+ efflux, Ca2+ 
influx, mitochondrial dysfunction, reactive oxygen species (ROS) 
production, mitochondrial DNA (mtDNA) release, and lysosomal 
disruption. These dysfunctions lead to NLRP3 inflammasome 
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activation and assembly, triggering inflammatory cascade responses 
(Christgen et al., 2020).

In non-canonical activation of the NLRP3 inflammasome, Gram-
negative bacterial infection releases lipopolysaccharide (LPS) and lipid 
A into the cytoplasm, causing oligomerization and auto-proteolysis of 
mouse caspase-11 (human caspase-4/5) precursor. Activated caspase-
4/5/11 triggers pyroptosis, inducing K+ efflux and thereby activating 
the NLRP3 inflammasome (Swanson et al., 2019). Another alternative 
inflammatory pathway differs from the above two. In response to LPS, 
human monocytes secrete IL-1β independently of classical 
inflammasome stimulation. Instead, they propagate inflammatory 
signals through the TLR4-TRIF-RIPK1-FADD-CASP8 signaling 
pathway upstream of NLRP3 (Gaidt et al., 2016; Figure 1).

4 Exercise and gut microbiota

Exercise can generally be categorized as acute or chronic. Acute 
exercise is defined as a single, exhaustive physical activity that imposes 
a significant load on the body, such as marathon running, hiking, and 
power cycling. This type of exercise induces a stress response in the 

body, but its effects dissipate quickly. Chronic exercise refers to long-
term (4 weeks or more) progressive activities, such as aerobic exercise, 
resistance training, and high-intensity interval training (HIIT). These 
exercises induce adaptive changes in body structure and function that 
persist over time.

Understanding the impact of exercise on gut microbiota is critical, 
as recent studies suggest that gut microbiota may play a significant role 
in modulating immune responses (Van Hul and Cani, 2023). Given 
the association between dysregulated NLRP3 inflammasome 
activation and various inflammatory diseases, the potential for 
exercise to modulate this pathway through reshaping gut microbiota 
represents a promising area of research. In the following sections, 
we will review the current evidence regarding how exercise influences 
both gut microbiota and NLRP3 inflammasome activation, focusing 
on the underlying mechanisms and therapeutic implications.

4.1 Acute exercise and gut microbiota

Acute exercise may affect gut microbiota through physiological 
stress and emergency response mechanisms in the body. It has been 

FIGURE 1

The activation mechanism of the NLRP3 inflammasome. Canonical activation of the NLRP3 inflammasome involves two consecutive signaling steps: 
priming and activation. During the priming step, various stimuli such as PAMPs, DAMPs, IL-1β, and TNF induce the activation of NF-κB, leading to the 
upregulation of NLRP3, pro-IL-1β, and pro-IL-18 transcription. In the activation step, NLRP3 can be activated by various upstream signaling events, 
including K+ efflux, Ca2+ influx from extracellular and endoplasmic reticulum sources, ROS, mtDNA, as well as lysosomal damage caused by crystals 
and particles. Upon activation, NLRP3 undergoes oligomerization to serve as a scaffold for recruiting ASC, resulting in the formation of ASC filaments. 
Subsequently, ASC associates with pro-caspase-1 to assemble into inflammasome. Formation of the inflammasome activates caspase-1, which in turn 
cleaves pro-IL-1β and pro-IL-18 into mature IL-1β and IL-18. Additionally, caspase-1 can also cleave GSDMD to generate N-terminal and C-terminal 
domains. The N-terminal domain of GSDMD is released to the cell membrane, forming pores, inducing the intracellular release of IL-1β and IL-18, and 
triggering pyroptosis. In the non-canonical pathway, upon detecting cytosolic LPS, caspase-4/5 (caspase-11 in mice) is activated and cleaves GSDMD, 
inducing GSDMD pore insertion into the plasma membrane to promote pore formation. This subsequently triggers K+ efflux, thereby activating the 
NLRP3 inflammasome. The figure was created using BioRender.com.
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suggested that there is a high correlation between physical and 
emotional stress during acute exercise and changes in the composition 
of the gastrointestinal microbiota. Intense exercise-induced stress 
activates the sympathetic-adrenal-medullary axis and the 
hypothalamic–pituitary–adrenal (HPA) axis, leading to the excessive 
release of catecholamines (adrenaline and noradrenaline) and other 
neurotransmitters. These changes induce gastric acid secretion, 
gastrointestinal motility, and mucin production via the vagus nerve, 
disrupting gastrointestinal function and potentially disturbing gut 
microbiota homeostasis (Clark and Mach, 2016). In mouse models, 
stress from acute exercise reduces the abundance of Turicibacter and 
increases Ruminococcus gnavus, Butyrivibrio, Oscillospira, and 
Coprococcus, exacerbating intestinal inflammation (Clark and 
Mach, 2016).

Interestingly, gut microbiota changes during acute exercise may 
help regulate physiological states to adapt to intense exercise stimuli. 
However, variations in exercise subjects, modalities, and intensities 
may lead to different changes in gut microbiota. Studies have found 
that during acute exercise, gut microbiota diversity increases as the 
body adapts to exercise intensity. The abundance of Lachnospiraceae, 
Phascolarctobacterium, and Akkermansia muciniphila increased, 
while Ruminococcaceae decreased. These changes may initiate 
compensatory mechanisms against exercise-induced damage 
(Bennett et al., 2020).

Keohane et al. documented gut microbiota changes in 4 rowers 
during different phases (pre, mid, and post) of acute exercise 
competitions, found that prolonged acute exercise enhances the 
relative abundance of Prevotella, associated with metabolic health and 
specific microbial metabolic potential, promoting host adaptation to 
intense exercise stimuli (Keohane et al., 2019). Additionally, Zhao 
et al. conducted a comprehensive analysis of the fecal metabolites and 
intestinal flora of amateur half-marathon runners before and after the 
race. They found that acute exercise accelerates the metabolism of gut 
bacteria, with the relative abundance of Actinomycetes and 
Ruminococcus bicirculans increased, while the abundance of Ezakiella 
and Romboutsia decreased (Zhao et al., 2018).

Similarly, Grosicki et al. sequenced the gut microbiota of a world-
class ultramarathon runner participating in a 163 km mountain 
footrace, finding significant increases in gut microbiota α-diversity 2 h 
post-race, accompanied by marked increases in bacterial genera such 
as Streptococcus (+438%) and Veillonella (+14,229%) (Grosicki et al., 
2019). Veillonella can generate energy by metabolizing lactic acid in 
the gut, while simultaneously reducing lactic acid concentration in the 
blood and relieving muscle fatigue caused by its accumulation (Ng and 
Hamilton, 1971). Thus, the increased abundance of Veillonella may 
signify a highly beneficial adaptation to the 163-km race.

From this, it is evident that changes in the composition and 
metabolic function of the gut microbiota are adaptive responses to 
acute exercise stress and emergencies. The underlying reason may 
be that the gut microbiota, as an effective “regulatory organ,” plays a 
key role in regulating endocrine function and inflammatory response. 
Based on this, some scholars believe that changes in gut microbiota 
during acute exercise contribute to regulating motor function. 
However, relevant research is currently lacking. Therefore, further 
exploration is needed to investigate the reasons for changes in gut 
microbiota during acute exercise and the specific mechanisms by 
which they improve host metabolism. This will contribute to a better 
understanding of the effects of acute exercise on gut microbiota.

4.2 Chronic exercise and gut microbiota

Chronic exercise can prevent and treat several chronic diseases, 
and the gut microbiota might be involved in many of these beneficial 
effects. Studies have found that 6 months of combined aerobic and 
resistance exercise can control diabetes by inhibiting excessive fungal 
growth in the intestines of T2DM patients, improving intestinal 
permeability, and alleviating systemic low-grade inflammation (Pasini 
et al., 2019). Luo et al. shows that chronic moderate swimming can 
enhance the protein expression of α-defensin 5, β-defensin 1, 
regenerating islet derived protein 3β (RegIIIβ), and RegIIIγ, improving 
intestinal barrier dysfunction induced by chronic stress in mice and 
reducing microbial translocation (Luo et al., 2014). Allen et al. found 
that voluntary wheel running and forced treadmill exercise differently 
affect the gut microbiota of mice at the phylum, genus, operational 
taxonomic unit (OTU), and α diversity levels. Compared to the forced 
exercise and sedentary groups, mice engaged in voluntary exercise 
exhibited a more even distribution of gut microbiota and significantly 
lower abundance of Turicibacter spp., which is closely associated with 
immune function and intestinal diseases. This suggests that voluntary 
exercise may be more beneficial for improving gut microbiota health. 
A 12-week moderate-intensity treadmill aerobic exercise regimen can 
reverse gut microbiota dysbiosis and increase goblet cell numbers in 
obese mice. Simultaneously, protein expression levels of ZO-1 and 
occludin in the colon are elevated, and the adenosine monophosphate-
activated protein kinase (AMPK)/caudal-type homeobox 2 (CDX2) 
signaling pathway is significantly upregulated (Wang et al., 2022). The 
AMPK/CDX2 signaling pathway promotes the assembly of tight 
junction (TJ) complexes and plays a key role in improving intestinal 
barrier function and differentiating of intestinal epithelial cells (IECs). 
This suggests that aerobic exercise may enhance gut microbiota 
composition and intestinal barrier function by activating the AMPK/
CDX2 signaling pathway.

Additionally, 4 weeks of HIIT can decrease the F/B ratio in 
insulin-resistant patients, reduce serum levels of TNF-α, C-reactive 
protein (CRP), and lipopolysaccharide-binding protein (LBP), 
improving systemic insulin resistance (Motiani et al., 2020). Similarly, 
4-week resistance exercise can increase the abundance and diversity 
of gut microbiota in autoimmune encephalomyelitis mice, reduce the 
F/B ratio and intestinal mucosal permeability, thereby decreasing the 
inflammatory response of small intestinal lymphoid tissues (Chen 
et  al., 2021). Resistance exercise can reshape the gut microbiota, 
potentially through its impact on lactate production. Lactate is a 
byproduct of skeletal muscle glycolysis during exercise. Resistance 
exercise can lead to lactic acid accumulation, which lowers the pH of 
the local gut microenvironment. Generally, environmental 
acidification favors the growth and proliferation of specific microbial 
communities in the gut, thereby maintaining the stability of the gut 
microbiota ecosystem (Okada et  al., 2013). Wu et  al. found that 
hypoxia-inducible factor 2α (HIF-2α) activates the expression of 
lactate dehydrogenase, thereby increasing lactate levels in the gut. 
Lactic acid can induce the expression of the σ factor in Bacteroides 
vulgaris, enhance its ability to utilize polysaccharides, and promote the 
growth and proliferation of Bacteroides vulgaris (Wu et al., 2021). Sun 
et al. reported that supplementation with the lactic acid-producing 
facultative anaerobic yeast Saccharomyces cerevisiae elevates lactate 
levels in the gut, leading to beneficial changes in microbiota 
composition and regulating gut homeostasis (Sun et  al., 2021). 

https://doi.org/10.3389/fmicb.2024.1476908
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fmicb.2024.1476908

Frontiers in Microbiology 05 frontiersin.org

However, some studies have shown that excessive lactate accumulation 
from gut microbiota may trigger ROS production, adversely affecting 
intestinal epithelial function (Iatsenko et al., 2018). This suggests that 
moderate resistance exercise benefits gut microbiota, while excessive 
exercise may have the opposite effect.

It is important to note that the impact of chronic exercise on gut 
microbiota can vary depending on the type and intensity of exercise, 
as well as gender differences. Prolonged high-intensity exercise is 
known to adversely affect gut homeostasis, resulting in gut microbiota 
dysbiosis, increased intestinal permeability, compromised intestinal 
barrier function, and elevated production of inflammatory mediators 
(Camilleri, 2019). In fact, studies have demonstrated that high-
intensity exercise significantly increased gut microbiota associated 
with elevated gut barrier permeability (e.g., Firmicutes and 
Actinobacteria), leading to gut leakage and inflammation. Conversely, 
moderate-intensity exercise improved gut barrier function by 
balancing beneficial and harmful bacteria (e.g., Bacteroides and 
Rikenellaceae) in a healthy state (Peng et al., 2024). This suggests that 
exercise intensity can differentially influence gut microbiota 
composition and function, leading to varied physiological outcomes.

Furthermore, Li et  al. conducted a cohort study on aerobic, 
wrestling, and rowing athletes, finding that rowing athletes had higher 
intestinal flora Shannon diversity compared to wrestling and aerobic 
athletes, with no significant differences between the latter two (Li 
Y. et al., 2023). Interestingly, in the female cohort, Pseudomonas and 
the Eubacterium coprostanoligenes group were the most discriminating 
bacterial groups in aerobic and rowing athlete samples. In the male 
cohort, Cryobacillus and Bacillus were the most discriminating genera 
in aerobic and wrestling athlete samples (Li Y. et al., 2023). These 
results suggest that both female and male athletes have specialized gut 
microbiota adapted to their respective sports.

In summary, chronic moderate exercise can positively change the 
diversity and composition of gut microbiota, thus improve intestinal 
barrier function, and inhibit inflammatory responses. Conversely, 
chronic high-intensity exercise may cause gut microbiota dysbiosis, 
leading to decreased gut barrier function and increased inflammatory 
responses. Although changes in specific microorganisms vary under 
different research subjects and exercise types, they may ultimately 
be to improve body health. Therefore, more studies in this field are 
needed to clarify the specific regulatory mechanism and relationship 
between exercise and gut microbiota metabolism. Additionally, when 
studying the mechanism and relationship between exercise and gut 
microbiota, besides considering the type, intensity, and duration of 
exercise, other factors such as diet, sleep pattern, gender, age, initial 
health status, and antibiotic exposure, should also be considered to 
avoid these factors impacting the final results.

5 Exercise and NLRP3 inflammasome

The impact of exercise on the activation of NLRP3 inflammasome 
has attracted much attention. Studies have shown that the degree of 
NLRP3 inflammasome activation varies significantly under different 
exercise regimens. This variation may be related to factors such as 
exercise duration (acute vs. chronic), exercise intensity, and individual 
differences (e.g., training level). The following sections summarize 
research on the effects of different exercise durations on NLRP3 
inflammasome activation (Table 1).

5.1 Acute exercise and NLRP3 
inflammasome activation

The effect of acute exercise on NLRP3 inflammasome activation 
may also be related to the body’s stress mechanisms. Studies have 
found that after acute progressive aerobic exercise, the protein 
expressions of NLRP3, IL-1β, and mitochondrial autophagy-related 
genes (Beclin1, LC3, and Bnip3) were significantly upregulated in rat 
myocardial tissue. The production of mitochondrial ROS and the 
content of malondialdehyde were significantly increased, along with 
pronounced inflammatory cell infiltration in myocardial tissue (Li 
et  al., 2016). This suggests that acute progressive exercise induces 
mitochondrial stress, leading to the activation of the NLRP3 
inflammasome, which triggers myocardial inflammatory responses 
and activates mitochondrial autophagy to reduce myocardial injury in 
rats. Khakroo et al. found that acute high-intensity aerobic exercise 
significantly increased NLRP3 mRNA expression in peripheral blood 
mononuclear cells (PBMCs) and serum IL-1β and IL-18 levels in 
young healthy men, while acute moderate-intensity aerobic exercise 
had no significant effect on these indicators (Khakroo Abkenar et al., 
2019). This may be  due to the lower oxidative stress induced by 
moderate-intensity exercise, which is insufficient to activate the 
NLRP3 inflammasome effectively (Powers et al., 2020).

Interestingly, Comassi et al. found that after acute progressive 
aerobic exercise, the expression of NLRP3, caspase-1, and IL-1β in 
PBMCs was reduced in endurance athletes. In trained individuals, 
these indices showed no significant change, while in untrained 
individuals, their expression increased (Comassi et al., 2018). This 
indicates that the proinflammatory response induced by acute 
incremental aerobic exercise may transform into an anti-inflammatory 
response as training levels increase. This also suggests the existence of 
exercise preadaptation, where regular long-term exercise allows 
individuals to better cope with acute stress, such as strenuous exercise, 
therby inhibit NLRP3 inflammasome overactivation. However, there 
are few studies on acute exercise, so further research is needed to 
clarify the mechanisms by which different types and intensities of 
acute exercise affect NLRP3 inflammasome activation.

5.2 Chronic exercise and NLRP3 
inflammasome activation

It is a consensus that moderate chronic exercise can effectively 
inhibit chronic low-grade inflammatory response. Regarding chronic 
aerobic exercise, moderate-intensity treadmill exercise (60–80% of 
maximal oxygen uptake or 12–15 m/min) for more than 4 weeks can 
significantly inhibit NLRP3 inflammasome hyperactivation in rodent 
heart (Ma et al., 2021; Zhang M. et al., 2023; Kar et al., 2019), blood 
vessels (Li X. H. et al., 2022; Yang et al., 2023; Lee et al., 2020), cartilage 
(Liu J. et al., 2023; Yang et al., 2020), liver (Yang et al., 2021; Zhang 
et al., 2020), kidney (Zhou et al., 2022), hippocampus (Rosa et al., 
2021; Liang et al., 2020; Li et al., 2020), lung (Liu et al., 2022), ovary 
(Weng et al., 2023), and adipose tissue (Mardare et al., 2016; Javaid 
et al., 2021) caused by metabolic disorders, hypoxia, aging, and other 
pathological conditions. Additionally, chronic swimming exercise 
(30 min per day, 5 times per week) (Liu et al., 2015; Bai et al., 2021) 
and voluntary wheel exercise (averaging 8–12 km per night) (Lee 
et  al., 2018; Zhang et  al., 2019) also inhibited the NLRP3 
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inflammasome overactivation due to depression, high-fat diet, and 
chronic kidney disease. Similarly, human experiments showed that 
12 weeks of moderate intensity nordic walking (60–70% of maximum 
heart rate) significantly decreased NLRP3 (−53%) and TLR4 (−63%) 
mRNA expression in serum, as well as IL-6, IL-1β, and TNF-α levels 
in elderly women (Gomarasca et  al., 2022). This suggests that 
moderate-intensity aerobic exercise may reduce TLR4 expression, 
thereby suppressing NLRP3 inflammasome activation.

The modulatory effect of aerobic exercise on NLRP3 
inflammasome activation is related to mitochondrial mechanisms. 
NLRP3 inflammasome activation is primarily regulated by the 
suppression of mitochondrial damage and/or the release of 
mitochondrial signals, leading to an “all-or-nothing” response 
(Afonina et  al., 2017). Aerobic exercise promotes mitochondrial 
biogenesis, enhances mitophagy, and optimizes mitochondrial 
dynamics, thereby increasing antioxidant capacity, reducing 
mitochondrial ROS production, and inhibiting NLRP3 inflammasome 
activation (Zhang et al., 2021). A study found that 8 weeks of treadmill 
exercise reduced mitochondrial fusion protein (mitofusin 2, MFN2) 
expression in the hearts of hypertrophic mice and suppressed the 
downstream NLRP3/caspase-1/IL-1β signaling pathway, thereby 
alleviating myocardial hypertrophy and improving cardiac function 
(Ma et  al., 2021). Thus, aerobic exercise may inhibit the NLRP3 
inflammasome pathway by enhancing mitochondrial quality control. 
Additionally, NF-κB, an important regulator of mitochondrial 

function, plays a crucial role in mediating mitophagy (Shi et al., 2023). 
Regulating the NF-κB signaling pathway may be  key to aerobic 
exercise’s inhibition of NLRP3 inflammasome activation. For instance, 
one study demonstrated that 8 weeks of treadmill exercise inhibited 
acetylation of forkhead box transcription factor O1 (FOXO1) in the 
brain tissue of diabetic rats, promoted FOXO1 phosphorylation, 
reduced FOXO1 protein expression, and downregulated NF-κB, 
TNF-α, and NLRP3 inflammasome expression, suggesting that 
aerobic exercise may suppress inflammation via the FOXO1/NF-κB/
NLRP3 inflammasome pathway (Wang et al., 2019). Furthermore, 
Zhou et al. showed that 8 weeks of aerobic exercise reduced levels of 
NADPH oxidase 4 (NOX4), ROS, mitochondrial complex I, and 
protein expression of TNF-α, IL-18, NF-κB p65, IκBα, and the NLRP3 
inflammasome in renal tissue of mice, indicating that aerobic exercise 
may inhibit NLRP3 inflammasome activation by modulating the 
NOX4/ROS/NF-κB signaling pathway (Zhou et al., 2022).

Notably, the effects of chronic aerobic exercise on NLRP3 
inflammasome activation seem to depend on exercise intensity. For 
example, Khakroo et al. found that 12 weeks of moderate-intensity 
aerobic exercise significantly reduced NLRP3 mRNA expression in 
PBMCs and serum IL-1β and IL-18 levels in young men. In contrast, 
high-intensity aerobic exercise significantly increased these indicators 
(Khakroo Abkenar et al., 2019). This may be due to high-intensity 
aerobic exercise increasing TLR4 gene expression (de Vicente et al., 
2020). Therefore, for aerobic exercise, chronic moderate-intensity 

TABLE 1 The effects of exercise on NLRP3 inflammasome activity.

Object Exercise type/Intensity/Time Changes of NLRP3 Inflammasome after 
Exercise

Reference

SD rat
Incremental treadmill running, 8.2–19.3 m/min, 0–10° 

grade (53–76% VO2max), 30–120 min
Myocardial NLRP3 and caspase-1↑ Li et al. (2016)

Healthy young men
Running, Moderate-intensity group: 50–70% HRmax, 

70 min; High-intensity group: 70–90% HRmax, 70 min

Moderate-intensity group:PBMCs NLRP3→, serum IL-1β and 

IL-18→;

High-intensity group: PBMCs NLRP3↑, serum IL-1β and IL-18↑

Khakroo Abkenar 

et al. (2019)

Untrained/trained/

triathletes men

Cycle ergometer, 25 W for 2 min (warm-up), 50 W for 

the second stage, increase by 25 W every 1 min until 

volitional fatigue

Untrained men:PBMCs NLRP3, caspase-1 and IL-1β↑;

trained men:PBMCs NLRP3, caspase-1 and IL-1β→;

triathletes men:PBMCs NLRP3, caspase-1 and IL-1β↓

Comassi et al. (2018)

Elderly women
Nordic walking training, 60–70% HRmax, 60 min/d, 

3 d/w, 12 weeks
Serum NLRP3 and IL-1β↓

Gomarasca et al. 

(2022)

Healthy young men

Running, Moderate-intensity: 50–70% HRmax, 70 min, 

3 d/w, 3 months; High-intensity: 70–90% HRmax, 

70 min, 3 d/w, 3 months

Moderate-intensity group:PBMCs NLRP3↓,serum IL-1β and 

IL-18↓;

High-intensity group:PBMCs NLRP3↑,serum IL-1β and IL-18↑

Khakroo Abkenar 

et al. (2019)

Obese adults HIIT, 55–90% HRmax, 35 min/d, 3 d/w, 8 weeks Serum NLRP3↓
Armannia et al. 

(2022)

APP/PS1 mice

MICT: treadmill training, 60% Smax, 5 d/w, 12 weeks; 

HIIT: 85% Smax, 1.5 min; 45% Smax, 2 min, 5 d/w, 

12 weeks

Hippocampus NLRP3, ASC, IL-1β and caspase-1↓ Liang et al. (2020)

C57BL/6 J mice
MICT: Treadmill training, 80% SLT, 7 d/w, 4 weeks; 

HIIT: 60–70% Smax, 5 d/w, 4 weeks
Hippocampus NLRP3↓; HIIT better than MICT Li et al. (2020)

Healthy older adults
Resistance training, 60–80% 1RM, 3 × 3 sets × 8–12 

times, 2 d/w, 8 weeks
PBMCs NLRP3 and caspase-1/pro-caspase-1↓

Mejías-Peña et al. 

(2017)

Obese adults
Endurance training combined with resistance training, 

75% HRmax, 45 min/d, 3 d/w, 4 months
Plasma ASC↓

Barrón-Cabrera 

et al. (2020)

↑, up-regulation; ↓, down-regulation; →, no significant change; Min, minute; d, day; W, week; VO2max, maximum oxygen uptake; HRmax, maximum heart rate; 1RM, one repetition 
maximum; Smax, maximum speed; SLT, speed at lactate threshold; HIIT, high-intensity interval training; MICT, moderate-intensity continuous training; NLRP3, NOD-like receptor protein 3; 
ASC, apoptosis-associated speck-like protein; PBMCs, peripheral blood mononuclear cells; IL-1β, interleukin-1β; IL-18, interleukin-18.
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aerobic exercise might be the optimal regimen to inhibit overactivation 
of the NLRP3 inflammasome.

In addition to aerobic exercise, HIIT, resistance training, and 
combined resistance and aerobic exercise also inhibit NLRP3 
inflammasome overactivation. Studies have shown that 8 weeks of 
HIIT can significantly reduce NLRP3 gene expression in the serum of 
obese adults (Armannia et al., 2022). Liang et al. (2020) and Li et al. 
(2020) also found that chronic HIIT significantly inhibit NLRP3 
inflammasome overactivation in the hippocampus of Alzheimer’s 
mice and stroke-induced depression mice. However, the former study 
found that the inhibitory effect of HIIT on NLRP3 inflammasome was 
not significantly different from that of moderate-intensity continuous 
training (MICT), while the latter study found that HIIT inhibited 
NLRP3 inflammasome better than MICT. The inconsistency in results 
may be due to the large differences in the pathological models of mice, 
exercise duration, and exercise intensity used in the studies.

Additionally, Mejias-Pena et al. found that compared to a sedentary 
group, elderly individuals showed significantly lower expression of 
NLRP3, caspase-1, and apoptosis-related genes (Bcl-2, Bcl-xL) in PBMCs 
after 8 weeks of resistance training. The protein expression of autophagy-
related genes (Beclin-1, Atg12, Atg16, and LAMP-2) was significantly 
upregulated (Mejías-Peña et  al., 2017). This suggests that resistance 
exercise can inhibit NLRP3 inflammasome activation and reduce cell 
apoptosis by activating autophagy in PBMCs. Similar to aerobic exercise, 
resistance exercise can also inhibit NLRP3 inflammasome activation 
through the regulation of the NF-κB pathway. For example, a study 
showed that 12 weeks of resistance exercise significantly increased AMPK 
phosphorylation, silent information regulator 1 (SIRT1), and NLRP3 
inflammasome protein expression in the hippocampus of IR mice, while 
reducing NF-κB expression (Ji et al., 2020). These findings suggest that 
resistance exercise regulates inflammation through the AMPK/SIRT1/
NF-κB/NLRP3 inflammasome signaling pathway.

Moreover, recent studies have demonstrated that 12 weeks of 
combined with moderate-intensity aerobic and resistance exercise 
significantly reduces peripheral blood ASC, macrophage inflammatory 
protein-1 (MCP-1), and MIP-1β mRNA expression in obese adults, 
and decreases the atherogenic index (Barrón-Cabrera et al., 2020). 
This suggests that combining aerobic and resistance exercise might 
inhibit NLRP3 inflammasome assembly and activation by reducing 
ASC expression.

In conclusion, various types of chronic moderate exercise can 
inhibit NLRP3 inflammasome overactivation. However, most current 
studies focus on aerobic exercise, with a lack of comparative research 
on the effects of different exercise types, intensities, and frequencies 
on NLRP3 inflammasome activation. Additionally, most human 
studies are conducted at the systemic level (blood), with fewer at the 
tissue and organ levels. Therefore, the effects and mechanisms of 
chronic exercise under different regimens on NLRP3 inflammasome 
activation in various tissues require further exploration.

6 Potential mechanisms of 
exercise-mediated regulation of gut 
microbiota on NLRP3 inflammasome 
activation

Although existing studies have found that exercise can 
positively regulate gut microbiota and inhibit inflammatory 

responses, there are currently few reports on the regulation of 
NLRP3 inflammasome activation by exercise through the gut 
microbiota. Research has shown that 12 weeks of combined aerobic 
and resistance exercise can significantly reduce the relative 
abundance of Proteobacteria and increase the relative abundance of 
Blautia, Dialister, and Roseburia in obese children, concurrently 
reduced the protein expression of NLRP3 and caspase-1 in PBMCs 
(Quiroga et al., 2020). Additionally, Lv et al. found that 4 weeks of 
voluntary running wheel exercise in mice reduced the expression 
of NLRP3, caspase-1, IL-18, and IL-1β proteins in brain tissue after 
ischemic stroke, concurrently reduced Ruminococcus, and increased 
Lactobacillus and Alistipes abundance, thereby improving cognitive 
impairment (Lv et al., 2022). These findings suggest that exercise 
may inhibit NLRP3 inflammasome activation via gut microbiota 
modulation. However, the specific mechanisms behind this 
correlation remain unclear. Therefore, this section investigates the 
potential mechanisms through which exercise modulates NLRP3 
inflammasome activation via the gut microbiota.

6.1 Exercise reduces bacterial components 
to inhibit NLRP3 inflammasome activation

LPS is a unique component of the cell walls of Gram-negative 
bacteria in the gut microbiota. Normally stored in the gut, it is found 
in low amounts in the bloodstream. When gut microbiota dysbiosis 
occurs, large amounts of LPS detach from the cell walls of Gram-
negative bacteria and activate TLR4 on immune cells in the intestinal 
wall and its downstream inflammatory signaling pathways, producing 
large quantities of pro-inflammatory cytokines such as IL-6, TNF-α, 
and IL-1β (Guo et al., 2022). These cytokines can damage intestinal 
epithelial cells and their tight junctions, leading to increased intestinal 
permeability, or “leaky gut” (Camilleri, 2019). Additionally, the 
increased intestinal permeability allows LPS to translocate from the 
gut into the bloodstream more easily, where it binds to TLR4 on the 
cell membranes of tissues and organs throughout the body, triggering 
a systemic inflammatory response (Honda and Inagawa, 2023). 
Therefore, regulating the gut microbiota to reduce LPS production 
and its translocation may effectively inhibit NLRP3 inflammasome  
activation.

Moderate exercise can improve gut microbiota composition 
and protect the intestinal barrier, reducing LPS production and 
translocation. Li et  al. found that a high-fat diet-induced 
osteoarthritis mouse model showed reduced gut microbiota 
diversity, increased endotoxin-producing bacteria, decreased 
protective gut barrier bacteria, elevated LPS levels in blood and 
joint fluid, and increased TLR4 expression. However, voluntary 
wheel running could partially reverse these adverse changes, 
suggesting that moderate exercise might reduce circulating LPS 
levels by reshaping the gut microbial ecosystem and improving 
intestinal barrier function (Li et al., 2021). Wang et al. discovered 
that 7 weeks of HIIT significantly increased gut microbiota alpha 
diversity in middle-aged male ICR mice, decreased the relative 
abundance of Proteobacteria (Gram-negative bacteria), and 
increased TM7 abundance. A Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis showed that HIIT reduced pathways 
related to LPS biosynthesis and its proteins (Wang et al., 2020). 
This suggests that HIIT may reduce the production of LPS by 
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decreasing the relative abundance of Gram-negative bacteria and 
inhibiting the gene pathways related to LPS biosynthesis.

Given that high-intensity exercise might disrupt gut 
microbiota, impair intestinal barrier function, and lead to LPS 
translocation, Peng et  al. compared the effects of 12 weeks of 
HIIT and MICT on gut microbiota and LPS translocation in 
mice. They found that MICT increased beneficial bacteria, 
improved intestinal barrier function, and reduced LPS levels in 
the blood and brain. In contrast, HIIT increased bacteria 
associated with higher gut permeability, induced “leaky gut,” and 
resulted in excessive LPS in the blood and brain (Peng et  al., 
2024). The inconsistent results with HIIT might be  due to 
differences in exercise intensity, frequency, and duration. 
Therefore, the specific exercise regimens in HIIT warrant further 
investigation. Overall, moderate exercise might reduce the 
abundance of LPS-containing Gram-negative bacteria and 
improve intestinal barrier function by reshaping the gut 
microbiota, thereby reducing LPS production and translocation, 
ultimately inhibiting NLRP3 inflammasome activation (Figure 2).

6.2 Exercise regulation of gut microbiota 
metabolites to inhibit NLRP3 
inflammasome activation

6.2.1 Exercise regulation of short-chain fatty 
acids to inhibit NLRP3 inflammasome activation

Short-chain fatty acids (SCFAs) are metabolic byproducts mainly 
produced by anaerobic bacteria, such as Lactobacillus and 
Bifidobacterium, through the fermentation of dietary fibers and 
glucose. The primary types of SCFAs are acetate, butyrate, and 
propionate. As important energy sources for the gut microbiota and 
host intestinal epithelial cells, SCFAs can inhibit the growth of harmful 
bacteria, reduce inflammation, and help maintain gut microbiota 
homeostasis and host immunity (Morrison and Preston, 2016). 
Studies have shown that SCFAs can directly activate G-protein 
coupled receptors (GPCRs), such as GPR41 (also known as free fatty 
acid receptor 3, FFAR3) and GPR43 (also known as free fatty acid 
receptor 2, FFAR2), or enter cells by passive diffusion to inhibit 
histone deacetylases (HDAC), thereby reducing inflammation and 

FIGURE 2

Role of exercise-mediated gut microbiota in inhibiting NLRP3 inflammasome activation. Exercise reduces the proportion of Gram-negative bacteria in 
the gut microbiota, leading to decreased LPS production and translocation into the circulation, which in turn inhibits the TLR4-NF-κB pathway and 
suppresses NLRP3 inflammasome activation. SCFAs inhibit NLRP3 inflammasome activation by interacting with GPR41/GPR43 receptors and inhibiting 
HDAC in intestinal epithelial and inflammatory cells. SCFAs also reduce NLRP3 inflammasome activation through mitochondrial autophagy/ROS and 
AMPK/NF-κB pathways. Moreover, exercise-induced alterations in the gut microbiota increase secondary BA concentrations, which activate the BA 
receptors FXR and TGR5 signaling pathways, thereby inhibiting NLRP3 inflammasome activation. Additionally, exercise lowers gut production of TMA, 
reducing its oxidation to TMAO in the liver, which decreases circulating TMAO levels and inhibits NLRP3 inflammasome activation. The figure was 
created using BioRender.com.
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repairing intestinal barrier function (Koh et al., 2016). When SCFA 
levels are reduced, it leads to decreased metabolite-sensing GPCR 
binding, impaired intestinal integrity, and the entry of toxic substances 
like LPS into the bloodstream, thereby activating the NLRP3 
inflammasome and causing systemic inflammation (Sun et al., 2017).

The theory that exercise promotes SCFA production to exert 
anti-inflammatory effects has been validated in numerous studies. 
Vijay et al. found that a 6 weeks exercise intervention in 78 elderly 
community members increased the relative abundance of 
Bifidobacterium, Faecalibacterium, and Eubacterium, raised butyrate 
production, and significantly decreased levels of inflammatory 
factors such as TNF-α and IL-6 (Vijay et al., 2021). Huang et al. 
reported that 3 months of endurance exercise effectively increased 
the abundance of SCFA-producing bacteria, such as Rikenellaceae 
and Dubosiella, in the gut of apolipoprotein E (ApoE) knockout 
mice. This promoted SCFAs production, inhibited the expression of 
MCP-1, IL-1β, and TNF-α, and ultimately improved atherosclerosis 
syndrome (Huang et al., 2022). Further research indicated that in 
high-cholesterol diet mice, voluntary wheel running increased the 
relative abundance of Lactobacillus and Eubacterium nodatum in 
feces, elevated SCFAs content in the cecum, and upregulated 
GPR109A and GPR41 mRNA expression in the colon, while 
reducing inflammation-related markers (Li R. et al., 2023). This 
suggests that exercise may inhibit inflammation by promoting the 
production of SCFAs by the gut microbiota, which in turn activates 
GPR41/GPR109A. In an IBD rat model, supplementation with 
food-derived oryzanol increased SCFAs levels in the gut, which 
inhibited the TLR4/NF-κB/NLRP3 pathway and reduced intestinal 
barrier damage and inflammation (Xia et al., 2022). Additionally, 
in LPS-pretreated bovine macrophages, butyrate treatment 
inhibited LPS-induced NLRP3 inflammasome activation by 
suppressing the HDAC/NF-κB signaling pathway (Jiang et  al., 
2020). Therefore, exercise-induced SCFAs production may inhibit 
NF-κB signaling and enhance intestinal barrier function through 
the GPR41/GPR43 and HDAC pathways, thereby inhibiting 
LPS-induced NLRP3 inflammasome activation.

In addition, exercise-induced SCFAs production may also inhibit 
NLRP3 inflammasome activation by promoting mitophagy and 
activating the AMPK pathway. Mitophagy is crucial for mitochondrial 
quality control, maintaining mitochondrial homeostasis by removing 
damaged mitochondria and reducing mitochondrial ROS levels (Shen 
et al., 2023). Studies have shown that supplementing with Lactobacillus 
acidophilus increases SCFAs levels in mice with ulcerative colitis and 
reduces ROS production by activating mitophagy, which inhibits 
NLRP3 inflammasome activation and alleviates intestinal 
inflammation (Li P. et al., 2022). Furthermore, SCFAs can elevate the 
intracellular AMP/ATP ratio, which leads to AMPK activation (Tao 
and Wang, 2024). Activated AMPK negatively regulates the IKK/IκB/
NF-κB signaling pathway, thereby suppressing inflammation (Sag 
et al., 2008). In a mouse model of severe acute pancreatitis-associated 
acute lung injury, oral administration of Qingyi Decoction increased 
the relative abundance of SCFA-producing bacteria and SCFAs levels 
in the intestine, serum, and lungs, especially propionate and butyrate, 
thereby activating the AMPK/NF-κB/NLRP3 signaling pathway and 
reducing systemic inflammatory responses (Wang et  al., 2023). 
Therefore, it is speculated that exercise-mediated SCFAs production 
may also inhibit NLRP3 inflammasome activation by activating the 
mitophagy/ROS pathway and the AMPK/NF-κB pathway.

Notably, different types of SCFAs may have varying effects on 
NLRP3 inflammasome activation. In vitro studies using endothelial 
cells have shown that butyrate significantly inhibits cholesterol crystal-
induced NLRP3 inflammasome activation, whereas acetate not only 
fails to inhibit this activation but may also activate the NLRP3 
inflammasome (Yuan et al., 2018). It is also noteworthy that Torquati 
et al. (2023) compared the effects of 8 weeks of MICT and HIIT on 
SCFA-producing gut microbiota in T2DM patients and found that 
exercise intensity affects SCFA-producing bacteria differently. Under 
MICT, the relative abundance of butyrate-producing bacteria such as 
Bifidobacterium and A. municiphila was higher, while HIIT increased 
the relative abundance of other butyrate-producing bacteria such as 
Erysipelotrichales and Oscillospira. Although exercise intensity did not 
significantly affect the final SCFA output, it suggests that specific 
exercise intensities may target particular SCFA-producing bacterial. 
Given that different SCFAs may play distinct roles in preventing and 
treating NLRP3 inflammasome-related diseases, and considering the 
current lack of research comparing the effects of various exercise 
types, intensities, and frequencies on different types of SCFAs 
production, future studies should focus on these variables to design 
more targeted exercise prescriptions for specific diseases (Figure 2).

6.2.2 Exercise regulation of bile acids to inhibit 
NLRP3 inflammasome activation

Bile acids (BAs) are important components of bile, playing crucial 
roles in metabolism, immunity, and inflammation regulation (Xiang 
et al., 2021). Bile acids are classified as primary or secondary. Primary 
BAs, such as cholic acid (CA) and chenodeoxycholic acid (CDCA), 
are synthesized in the liver. After food intake, bile acids stored in the 
gallbladder are released into the intestine. Approximately 95% of BAs 
are absorbed at the distal ileum and return to the liver via enterohepatic 
circulation (Gonzalez, 2012). The remaining BAs are substrates for 
microbial metabolism in the colon, where bacteria with bile salt 
hydrolase (BSH) and 7α-dehydroxylase convert them into secondary 
BAs, such as deoxycholic acid (DCA) and lithocholic acid (LCA) 
(Staley et  al., 2017). Dysbiosis of the gut microbiota can lead to 
disrupted BA metabolism, with increased levels of primary BAs and 
decreased levels of secondary BAs (Grüner and Mattner, 2021).

Increasing evidence suggests that BAs are crucial in regulating 
NLRP3 inflammasome activation. Studies have found that during 
cholestasis, excessive CDCA promotes ROS production and ATP 
release, inducing intracellular K+ efflux and dose-dependently 
enhancing LPS-induced NLRP3 inflammasome activation in mouse 
macrophages, leading to IL-1β release (Gong et al., 2016). Additionally, 
DCA, CDCA, and their taurine-conjugated forms act as DAMPs, 
inducing prolonged extracellular Ca2+ influx and synergizing with 
ATP to activate the NLRP3 inflammasome in immune cells like 
peritoneal macrophages (Hao et al., 2017). These studies suggest that 
BAs can act as endogenous DAMPs or synergize with exogenous 
PAMPs, thereby inducing the activation of the NLRP3 inflammasome.

Notably, recent studies showed that BAs may have different effects 
on NLRP3 inflammasome activation under varying inflammatory 
conditions. Under non-inflammatory conditions, secondary BAs 
supplementation can activate the NLRP3 inflammasome in THP-1 
differentiated macrophages, promoting inflammation. In contrast, in 
LPS-induced inflammatory macrophages, secondary BAs reduce 
inflammation by inhibiting NLRP3 inflammasome activation (Liao 
et al., 2022). Due to the decrease in secondary BA levels caused by gut 
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microbiota dysbiosis in most patients with inflammatory diseases, it 
is suggested that restoring secondary BA levels by improving gut 
microbiota dysbiosis may help inhibit NLRP3 inflammasome 
activation and alleviate related diseases (Collins et al., 2023).

Additionally, BAs inhibit NLRP3 inflammasome activation by 
binding to receptors such as the farnesoid X receptor (FXR) and G 
protein-coupled receptor 5 (TGR5). FXR, a nuclear receptor, is highly 
expressed in tissues such as the liver, kidneys, and ileum (Adorini and 
Trauner, 2023). Hao et al. found that Fxr knockout mice were more 
sensitive to LPS-induced NLRP3 inflammasome-related endotoxemia, 
whereas Fxr overexpressing mice showed increased resistance (Hao et al., 
2017). Further research revealed that FXR inhibits NLRP3 inflammasome 
activity by interacting directly with NLRP3 and caspase-1, indicating that 
targeted FXR activation can suppress NLRP3 inflammasome activation 
(Hao et al., 2017). Chen et al. found that supplementing colitis rats with 
Bacteroides fragilis containing BSH improved BA metabolism and 
inhibited NLRP3 inflammasome activation by activating FXR, thus 
reducing intestinal inflammation (Chen et al., 2024). This suggests that 
increasing the abundance of bacteria involved in secondary BA 
production can boost secondary BA levels, activate FXR, and thereby 
inhibit NLRP3 inflammasome activation (Figure 2).

TGR5, a transmembrane receptor, is present in various tissues 
including adipose tissue, skeletal muscle, intestines, and liver. Its 
binding with ligands leads to increased intracellular cyclic AMP 
(cAMP) levels, affecting downstream signaling pathways. Related 
experiments have shown that BAs inhibit NLRP3 inflammasome 
activation via the TGR5-cAMP-proteinkinase A (PKA) axis by 
promoting the phosphorylation and ubiquitination of the NLRP3 
inflammasome (Chen et  al., 2019). Additionally, activation of the 
TGR5-cAMP-PKA signaling pathway by DCA also inhibits NF-κB 
(p65) transcriptional activity, thereby reducing the expression of 
NLRP3 inflammasome-related proteins (Zhang et al., 2023). In mice 
with gut microbiota dysbiosis, impaired TGR5 activation exacerbated 
Staphylococcus aureus-induced mastitis, whereas supplementation 
with secondary BA-producing Clostridium restored TGR5 activation 
and reversed these changes (Zhang et al., 2023). Therefore, an increase 
in secondary BA concentration induced by bacteria that produce 
secondary BAs may inhibit NLRP3 inflammasome activation through 
the TGR5-mediated cAMP-PKA signaling pathway.

Verheggen et al. found that 8 weeks of moderate-intensity aerobic 
exercise increased the abundance of bacteria such as Firmicutes and 
Ruminococcus in the gut microbiota of obese patients (Verheggen 
et al., 2021). These bacteria, known for metabolizing BAs, can increase 
secondary BA production by enhancing the metabolism of primary 
BAs. Carbajo-Pescador et al. demonstrated that 5 weeks of aerobic 
exercise effectively reversed high-fat diet-induced Non-alcoholic fatty 
liver disease gut microbiota dysbiosis in rats, thereby preventing 
enterohepatic axis dysregulation, improving BA homeostasis, and 
inhibiting the expression of NF-κB and inflammatory factors (TNF-α 
and IL-6) (Carbajo-Pescador et al., 2019). Therefore, we have reason 
to speculate that exercise may inhibit NLRP3 inflammasome 
activation by increasing the abundance of bacteria associated with 
secondary bile acid production, elevating secondary bile acid levels, 
and activating FXR and TGR5-mediated signaling pathways. However, 
while evidence shows that exercise improves BA homeostasis and gut 
microbiota, their relationship is complex due to the diverse and 
extensive nature of gut microbiota and BA pools. This complexity 
makes it challenging to elucidate the precise relationship between 
specific BAs and microorganisms. More scientific studies are needed 

to advance the precise development of therapeutic targets for NLRP3 
inflammasome-related diseases (Figure 2).

6.2.3 Exercise regulation of trimethylamine oxide 
to inhibit NLRP3 inflammasome activation

Trimethylamine Oxide (TMAO) is another important metabolite 
derived from the gut microbiota. Choline, betaine, and L-carnitine in 
food are converted into trimethylamine (TMA) by the gut microbiota. 
TMA is absorbed by intestinal epithelial cells and transported to the 
liver via the portal vein, where it is oxidized to TMAO by flavin-
containing monooxygenase (FMO) enzymes (Liu et al., 2016; Lang 
et  al., 1998). Many studies have reported that elevated levels of 
circulating TMAO are positively correlated with the occurrence and 
development of cardiovascular diseases, Alzheimer’s disease, diabetes, 
renal diseases, metabolic dysfunction-related fatty liver, and obesity 
(Gatarek and Kaluzna-Czaplinska, 2021). In fact, increased levels of 
TMAO in the circulation can promote inflammation in various 
tissues, with the NLRP3 inflammasome playing a significant role in 
this process. Research has shown that TMAO can induce the activation 
of the NLRP3 inflammasome in various cell types, including vascular 
endothelial cells (Chen et al., 2017; Sun et al., 2016), colonic epithelial 
cells (Yue et al., 2017), pancreatic β cells (Kong et al., 2024), cardiac 
fibroblasts (Li et al., 2019), and renal fibroblasts (Lai et al., 2022), 
thereby triggering inflammatory responses. Additionally, TMAO has 
been shown to upregulate the expression of the macrophage surface 
receptor TLR4, which is a key upstream receptor for NLRP3 
inflammasome activation (Hakhamaneshi et al., 2021). This suggests 
that TMAO may induce NLRP3 inflammasome activation in 
macrophages via TLR4. Therefore, targeting the suppression of 
metabolic pathways that synthesize TMAO may be  an effective 
strategy for inhibiting NLRP3 inflammasome activation.

Exercise has been shown to lower TMAO levels in human circulation. 
For instance, Argyridou et al. tracked 483 diabetic patients over 12 months 
and found that moderate to vigorous exercise was linked to lower plasma 
TMAO levels (Argyridou et al., 2020). Similarly, Erickson et al. reported 
that a 12 weeks low-calorie diet combined with exercise effectively 
reduced plasma TMAO levels in obese adults (Erickson et al., 2019). The 
reduction in TMAO levels through exercise may be attributed to its 
positive impact on gut microbiota homeostasis. Zhang et al. demonstrated 
that 12 weeks of voluntary wheel running effectively reversed the effects 
of a TMAO diet in APP/PS1 mice, including decreased α-diversity of the 
gut microbiota, reduced relative abundances of Bacteroidetes and 
Prevotella, increased relative abundances of Actinobacteria, 
Verrucomicrobia, and Ruminococcus, and elevated serum TMAO levels. 
This suggests that exercise may lower TMAO levels by improving gut 
microbiota diversity and composition (Zhang et al., 2023b). Therefore, it 
is reasonable to speculate that exercise may inhibit NLRP3 inflammasome 
activation by regulating the homeostasis of the gut microbiota to reduce 
TMAO levels, which is worthy of further study (Figure 2).

7 Summary and prospects

In conclusion, the intricate interplay between gut microbiota and the 
activation of the NLRP3 inflammasome is a critical area of research with 
significant implications for understanding and e treating inflammatory 
diseases. This review emphasizes the close relationship between exercise, 
gut microbiota, and the NLRP3 inflammasome. It suggests that exercise 
can inhibit the over-activation of the NLRP3 inflammasome by 

https://doi.org/10.3389/fmicb.2024.1476908
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fmicb.2024.1476908

Frontiers in Microbiology 11 frontiersin.org

regulating gut microbiota, thereby preventing and treating inflammatory 
diseases. Different exercise patterns have varying effects on gut 
microbiota and the NLRP3 inflammasome activation. Therefore, future 
studies are needed to further elucidate the specific mechanisms through 
which different exercise patterns affect gut microbiota and the NLRP3 
inflammasome, as well as their potential therapeutic effects on 
inflammatory diseases. Additionally, individual variability in gut 
microbiota responses to exercise requires further investigation. Factors 
such as age, diet, and baseline microbiota composition likely contribute 
to heterogeneous outcomes, which should be  considered in future 
research. While SCFAs, BAs, and TMAO are established metabolites 
involved in regulating NLRP3 inflammasome activation, other 
microbiota-derived metabolites (e.g., indole derivatives) require more 
extensive investigation. The impact of diet, which strongly influences gut 
microbiota, also warrants further attention. Exercise alone may not 
be sufficient for optimal inflammatory regulation; combined exercise 
and dietary interventions, such as low-carbohydrate or high-fiber diets, 
may offer enhanced benefits (Sun et al., 2022; Moura et al., 2024; Lin 
et  al., 2023). Therefore, future research should focus on developing 
personalized exercise protocols that account for individual variability in 
microbiota responses, alongside integrating dietary strategies to optimize 
NLRP3 inflammasome regulation. These combined approaches could 
offer a more effective means of managing chronic inflammatory diseases, 
with significant implications for clinical practice and public health.
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