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The animal gut microbiome acts as a crucial link between the host and its environment, 
playing a vital role in digestion, metabolism, physiology, and fitness. Using 16S 
rRNA metabarcoding, we investigated the effect of altitude on the microbiome 
composition of Anatolian Blind Mole Rats (Nannospalax xanthodon) across six 
locations and three altitudinal groups. We also factored in the host diet, as well 
as host microsatellite genotypes and thyroid hormone levels. The altitude had a 
major effect on microbiome composition, with notable differences in the relative 
abundance of several bacterial taxa across elevations. Contrary to prior research, 
we found no significant difference in strictly anaerobic bacteria abundance among 
altitudinal groups, though facultatively anaerobic bacteria were more prevalent at 
higher altitudes. Microbiome alpha diversity peaked at mid-altitude, comprising 
elements from both low and high elevations. The beta diversity showed significant 
association with the altitude. Altitude had a significant effect on the diet composition 
but not on its alpha diversity. No distinct altitude-related genetic structure was 
evident among the host populations, and no correlation was revealed between 
the host genetic relatedness and microbiome composition nor between the host 
microbiome and the diet. Free thyroxine (FT4) levels increased almost linearly 
with the altitude but none of the bacterial ASVs were found to be specifically 
associated with hormone levels. Total thyroxine (TT4) levels correlated positively 
with microbiome diversity. Although we detected correlation between certain 
components of the thyroid hormone levels and the microbiome beta diversity, 
the pattern of their relationship remains inconclusive.
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1 Introduction

The animal microbiome, which constitutes the microbial community 
within the gastrointestinal system, profoundly influences diverse 
aspects of the host, encompassing digestion, development, 
immunity, and energetics (Lindsay et al., 2020; McFall-Ngai et al., 
2013; Suzuki, 2017). It also has the potential to enhance the host’s 
evolutionary capacity and fitness by shaping its phenotype (Alberdi 
et al., 2021; Henry et al., 2019; Suzuki, 2017; Henry et al., 2021). 
Humans, laboratory animals, and domestic mammals often serve as 
valuable models to study the microbiome’s importance in host 
ecology, evolution, health, and disease (Lin and Zhang, 2017; Lynch 
and Pedersen, 2016; Thursby and Juge, 2017; Wang et  al., 2019; 
Bäckhed et al., 2007). While studying captive animals and humans 
is convenient, this approach has limitations, including the effect of 
controlled captivity conditions on the microbiome (Rogers et al., 
2014; Roeselers et al., 2011; Van Leeuwen et al., 2020; Belheouane 
et  al., 2020), lack or loss of heterogeneity in model (or held in 
captivity) hosts and their microbiome (Wang et al., 2014; Kohl et al., 
2014), lack of environmental pressure (Chong-Neto et al., 2022), 
and variation in lifestyles and diets in humans (De Filippo et al., 
2010) make it challenging to extrapolate the significance of findings 
to natural environments. Thus, employing natural models in 
research becomes not just a choice but a necessity whenever feasible 
to reveal the implication of host-microbiota interactions in  
ecological and evolutionary processes (Hird, 2017; Greyson-Gaito 
et al., 2020).

The microbiome is influenced by various factors, such as habitat 
variation (Amato et al., 2013), lifestyle (McKenzie et al., 2017), host 
diet (Pellizzon and Ricci, 2018; De Filippo et al., 2010; Kuang et al., 
2022), host phylogeny (Ley et al., 2008), reproductive status of host 
(Nuriel-Ohayon et  al., 2016), social interactions (Li et  al., 2016c; 
Grieneisen et al., 2017) and environment (Rothschild et al., 2018; 
Chong-Neto et al., 2022; Ahn and Hayes, 2021). Among these factors, 
the environment holds significant importance as it can impact the 
physiology and immune responses of the host, while also playing a 
pivotal role in shaping dietary preferences and the selection process of 
the diverse pool of microbes in the surrounding environment. The 
microbiome can also help the host to adapt to new environments by 
modulating gene expression associated with nutrient metabolism, 
enhancing immune function, and providing essential nutrients 
(Bisschop et al., 2022; Petersen et al., 2023; Henry et al., 2021). In 
addition, microbiome diversity correlated positively with metabolic 
rate in a few studies, e.g., in wild and captive giant pandas (Zhu et al., 
2011) and in hibernating brown bears (Sommer et al., 2016).

Highland environments are characterized by decreased 
atmospheric oxygen levels and colder temperatures, which poses 
various challenges to animals. Specifically, hypoxia tolerance and 
energy-efficient metabolism among species living at high altitude is 
the most common adaptation mechanisms (Storz and Moriyama, 
2008; Storz et al., 2019; Cheviron et al., 2014; Schippers et al., 2012). 
Interestingly, the high-altitude adaptations do not seem costly, for 
example, humans living at high altitude have longer lifespans (Midha 
et al., 2023; Rogers et al., 2023). Recently, gut microbiome (hereafter 
GM) with specific diversity, composition, and function have been 
proposed as an additional factor that could contribute to high-altitude 
adaptation. For example, strong positive correlation has been 

demonstrated between the elevation and the proportion of anaerobic 
bacteria in the GM of wild house mice (Mus musculus) (Suzuki et al., 
2018), which suggests that microbiota might contribute to the 
adaptation to hypoxia by helping to cope with low oxygen levels. 
Studies on wild pika (Ochotonidae) have demonstrated that an 
increase in altitude positively affects the diversity of gut microbial 
community, both at the host individual (alpha-diversity) and the 
population (beta-diversity) level (Li et al., 2019). Several species of 
wild ungulates on the Tibetan plateau have more diverse microbiomes, 
suggesting specific microbiome changes associated with high altitudes 
that facilitate extracting more energy from the plant diet (Ma 
et al., 2019).

Despite the growing body of research on the variation of 
microbiota with the altitude, it is not easy to disentangle which 
components of this variation represent genuine adaptations to high 
altitude environments. Apart from the environmental factors that 
systematically change with the altitude (e.g., oxygen level or 
temperature), there are multiple other modulators of gut microbiota 
that can co-vary with the altitude. One of them is host genetics, (Tabrett 
and Horton, 2020; Dąbrowska and Witkiewicz, 2016), which is a basis 
of evolutionary adapation (Suzuki et al., 2019). Because host species 
colonization history often follows the altitudinal gradient, the genome-
wide population differentiation is expected to vary with altitude. The 
change in altitude also affects the composition of the ecological 
communities (Gale, 2004; Di Musciano et al., 2021; Lee et al., 2021), 
which in turn shape the diet of animals (De Filippo et al., 2010; Kuang 
et al., 2022). The diet stands as one of the primary factors affecting the 
microbiome composition. Finally, seasonal variaion might also affect 
the microbiome diversity and composition (Guo et al., 2021; Hu et al., 
2018; Jiang et al., 2021; Fan et al., 2022).

Some study systems might be more suitable for disentangling the 
direct drivers of gut microbiota composition and diversity from those 
that simply co-vary with the altitude. Subterranean rodents, 
particularly Nannospalax xanthodon (Anatolian Blind Mole Rat, 
hereafter ABMR) possesses a unique combination of several traits that 
could offer an opportunity to disentangle such effects. The AMBR is 
an obligate subterranean rodent species (Arslan et al., 2016), setting it 
apart from many of its terrestrial and social rodent counterparts. This 
distinct ecological niche is likely to have profound implications for the 
composition and dynamics of its gut microbiota. Unlike social rodents 
that live in close-knit communities, ABMRs are solitary, each 
constructing an intricate network of underground tunnels and 
aggressively defending them from conspecifics, except for mating and 
raising young (Sözen, 2005; Nevo, 1979, 2007). In contrast to social 
rodents, this solitary lifestyle limits direct individual interactions, and 
thus slows down the exchange of microbial communities within the 
population. The subterranean environment, characterized by more 
stable temperature and humidity, can also be severely hypoxic when 
compared to the ambient atmospheric O2 levels. This effect could 
be exacerbated by the high altitude hypoxia, putting pressure on the 
aerobic microbes and favoring the anaerobic ones (Suzuki et al., 2018). 
Another potential factor relevant for gut bacteria is the increased 
concentration of carbon dioxide inside the AMBR tunnel networks, 
since some gut bacteria may compete for CO2 as a substrate (Nollet 
and Verstraete, 1996).

AMBR inhabits various regions of Turkey, from the warm 
Mediterranean coast of the Aegean Sea to the cold alpine climates of 
the Taurus Mountains and Eastern Anatolia. At the same time, its 
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dispersing ability is expected to be quite limited compared to above-
ground rodents. Slow dispersal, combined with small population size, 
is expected to allow ample time for the various types of environmental 
adaptation, which may include changes in microbiome composition, 
to manifest into notable differences between neighboring populations. 
Finally, the AMBR feeds on a wide range of plant species, 
predominantly those with nutrient-rich root parts, yet with a high 
fibre content (Sözen, 2005; Heth et al., 1989; Ülgen and Tavşanoğlu, 
2024). This factor alone is expected to contribute to a high diversity of 
GM, offering a rich material for exploring the roles of the various 
factors listed above. To date, only three studies addressed the 
microbiome composition of the representatives of the Nannospalax 
genus (Sibai et al., 2020; Solak et al., 2023; Kuang et al., 2022), and just 
two of them were set in a natural environment (Kuang et al., 2022; 
Solak et al., 2023).
Notably, the ABMR is in fact a taxonomic complex of multiple, 
cytogenetically distinct, and potentially genetically isolated 
geographic populations (Arslan et al., 2016). At the same time, 
many (cyto) genetically uniform populations have continuous 
distributions occupying a range of diverse habitats. In this study, 
we focused on one the most striking example from the Central 
Taurus (Bolkar) mountains, where a single chromosomal race of 
ABMR (“cilicicus”) with a diploid chromosome number 2n = 58 
occurs at the elevations from ca 1,000 m to 3,000 m above sea 
level (Sözen et al., 2006). Employing a culture-independent, 
advanced high-throughput metabarcode amplicon sequencing 
approach, we investigated: (i) the gut microbiota of ABMR using 
the 16S rRNA, (ii) its diet composition using 18S rRNA, (iii) 
thyroid hormone levels as an indirect proxy of the metabolic rate 
and (iv) the host genetic structure using microsatellite markers. 
The primary aim was to determine whether and how the altitude 
in conjunction with other factors influences the composition of 
the GM of ABMR.

2 Methods

2.1 Study setup and sampling

Our sampling site is located in the Central Taurus Mountains in 
Türkiye, encompassing an altitudinal gradient ranging between 
1,000 m asl and 3,000 m asl (Figure 1). The annual mean temperature 
and mean precipitation at the highest sampling location are 0.16°C 
and 744.6 mm, respectively, while they are 11°C and 344.7 mm at the 
lowest sampling location. Partial snow cover is present until June at 
high altitudes and may limit digging activities and access to water for 
these animals.

The sampling was conducted at three different altitude categories, 
each represented by two locations. The study area is about 460 km2, 
the distance between farther most localities (Eregli and Kiziltepe) is 
about 68 kilometers and the average distance between localities 
(except Eregli) is 8.5 kilometers. To minimize the influence of seasonal 
variation, the sampling was carried out during the same 2 months (late 
June to mid-July) in 2019 and 2021. From each locality, at least eight 
samples were collected, resulting in a total of 65 individuals. However, 
some samples failed during the PCR step of 16S and 18S rRNA library 
preparation. Sampling details are shown in Figure 1 and Table 1.

Animals were live-captured by opening the burrow passageways 
at specific sections and blocking retreat when the animal mended the 
tunnel (Wertheim and Nevo, 1971). After recording body mass and 
sex, animals were euthanized and dissected. Approximately 1 ml of 
whole blood was taken from the heart, kept overnight at ~4\u00B0C, 
and centrifuged at 7 RPM to separate the serum. The serum samples 
and entire digestive tracts were placed on dry ice and kept frozen until 
transferred to a − 80°C freezer within several days. Additionally, a ~ 5 g 
caecum sample (both the content and the caecum wall) was stored in 
ethanol immediately upon dissection. The procedure was approved by 
the Animal Ethics Committee of Bülent Ecevit University (#91330202).

2.2 Genotyping of gut microbiome and diet 
content

A small (~5 g) piece from the terminal end of the caecum was 
collected and ~ 0.25 g of the tissue with its content was used for DNA 
extraction using the DNEasy PowerSoil Kit (Qiagen, Cat No: 47014) 
following the manufacturer’s protocol.

For the microbiome genotyping we used 17 individuals from low 
altitude, 15 individuals from middle altitude, and 19 individuals from 
high altitude, with a minimum of 7 samples per locality, on a total of 
51 samples (Table 1). For the diet genotyping we used 12 individuals 
from low altitude, 14 individuals from middle altitude, and 12 
individuals from high altitude, with a minimum of 2 samples per 
locality, on a total of 38 samples. On diet genotyping, 13 samples failed 
during the PCR amplification stage.

To amplify the V3-V4 variable region of the bacterial 16S rRNA 
gene, the universal primers S-D-Bact-0341-b-S-17(5’-CCTAC 
GGGNGGCWGCAG-3′) and S-D-Bact-0785-a-A-21 (5’-GACTACHV 
GGGTATCTAATCC-3′) (Klindworth et al., 2013) were utilized. The 5′ 
ends of the primers were extended with inline barcodes to increase the 
multiplexing capacity (Supplementary Table S1). PCR reactions done in 
10 μL volume, with 1x KAPA HIFI Hot Start Ready Mix (Kapa 
Biosystems, United States) and each primer at 0.2 μM and 4.6 μL of DNA 
template with the following cycling conditions: initial denaturation at 
98°C for 5 min, followed by 30 cycles of 98°C (15 s), 55°C (20 s), and 
72°C (40 s), and a final extension at 72°C for 5 min. The dual-indexed 
Nextera sequencing adapters were ligated during the second PCR, which 
is the same cycling conditions except it was performed in 20 μL volume, 
the concentration of each primer was 1 μM, 1.5 μL of the first PCR 
product diluted × 12.5 was used as a template and the number of PCR 
cycles was 12. The quantity and the expected length of the PCR products 
were evaluated by running them on a 1.5% agarose gel and successfully 
amplified bands were pooled equimolarly, and purified with SpriSelect 
beads (Beckman Coulter, United  States). The resulting pool was 
subjected to size selection using the Pippin Prep automatic size selection 
system (Sage Science), targeting an amplicon size window of 520–750 bp. 
The pool of libraries was sequenced using MiSeq (Illumina, 
United States) and v3 chemistry (i.e., 2 × 300-bp paired-end reads) at the 
CEITEC Genomics Core Facility (Brno, Czech Republic).

To amplify 110–150 bp of eukaryotic 18S rRNA, a similar two-step 
PCR protocol was employed. We  modified the primers from 
(Guardiola et  al., 2015). F primer appended with 4–5 bp inline 
barcode to increase multiplexing possibilities and both primers 
appended with the “tail sequence” for priming the second PCR 
(Supplementary Table S2). Two elongation blockers were added to the 
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first PCR to prevent amplification of (1) the mole rat DNA (Rodent_
blckr: +G + T + C + C + C + C + C + A + A + C + T/3SpC3/; plus sign 
stands for LNA modification; 3SpC3 is C3 spacer at the 3′ end) and 
(2) the intestinal nematode common in rodents, Syphacia spp. 
(Syphacia_blckr: +T + G + T + C + T + G + A + A + A + T + A + C + T/
SpcC3/). The final sequence of primers are: Guard_18S_F_longer: 
GATYTGTCTGGTTVATTCCGand Guard_18S_R_longer: 
CATCACAGACCTGTTATYGC. First PCR was performed in 10 ul 
reaction (1x KAPA HIFI Hot Start Ready Mix, 0.3 μM of each primer, 
1uM of Rodent_blckr, 2 uM of Syphacia_blckr and 1.4 ul of caecal 
DNA), with 3 min at 95°C and 34 cycles of 98°C (20 s), 56.5°C (15 s) 
and 70°C (15 s), and a final extension at 70°C (30 s). The second PCR 
was performed in 15 uL (1x KAPA HIFI Hot Start Ready Mix, 0.5 uM 
of each indexed primer, and 1 uL of the first-PCR product as template), 
with 3 min at 95°C and 12 cycles of 98°C (20 s), 55°C (15 s) and 72°C 

(15 s), and a final extension at 72°C (3 min). Each PCR was performed 
in a technical duplicate. PCRs were quantified using 2% agarose gel 
electrophoresis and pooled equimolarly. Fragments between 240 and 
360 bp were extracted using PippinPrep and sequenced with Illumina 
Nextseq, 150 bpPE reads at the CEITEC Genomics Core Facility 
(Brno, Czech Republic).

To account for possible amplification stochasticity, each sample 
was amplified and genotyped twice. In the subsequent analyses, the 
data from the duplicates were treated as individual samples.

2.3 Individual genotyping of the host

For the host genotyping, we used 23 individuals from low altitude, 
15 individuals from middle altitude, and 27 individuals from high 

FIGURE 1

The sampling area in the Central Taurus mountains, Türkiye. The insert on the right shows the geographic location within the Anatolian peninsula.

TABLE 1 Number of samples used in each analysis.

Altitude 
category

Locality Elevation Male Female Total Microbiome Diet Thyroxine Microsatellites

Low
Eregli 1,050 m 5 10 15 8 8 4 15

Ulukisla 1,250 m 3 6 9 9 4 5 5

Middle
Madenkoy 1880 m 3 5 8 8 8 8 7

Darbogaz 2000 m 3 5 8 7 4 0 8

High
Karagol 2,550 m 4 11 15 10 2 10 15

Kiziltepe 2,900 m 1 11 12 9 10 0 12

Total 19 48 67 51 38 28 63
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altitude, with a minimum of 5 samples per locality, on a total of 65 
samples (Table 1).

The genotyping protocol utilized a combination of seven 
microsatellite markers sourced from (Popa et  al., 2014) and six 
additional microsatellite markers from (Karanth et  al., 2004). 
Consequently, a total of 13 variable microsatellite markers were 
employed for the genotyping analysis (see Supplementary Table S3). 
Multiplex PCR was performed with FAM and HEX fluorescent-
labeled primers, using a QIAGEN Multiplex PCR Kit (QIAGEN, Cat. 
No: 206143). This enabled the amplification of multiple targets within 
a single reaction. Fragments were differentiated by the respective 
fluorescent labels as well as by their expected sizes.

PCR reactions were performed in PCR plates in 7 μL reaction 
volumes (3 μL of Multiplex PCR Buffer, 0.6 μL of Q-solution, 1.5 μl 
of DNA, 0.5 to 1 μl of primer, and distilled water). Notably, the 
HEX-labeled primers required higher concentrations (10 
picomoles) compared to FAM markers (5 picomoles) for 
optimal performance.

The PCR temperature profile consisted of an initial denaturation 
step at 95°C for 15 min, followed by 10 cycles of denaturation at 93°C 
for 40 s, annealing at 60°C for 40 s (with a decrease of 0.4°C per cycle), 
and extension at 72°C for 80 s. This was followed by 20 cycles of 
denaturation at 93°C for 30 s, annealing at 56°C for 40 s, extension at 
72°C for 80 s, and concluded with a final extension step at 60°C 
for 30 min.

For fragment analysis, we employed the GeneScan™ 500 LIZ™ 
dye Size Standard (Applied Biosystems™, Cat. No: 4322682). 
Initially, the size standard was diluted with Hi-Di™ Formamide 
(Cat. no. 4311320) at a ratio of 40 size standard to 1,000 formamide. 
Subsequently, 10 μL of the diluted standard was added to each well, 
followed by the addition of 2–3 μL of PCR product. The plate was 
subjected to a thermal cycler at 95°C for 3 min, followed by 
immediate chilling. Fragment analysis was performed using the 
3130XL Genetic Analyzer (Applied Biosystems™), with allele 
identification carried out using Gene Mapper Software 
(version: 5.0).

2.4 Thyroxine levels quantification assays

Using the serum from four localities among 3 altitude groups 
(Table 1), we measured free fractions of thyroxine and triiodothyronine 
(fT4 and fT3) as well as total thyroxine and triiodothyronine (TT4 and 
TT3) using commercial ELISA kits according to manufacturer’s 
instructions (DRG Diagnostics, Marburg, Germany: FT4 - EIA 2386; 
FT3 - EIA 2385; TT4 - EIA 4568; TT3 - EIA 4569).

2.5 Bioinformatic analyses

Following demultiplexing and trimming of the raw 16 s rRNA and 
18 s rRNA sequencing data using Skewer (Jiang et al., 2014) reads with 
low quality were eliminated by setting the expected error rate per 
paired-end read >1 (Jiang et al., 2014).

The quality-filtered reads were denoised with DADA2 software 
(Callahan et al., 2016), resulting in an abundance matrix containing the 
number of reads for each amplicon sequence variant (ASV) in each 
sample. The UCHIME software (Edgar et al., 2011) was employed to 

identify and remove sequence chimeras, with gold.fna database1 
serving as a reference for chimera filtering. For 16S rRNA bacterial 
ASV annotation in the DADA2 software, the Silva database version 
138.1 (updated in March 2021; Quast et  al., 2013) was used as a 
reference. For the 18S rRNA dataset, for each ASV, the top 200 Blastn 
hits were downloaded from the NCBI nucleotide database (Camacho 
et al., 2023) and used to construct the custom reference database. The 
ASV taxonomy was then assigned using the RDP classifier as previously 
described (Quast et al., 2013). Finally, the phyloseq (McMurdie and 
Holmes, 2013) package was utilized to construct a comprehensive 
database containing the Amplicon Sequence Variants (ASVs) table, 
ASV sequences, taxonomic annotations at phylum and family and 
genus level (when possible), and phylogeny for both datasets.

2.6 Microbiome and diet

The microbiome database comprised 1,103,094 high-quality 
sequences grouped in 4841 non-chimeric ASVs. The number of 
sequences in the microbiome database per sample varied between 
8,936 and 30,237. The diet database comprised 2,392,247 high-quality 
sequences grouped in 140 non-chimeric ASVs. The number of 
sequences in the diet database per sample varied between 515 and 
205,099. For the rarefaction of the ASV table, “phyloseq_mult_raref_
avg” function from the metagMisc package was used with 100 
iterations, which provides robustness by applying repeated 
subsampling. Using the minimal sequencing depth as the rarefaction 
threshold, we ensured even sequencing depth per sample and utilized 
the down-sampled dataset for further analysis unless otherwise stated. 
All the statistical analyses were done in R version 4.2.2.2

The procrustes test (Procrustes Rotation of Two Configurations in 
vegan pack (Oksanen et al., 2024)) was used to compare duplicates and 
for both datasets procrustes test showed the composition was 
consistent across all duplicates (number of permutations = 999, 
procrustes sum of squares (m12 squared) = 0.00414, Correlation in a 
symmetric Procrustes rotation = 0.9979, p-value = 0.001).

We employed the exact observed number of ASVs, Shannon, and 
Simpson indices to estimate alpha diversity using the “estimate_
richness” function in the phyloseq package (McMurdie and Holmes, 
2013). To compare alpha diversities between altitudinal groups, 
we used the “wilcox.test” function (hereafter WT, stats package) (Bauer, 
1972). Per-sample Shannon and Simpson diversity indices were used 
as response variables in the Generalized Linear Mixed Models with 
Gaussian distribution (hereafter GLMM, glmmTMB package; Brooks 
et al., 2017), with the altitude category (low, middle, and high) included 
as a fixed variable and sampling location included as a random variable.

As a measure of beta diversity, we  employed the Bray–Curtis 
dissimilarity index, which focuses on relative abundances using the 
“distance” function with a specified “bray” method (phyloseq package). 
We visualized the between-sample divergence pattern using Principal 
Coordinate Analysis (PCoA). Furthermore, we applied PERMANOVA 
(Permutational Multivariate Analysis of Variance Using Distance 
Matrices, “adonis2” function from the vegan package) to test for 

1 Available at: https://drive5.com/uchime/gold.fa

2 https://www.r-project.org/

https://doi.org/10.3389/fmicb.2024.1476845
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://drive5.com/uchime/gold.fa
https://www.r-project.org/


Solak et al. 10.3389/fmicb.2024.1476845

Frontiers in Microbiology 06 frontiersin.org

differences in the gut microbiota composition between altitudes. 
Additionally, to take account of the possible effect of the sampling 
localities, we used the first two principal components of the Bray-
Curtis PCoA as response variables in the GLMM analysis, with 
altitude category (low, middle, and high) included as a fixed variable 
and sampling location included as a random variable. Furthermore, 
the effect of fixed variables was tested using likelihood ratio tests 
(“anova” function, stats package). Finally, we employed the MDMR 
(Multivariate Distance Matrix Regression, mdmr package (McArtor 
et  al., 2017)) with the Bray-Curtis distance matrix as a response 
variable, altitude category as a fixed variable, and sampling location as 
a random variable. Then, for both alpha and beta diversity measures, 
we tested the effects of sex, sampling year, and body mass using the 
same statistical approach. We checked for the possible correlation 
between microbiome and diet composition. First, the samples not 
present in both datasets were excluded. Then the Mantel Test (ape 
package; (Mantel, 1967; Paradis and Schliep, 2019)) was employed to 
check the correlation between diet and microbiome composition.

We used the “DA.kru” function in the DAtest package for calculating 
Kruskal-Wallis analysis (Russel88/DAtest on GitHub (Russel et  al., 
2018)) to compare the differential abundances of bacterial phyla and 
families among different altitudes. The p-values from “DA.kru” function 
were adjusted by “FDR” method (Benjamini and Hochberg, 1995) as 
default. To explore the relative abundances of ASVs that significantly 
differ among altitudinal groups or sampling localities, we  used the 
DESeq2 package (Anders and Huber, 2010). Additionally, we specifically 
focused on ASVs that exhibit higher abundance in one location or a 
select few, while being nearly or entirely absent in others. To do that, 
we employed “estimateSizeFactors” function in the DESeq2 package with 
LTR test parameter (Likelihood ratio test (chi-square test) for GLMs).

Finally, we  predicted high-level bacterial characteristics using 
BugBase4 (Ward et al., 2017) based on 16S rRNA data, following the 
online instructions. These phenotypes included Gram Positive, Gram 
Negative, Biofilm Forming, Pathogenic Potential, Mobile Element 
Containing, Oxygen Utilizing, Oxidative Stress Tolerant, and 
Facultatively Anaerobic bacteria. The relative frequencies of predicted 
phenotypes were then tested for altitudinal difference using Kruskal-
Wallis Test (“kruskal.test” in stats package (Hollander et al., 2013)) and 
the p-values were corrected using “p.adjust” function in stats package 
with the FDR method.

2.7 Host genetics

The individual genotypes were handled in adegenet package 
(Jombart, 2008) as a “genind” object. We calculated Nei’s pairwise Fst 
(Nei, 1973) between all pairs of populations by “pairwise.neifst” 
function hierfstat package, (Goudet, 2005). Then, we calculated the 
mean proportions of shared alleles by using the “propShared” function 
(adegenet package), averaged per respective sampling localities. Then, 
allelic richness for each altitudinal group was calculated using “allelic.
richness” function (hierfstat package) and compared with “t-test” 
function (stats package). Finally, we  run AMOVA (Analysis of 
Molecular Variance) for altitudinal groups and sampling localities 
“using poppr.amova” function in poppr package (Kamvar et al., 2014), 
and generated the p-values using “randtest” function in ade4 package.

STRUCTURE software (V2.3.4, (Pritchard et al., 2000)) was used 
to reveal the population genetic structure using the Admixture Model 

with 5,000 burnin, 50,000 MCMC replicates after burnin, 5 iterations, 
and correlated allele frequencies. The analyses run with and without 
sampling locality as prior, and a number of inferred genetic clusters 
(K) is set to a range between 1 to 6. The resulting output is reviewed on 
the Structure Harvester website (v.0.6.94, (Earl and vonHoldt, 2012)).

Using the “coancestry” function (related package; Pew et al., 2015), 
we  calculated the empirical relatedness between same-population 
individuals according to Li et al. (1993) to seek for possible correlation 
between kinship and microbiome composition. Only those samples 
present in both datasets were included. The pairwise matrix of genetic 
distances (measured as 1-relatedness) was computed using the “mat_
gen_dist” function, utilizing the “PCA” method (graph4lg package; 
Savary et al., 2021). Subsequently, Euclidean distance matrices were 
generated for each population. The Bray–Curtis dissimilarity distance 
matrices were constructed on the individual microbiome data, and the 
Mantel Test (ape package; Mantel, 1967; Paradis and Schliep, 2019) 
was employed to check for the correlation between host kinship and 
microbiome composition. Additionally, “grouprel” function (related 
package) is employed to calculate average within-group relatedness to 
compare with expected relatedness in simulated populations with 100 
iterations (ie. 100 parent-offspring, 100 full siblings, 100 half siblings, 
and 100 unrelated).

2.8 Thyroid hormone levels

Concentrations of fT4, TT4, fT3, and TT3 were analyzed with 
multiple linear regression models with altitude, sex, and weight as 
explanatory variables. All data were tested for normal distribution 
using three normality tests (Anderson-Darling, D’Agostino-Pearson 
omnibus, and Shapiro Wilk). Since fT4 concentrations were not 
normally distributed, fT4 concentrations were log-transformed before 
analyses. We first calculated one model with main effects (model 1) 
and one model with two-way interactions (model 2) to identify the 
best-fitting model. The Akaike information criterion (AIC) was used 
to estimate model fit. Based on the best-fitting model, explanatory 
variables with significant effects on hormone concentrations were 
identified. These analyses were conducted using GraphPad Prism 
(vers. 9.3.1, San Diego, CA, United States).

Effect of altitude on hormone levels was tested using 
ANOVA. Since this approach did not take into account the random 
effect of sampling altitude, we used GLMMs and MDMRs with alpha 
diversity metrics as response variables, hormone measurements as 
fixed, and sampling locality as a random variable. For the beta diversity, 
we employed GLMMs and MDMRs using two principal components 
of the Bray-Curtis PCoA as response variables, and hormone levels as 
fixed variables, and the sampling locality and altitude as a random 
effect. Finally, we use the DA.test package to see if there is correlation 
between hormone levels and differential abundance of a bacterial taxa.

3 Results

3.1 Gut microbiome

We successfully genotyped the 16S rRNA amplicons of a total of 
52 ABMR caecum samples in duplicates. For subsequent analyses, the 
data from duplicates were merged based on the consistent coverage of 
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ASVs between duplicates, meaning that only the ASVs found in both 
duplicates were retained.

The microbiome database was dominated by Firmicutes (53% of 
all reads), Bacteroidota (36%), and Desulfobacterota (0,7%). Another 
9 phyla detected were: Patescibacteria, Cyanobacteria, 
Elusimicrobiota, Campylobacterota, Proteobacteria, Actinobacteriota, 
Synergistota, Halobacterota, and Thermoplasmatota had low 
abundances (<1% reads, Supplementary Figure S1). At the family 
level, the data was dominated by Muribaculaceae (35%), 
Lacnospiraceae (28%), Christensenellaceae (~5%), Ruminococcaceae 
(~5%), Desulfovibrionaceae (~5%), Oscillospiraceae (~5%) and 29 
other bacterial families with less than 1% abundance 
(Supplementary Figure S1). The relative abundances of bacterial phyla 
were visualized for each sample, sampling location, and altitudinal 
group (Figures 2A,B) and individual microbiome variability shown 
in Supplementary Figure S2.

3.2 The Alpha and Beta diversity of 
microbiome

The alpha diversity of the gut microbiota in ABMR exhibited 
variations across different sampling locations and altitudinal groups. 
Specifically, the animals inhabiting the middle altitude demonstrated 
a more diverse composition of the microbiome compared to those at 
low and high altitudes (Figure 2C).

In the case of all three alpha diversity metrics (number of observed 
ASVs, Shannon and Simpson diversity indices), the WT analysis 
revealed that samples from the middle altitude group exhibited 
significantly higher levels of among-sample diversity compared to the 
other altitudinal groups. Moreover, the WT analysis indicated a 
significant difference between the middle and high altitudes, except 
for the Simpson diversity index (p-values for each test are shown in 
Figure 2C). GLMM analyses revealed that the likelihood ratio test 
comparing the two models was not significant for the Shannon index 
(ΔD.F = 2, χ2 = 4.6772, p-value = 0.09), and Simpson index (ΔD.F = 2, 
χ2 = 2.4964, p-value = 0.28), but significant for the number of observed 
ASVs (ΔD.F = 2, χ2 = 10.571, p-value = 0.005). While WT analyses 
revealed significantly higher bacterial diversity at middle altitudes 
using all three alpha diversity metrics, GLMM showed significance 
only for the number of observed ASVs. It is important to note that, 
unlike GLMM, WT analyses do not account for the effect of 
sampling locality.

The PERMANOVA results demonstrated significant differences 
between the altitudinal groups in terms of Bray-Curtis dissimilarities 
(F-value = 4.6839, df = 2, p-value = 0.001, and R2 = 0.16). Furthermore, 
we employed the first two axes of the Bray-Curtis-based PCoA as 
response variables in a GLMM analysis to assess the altitude’s effect. 
The first PCoA axis mostly corresponded to the elevation gradient, 
separating the three altitude categories. A notable exception to this 
trend was the high-altitude site of Kiziltepe, as indicated by the data 
points in the top right corner of Figure 2D, which clustered far apart 
from all other data points. At the same time, the second PCoA axis 
represented the elevation gradient more clearly, with data points at the 
bottom of Figure 2D corresponding to low-altitude samples and those 
at the top corresponding to high-altitude samples. In the GLMM 
analyses, the likelihood ratio test comparing the two models for the 
first PCoA axis was not significant (χ2 = 1.6172, df = 2, p = 0.44) which 

is most probably due to the Kiziltepe samples which clustered far from 
the rest, especially along the first axis. However, the comparison for 
the second PCoA axis indicated that the categorical model significantly 
enhanced the explanation of variation in the ABMR gut microbiota 
(χ2 = 9.9051, df = 2, p = 0.007). Finally, the results from MDMR analyses 
also showed a significant effect of altitude (df = 2, p-value =0.0006). All 
of the above patterns remained significant when the data collected in 
each year were analysed separately, but at the same time, the sampling 
year was itself a significant factor in models considering altitude and 
sampling localities as random variables (GLMM: χ2 = 10.423, df = 1, 
p-value = 0.001; MDMR: df = 1, p-value =0.00001). Neither GLMM for 
sex and Shannon diversity considering sampling locality and altitude 
as random variables (χ2 = 1.6125, df = 1, p-value = 0.20) nor GLMM for 
sex and beta diversity (i.e., the first PCoA axis; χ2 = 0.0132, df = 1, 
p-value = 0.90) were significant. Similarly, GLMM for host body mass 
and Shannon diversity considering altitude and sampling localities as 
random variables (Z-value = 0.542, SE = 0.00091, p-value = 0.55) and 
GLMM for host body mass and beta diversity (i.e., the first PCoA axis; 
χ2 = 1.581, df = 1, p-value = 0.21) found to be insignificant.

3.3 Differential ASV abundance testing

Anayses within the DA.test package revealed a significant effect of 
the altitude on the relative abundance of bacterial phyla and families. 
Specifically, the relative abundance of Bacteroidota increased with 
altitude, whereas Firmicutes and Desulfobacterota were significantly 
more abundant at low altitudes, and Verrucomicrobiota was only 
found at low altitudes (Table 2; Figure 2A).

At the bacterial family level, we  observed that the relative 
abundances of Muribaculaceae, and Unclassified Bacteroidales, 
increased with altitude, while the relative abundances of 
Lacnospiraceae, and Ruminococcaceae decreased. Additionally, 
Christensenellaceae was significantly more abundant at high altitude 
but less abundant at middle altitude, and Akkermansiaceae was only 
found at low altitude in both localities (Table 3).

The DESeq2 analysis revealed a significant effect of the sampling 
locality on the relative abundances of 51 ASVs (Table  4; 
Supplementary Figure S3). Twenty four of them were overabundant 
in one or in a few localities but significantly underrepresented in all 
the other localities (Table 4). Among these, Kiziltepe exhibited the 
highest number of ASVs with significant differential abundance 
(n = 12), while both high-altitude localities collectively harbored 19 
significant ASVs. Intriguingly, no such ASVs were detected in the 
middle altitude localities. These DESeq2 results correspond to alpha 
diversity analyses, which also suggest that the middle altitude samples 
comprise a blend of two other altitudinal groups.

3.4 Bacterial characteristics prediction

We used BugBase, a tool for measuring high-level phenotypes in 
the microbiome, to assess changes in bacterial phenotypes across 
different altitudinal groups (Figure 3). The ‘Facultatively Anaerobic’ 
phenotype was the only one that displayed a significant difference 
(Kruskal-Wallis fdr adjusted p-value = 0.049), attributed to its 
prevalence at the high altitude. Note that almost all ASVs that 
contributed to this phenotype belonged to the bacterial phylum 
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Firmicutes, which itself was more abundant at the high altitude 
(Figure 2A).

3.5 Diet composition

We successfully genotyped the 18S rRNA amplicons from 38 
ABMR caecum samples (12 low, 14 middle, and 12 high altitude) in 
duplicates. Similar to the 16S results, the data from duplicates were 
merged based on the same coverage of ASVs between duplicates, and 
the data from duplicates were treated as individual samples.

The raw dataset was clustered in four phyla: Arthropoda, 
Basidiomycota, Chordata, and Streptophyta. However, 
considering the ABMRs are herbivorous rodents (Sözen, 2005), 
the database was filtered by excluding the host genome and other 
possible contamination-caused sequences from non-plant phyla, 
retaining only those belonging to plants (Streptophyta). This 
resulted in approximately two-thirds of the reads being retained 

for further analysis. At the order level, the data was dominated by 
Asterales (42.7%) and Brassicales (21%), Apiales (15.21%), 
Fabales (10.37%), Asparagales (7.92%), Rosales (6.61%), and as 

FIGURE 2

(A) The relative abundance of dominant bacterial phyla among the sampling localities and (B) altitudinal groups (X-axis represents % of the abundance 
of all reads). (C) Variation in the GM diversity (number of observed ASVs, Shannon, and Simpson diversity indices) across altitudes (p-values are given 
from WT analysis). (D) PCoA plot on Bray–Curtis dissimilarity metric showing the divergence between gut microbiota from altitudinal groups.

TABLE 2 Comparison of differential abundances of bacterial phyla 
between altitudes.

Phylum Kruskal-
Wallis p 

value

Adjusted 
p value 

(fdr)

Relative 
abundance 
among 
altitudes

Bacteroidota 0.00003 0.0004 high > middle > low

Firmicutes 0.007 0.03 low > middle > high

Desulfobacterota 0.01 0.04 low>high>middle

Verrucomicrobiota 0.0003 0.002 Only found at low

The last column indicates relative abundance among altitudinal groups (e.g., high > middle > 
low represents higher relative abundance at high altitude compared to middle altitude, and 
higher at middle altitude compared to low altitude). The gradual increase or decrease 
between relative abundance with altitude is marked as bold.
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well as 12 other plant orders with less than 5% relative abundance. 
Due to the relatively short sequence lengths of our 18S rRNA 
libraries which become increasingly unreliable when assigning 
low-level taxa and lack of complete reference database focused on 
plant 18S rRNA, we only resolved the diet taxonomy down to the 
order level.

The relative abundances of plant orders across altitudinal groups 
and sampling locations are illustrated in Figures 4A,B. Asterales and 
Fabales were prevalent across all groups, whereas Apiales were 
exclusively observed at low and middle altitudes, with significantly 
higher abundance at the middle altitude (Kruskal-Wallis fdr adjusted 
p-value = 0.05). In contrast, Asparagales were observed exclusively at 
the high altitude, consistent with the DA.test results (Kruskal-Wallis 
fdr adjusted p-value <0.0001).

3.6 The Alpha and Beta diversity of diet

The observed number of ASVs, Shannon, and Simpson diversity 
measures did not significantly differ by altitude (Figure 4C). This 
result was supported by both WT and GLMMs (both p-values >0.05). 
Nevertheless, all three indices displayed the widest observable range 
at the middle altitude (Figure 4). After examining the variation in 
Bray–Curtis dissimilarity index of the diet composition with PCoA, 
PERMANOVA (p-value = 0.001, R2 = 0.14, and F-value = 2.8517), the 
GLMM for the first PCoA axis (χ2 = 7.6772, df = 2, p = 0.021), and 
MDMR for PCoA axes (df = 2, p-value = 0.00001) showed a significant 
effect of the altitude (Figure  4D). In the PCoA, the high-altitude 
animals clustered separately, while the low and the middle altitudes 
overlapped to some extent. There was no significant effect of the sex, 
body mass, and sampling year on the diet of ABMR. The Mantel Test 

TABLE 3 Comparison of differential abundances of bacterial families 
between the altitudes.

Family Kruskal-
Wallis p 

value

Adjusted 
p value 

(fdr)

Relative 
abundance 
among 
altitudes

Muribaculaceae 0.00005 0.002 high > middle > low

Lachnospiraceae 0.0001 0.003 low > middle > high

Akkermansiaceae 0.0003 0.005 Only found at low

Christensenellaceae 0.0006 0.007 low>high>middle

Unclassified 

Bacteroidales

0.002 0.02 high > middle > low

Ruminococcaceae 0.003 0.02 low > middle > high

Lactobacillaceae 0.004 0.03 high>low>middle

Butyricicoccaceae 0.005 0.03 middle>high>low

The last column indicates relative abundance among the altitudinal groups (e.g., high > 
middle > low). The statistically significant results are marked in bold.

TABLE 4 Number of ASVs with significant abundance difference across 
sampling localities.

Altitude Locality No. of ASVs

Low
Eregli 3

Ulukisla 2

Middle
Madenkoy 0

Darbogaz 0

High
Karagol 4

Kiziltepe 15

FIGURE 3

Variation of predicted bacterial phenotypes among the altitudinal groups. Values in the y-axis represent the BugBase bacterial phenotype prediction.
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indicated no significant correlation between the diet and the 
microbiome composition (p-value = 0.20, r = 0.03).

3.7 Host genetics

A total of 65 samples were genotyped at the six loci reported in 
(Karanth et al., 2004), with 6.81% missing data, but only the samples 
collected in 2019 were genotyped for the seven loci reported in (Popa 
et al., 2014), with 25% missing data. The mean allelic richness values 
calculated in low, middle, and high altitude groups were 1.636348, 
1.735554, and 1.603827, respectively. There was no significant 
difference in mean allelic richness among the altitudinal groups (t-test 
p-values >0.05). The mean allelic richness at the sampling locality level 
ranged between 1.352573 (Kiziltepe) and 1.721504 (Madenkoy), and 
the only significant difference was observed between Eregli and 
Kiziltepe (t-test p-value = 0.01). The pairwise Fst and proportion of 
shared alleles between populations are shown in Table 5.

Table 4 presents the mean proportions of shared alleles and the 
pairwise Fst among populations. The shared alleles proportions 
ranged from 38% (Eregli and Kiziltepe) to 52% (Madenkoy and 
Darbogaz), while the Fst varied from 0.025 (Karagol and Madenkoy) 
to 0.25 (Karagol and Darbogaz). Notably, the Fst between Uluskisla 

and Madenkoy was negative (−0.025), likely due to the high 
proportion of missing data in the Madenkoy samples. Altitudinal 
genetic differences in Fst were 0.04 (low to middle), 0.06 (middle to 
high), and 0.11 (low to high). Notably, the confidence intervals for the 
Fst estimates were very wide, spanning zero in all cases except for four 
values: Darboğaz-Eregli = 0.056 (0.014–0.095), Karagol-Eregli = 0.112 
(0.047–0.199), Karagol-Darbogaz = 0.233 (0.020–0.445), Kiziltepe-
Karagol = 0.118 (0.042–0.188).

The MANOVA revealed the only significant variation between the 
sampling localities at the level of 11.3% (p-value = 0.01), but the 
variation among altitudes (6%, p-value = 0.49), and among samples 
within the same altitude (1%, p-value = 0.76) were non-significant. 
Finally, the two runs of STRUCTURE (with and without the prior) 
both indicated the best model at K = 2 with the Delta K values of 
44.840244 and 121.992245, respectively. These results suggest that 
while our dataset could potentially represent an admixture of two 
genetically distinct clusters (see Supplementary Table S4; 
Supplementary Figure S5), this weak genetic structure does not reflect 
the altitudinal variation.

Our analysis of genetic relatedness at the individual level using 
related (Pew et al., 2015) revealed that the average observed within-
group relatedness across all localities was significantly higher 
compared to the expected values (p-value = 0.01). At the level of 

FIGURE 4

(A) The relative abundance of dominant plant orders among the sampling localities and (B) altitudinal groups (X-axis represents % of the abundance of 
all reads). (C) Box-plot showing variation in diet diversity (number of observed ASVs, Shannon, and Simpson diversity indices) between altitudes. Both 
WT and GLMM showed no significant difference between altitudes. (D) PCoA of Bray–Curtis dissimilarity in diet composition among the individuals, 
altitudes, and localities.
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locality, Eregli, Darbogaz, and Kiziltepe showed higher than expected 
relatedness, while Ulukisla, Madenkoy, and Karagol showed lower 
than expected relatedness (Supplementary Figure S6). The Mantel 
tests between the microbiome composition and the individual genetic 
relatedness in each sampling locality showed no significant correlation 
(r < 0.09, p-values >0.05).

3.8 Thyroxine hormone levels

To assess the effects of altitude on thyroid hormone levels and to 
account for additional factors known to influence thyroid hormone 
concentrations, we constructed multiple linear regression models with 
altitude, sex, and the body mass as explanatory variables. Altitude as 
a main effect exerted a significant effect on fT4 concentrations 
(F = 6.38, p-value = 0.021), while the sex had no effect (F = 0.0001, 
p-value = 0.98) and the body mass only had a marginal effect (F = 4.06, 
p-value = 0.059) on fT4. In contrast, none of the given factors had a 
significant effect on fT3. The main effects did not affect TT4 and TT3 
concentrations, but the interaction of sex and altitude exerted a 
statistically significant effect on total hormone concentrations 
(Supplementary Table S5). Furthermore, the fT4/TT4 ratio was 
significantly lower in animals living at low altitudes compared to 
middle altitudes and showed a trend toward a significantly lower ratio 
compared to high altitudes (p-value = 0.09, Figure 5).

ANOVA and GLMMs revealed that there is a marginally 
significant effect of TT4 hormone levels on the Shannon and 

Simpson alpha diversity metrics. Specifically, TT4 levels showed 
negative correlation with alpha diversity metrics. The 
PERMANOVA performed on the Bray-Curtis distance matrix and 
GLMMs applied to the first axis of PCoA revealed that there is a 
significant effect of the FT4/TT4 levels on the microbiome beta 
diversity. However, while the correlation of the Bray-Curtis distance 
matrix correlated with the FT4/TT4 ratio positively, the PCoA axis 
showed negative correlation (Table 6; see Supplementary Table S6). 
Finally, the DA.test results revealed no significant correlation with 
the relative abundance of bacterial taxa and the levels of 
thyroid hormones.

4 Discussion

Our study is the first to address the multiple aspects of altitude 
adaptation in the subterranean Blind Mole Rat (Nannospalax 
xanthodon)  - a biomedically and evolutionarily important model 
organism. We found that altitude is indeed a key factor shaping the 
variation observed in (i) microbiome, (ii) diet, and (iii) thyroid 
hormone levels, whereas (iv) its population genetic structure reflects 
a fine-scale geographic pattern rather than the elevation gradient. 
We could not determine statistically whether the biological aspects 
(i-iv) also interact in a meaningful way among themselves, or if (i-iii) 
simply co-vary with the altitude. Below, we  take advantage of the 
existing knowledge of the complex nature of the microbiome 
functioning and mammalian adaptation to high altitudes, in order to 
hypothesize on the possible mechanisms behind our findings.

4.1 Changes in bacterial taxa and 
phenotypes among the altitudinal groups

The ratio of Firmicutes/Bacteroidota (F/B) is linked to various 
host health, disease traits, and also linked with altitude according to 
most studies (Indiani et al., 2018; Jasirwan et al., 2021; Koliada et al., 
2017; Mariat et al., 2009; An et al., 2023). A study on Rhesus macaques 
indicated that animals inhabiting high altitudes exhibit a higher 
abundance of Bacteroidota and a lower abundance of Firmicutes 
compared to those at lower altitudes (Wu et al., 2020). Another study 
examining the composition of the oral microbiome in Tibetans living 
at high (2800–3,650 m) and ultra-high (3650–4,500 m) altitudes 
reported a low F/B ratio in the populations at the highest altitude (Liu 
et al., 2021). This observation was speculated to be an adaptation to 
maintain normal blood pressure in hosts, considering the decrease in 

TABLE 5 Genetic differentiation among the sampling localities.

X Eregli (L) Uluskisla (L) Darbogaz (M) Madenkoy (M) Karagol (M) Kiziltepe (M)

Eregli 0 0.39 0.48 0.41 0.40 0.38

Ulukisla 0.059 (−0.011–0.187) 0 0.39 0.41 0.39 0.44

Darbogaz 0.056 (0.014–0.095) 0.116 (−0.005–0.220) 0 0.52 0.51 0.45

Madenkoy 0.028 (−0.013–0.084) −0.025 (−0.070–0.029) 0.065 (−0.002–0.140) 0 0.42 0.46

Karagol 0.112 (0.047–0.199) 0.053 (−0.019–0.146) 0.233 (0.020–0.445) 0.025 (−0.024–0.095) 0 0.48

Kiziltepe 0.034 (−0.003–0.081) 0.061 (−0.029–0.167) 0.059 (−0.027–0.139) 0.026 (−0.030–0.110) 0.118 (0.042–0.188) 0

The lower diagonal represents the pairwise Fst (Nei, 1987) and the upper diagonal represents the mean proportion of shared alleles between sampling localities. The 95% confidence intervals 
in brackets for Fst values (1,000 bootstraps, estimates were lower CI limit >0 highlighted in bold font). L: low altitude, M: middle altitude, and H: high altitude.

FIGURE 5

Thyroid hormone levels among altitudinal groups. (A) fT4 levels and 
(B) fT4/TT4 ratio.
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ambient oxygen and maximal oxygen consumption (VO2max) of the 
human body with altitude (Squires and Buskirk, 1982), and lower F/B 
ratio has been associated with a lower VO2max in another study 
(Durk et al., 2019). We observed the same pattern in AMBR (see 
Table 2; Figure 2A), which could suggest a role of the low F/B ratio in 
blood pressure maintenance. At the same time, the extreme 
specialization of the AMBR to subterranean lifestyle may create a 
very different context compared to the above listed examples. The 
ABMR responds to the hypoxia caused by low levels of O2 inside the 
tunnels rather than to its ambient atmospheric concentration, with 
the additional factors such as tunnel depth, soil type and permeability, 
animal own activity, etc. (see the respiratory stress hypothesis in 
(Arieli, 1979; Darden, 1972)) playing a role. Importantly, some 
studies have presented conflicting results regarding the link between 
the F/B ratio and altitude (ie., Li and Zhao, 2015; Zeng et al., 2017).

An increase in the abundance of strictly anaerobic bacteria at 
higher altitudes is a well-known phenomenon, for example in wild 
house mice (Suzuki et  al., 2018) and humans (Lan et  al., 2017), 
although such effects were mostly observed at much greater 
elevations (i.e., up to 4,500 m a.s.l.) compared to our study (the 
highest location was at 2900 m a.s.l.). The previously mentioned 
factors specific to the subterranean environment and AMBR lifestyle 
may also explain the lack of significant difference in the abundance 
of strictly anaerobic bacteria among our altitudinal groups. Even 
more striking is the complete absence from our 16S rRNA dataset of 
the anaerobic bacterial genus Prevotella, which was previously found 
to be strongly associated with increasing altitude in wild house mice 
(Suzuki et al., 2019), wild pikas (Li et al., 2016b), high altitude yaks, 
in Tibetan sheep (Zhang et al., 2016), and in humans (Li et al., 2016d; 
Lan et al., 2017), but see (Li and Zhao, 2015). The Prevotella is also 
present at ~3.5% in subterranean plateau zokors - another member 
of the family Spalacidae living at high altitudes (Hu et al., 2023). Our 
results as well as the previous studies suggest that the absence of 
Prevotella in Blind Mole Rats GM may actually be a common feature 
of the wild populations of these rodents: i.e. it was detected neither 
in the wild-caught N. xanthodon [(Kuang et al., 2022; Solak et al., 
2023), nor in N. ehrenbergi (Kuang et al., 2022; Solak et al., 2023)], 
but Sibai et al. (2020) reported the first appearance of Prevotella in 
the fecal microbiomes on the AMBR only after they spent a month in 
captivity. Therefore, the importance of this bacterial taxon in the 
adaptation to high altitude does not seem to apply to our 
research system.

We showed that unlike the strictly anaerobic bacteria, the 
facultatively anaerobic ones were still significantly more abundant at 

high altitudes (Figure 3, Supplementary Figure S4). This functional 
group has a unique ability to grow in the presence or in the absence of 
oxygen and is thus well-adapted to changing environments (André 
et al., 2021). It is possible that extreme fluctuation of temperature and 
precipitation regime (including dense snow cover in winter) at high 
altitude also translates into a wide range of the ambient O2 
concentrations experienced by the AMBR, and thus favors the 
facultatively anaerobic microbial elements.

The Ruminococcaceae bacterial family was found to be  more 
prevalent during periods of limited energy availability in black howler 
monkeys, potentially compensating for reduced energy intake (Amato 
et al., 2015). This finding was further supported by (Wu et al., 2020), 
who reported an increased abundance of Ruminococcaceae in rhesus 
macaques inhabiting cold, high-altitude environments, suggesting a 
role in energy-saving. Interstingly, our results revealed not an increase 
but a decline in the relative abundance of Ruminococcaceae with 
increasing altitude (Table 3; Figure 2). This result could be attributed 
to the specifics of biology of the AMBR, in particular to its reduced 
tolerance of the heat stress (Šumbera et al., 2023). During the summer 
season when all our samples were collected, the animals at the low 
altitudes have to deal with much hotter and drier environment 
compared to the milder and wetter conditions at the higher elevation. 
This would likely cause a greater cumulative stress, causing the 
animals to reduce their activity and so exploit any available 
opportunity for greater energy efficiency, including the adjustment in 
the microbiome.

Muribaculaceae was reported to be linked with immune function 
(Sha et al., 2022; Huang et al., 2022) and to be more abundant in 
hypobaric hypoxic rats (Ma et al., 2023). A study on the plateau pikas 
found that Muribaculaceae is more abundant in the warm season and 
at high altitudes (Tang et al., 2023). Similarly, we observed a significant 
increase in the abundance of Muribaculaceae with increasing altitude, 
while all our samples were collected during the warmest time of the 
year. Previously, we showed that the high-altitude ABMRs from the 
same study area possess a greater innate immune response (Solak 
et  al., 2020). We  hypothesize that the higher abundance of 
Muribaculaceae could have contributed to a stronger immune 
function in high-altitude ABMRs. We  note that apart from 
Muribaculaceae, the Akkermansiaceae (any many other bacteria) 
family has also been linked with immunoregulation and we  only 
found it at low altitudes (Portincasa et al., 2024; Cani et al., 2022; 
Grenda et al., 2022). However, different bacterial species can stimulate 
different immune responses by activating different immune cells and 
pathways (Acosta and Alonzo, 2023; Zheng et al., 2020).

TABLE 6 Summary of the tests conducted on the hormone levels and microbiome data.

Measure Test Random 
effect

TT4 (ng/mL) TT4/TT3 FT4/TT4

Alpha diversity

Shannon ANOVA No 0.055 0.064 0.038

Simpson ANOVA No 0.026 0.071 0.023

# of ASVs GLMM Locality 0.092 NS NS

Shannon GLMM Locality 0.021 0.057 0.062

Simpson GLMM Locality 0.014 0.073 0.035

Beta diversity
Bray Dist PERMANOVA No NS NS 0.008

PCoA Axis 1 GLMM Locality NS NS 0.035

Only the significant or marginally insignificant tests are reported here, for all tests see Supplementary Table S6.
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4.2 The effect of altitude on microbiome 
diversity and composition

In the context of laboratory rodent studies simulating high-
altitude conditions, the relationship between GM diversity and 
altitude has yielded inconsistent results. A study on rats by (Tian et al., 
2018) reported significantly higher GM alpha diversity at high 
altitudes, whereas (Zhang et al., 2018) observed slightly lower diversity 
(albeit not statistically significant). Higher GM alpha diversity at high 
altitudes was found in wild pikas (Li et al., 2019) and rhesus macaques 
(Wu et al., 2020; Zhao et al., 2018, 2023). Another study on wild mice 
ranging from sea level to 4,000 meters asl. Found a slight increase in 
diversity at high altitudes, although not statistically significant (Suzuki 
et al., 2018). It should be noted that none of these studies (except 
Suzuki et al., 2018) were conducted in continuous transects, i.e., the 
effect of latitude over altitude is unknown. The effect of altitude on the 
microbiome in the wild animal system thus remains understudied. 
Consequently, each study was only able to draw conclusions based on 
the specific biology of the host species and the characteristics of the 
study system.

In contrast to the above examples, our study design aimed at 
reducing the possible effect of the local geography and seasonal 
variation in the AMBR system within its natural habitat. We detected 
a very strong but non-linear effect of the altitude: the highest alpha-
diversity was observed in both populations from the middle altitude 
group, while the low and high altitudes did not differ significantly 
(Figure 2C). The reason behind this is that the middle altitude in fact 
combines all the specific (i.e., significantly over-abundant) ASVs from 
both low and high altitudes (Table 4). A straightforward interpretation 
for such a pattern would be the existence of two polarized assemblies 
of the microbial taxa, at low and high elevations respectively, with the 
middle altitude serving as a bridge between them. Recall that the 
obligate subterranean lifestyle of the AMBR implies very slow and 
gradual dispersal (Rado et  al., 1992). If we  then assume that the 
transfer of the GM elements co-occurs with the host, the direct 
exchange between the low and the high altitudes would seem difficult: 
i.e. there is no direct pathway for the lowland bacteria to reach 
highland habitats (and vice versa) without first passing through the 
middle altitude. In addition, the middle altitude belt is expected to 
have relatively mild environmental conditions (i.e., less extreme 
fluctuation in temperature and humidity), which could also favor the 
higher microbiome diversity at the individual level. Verification of this 
intriguing hypothesis will require collecting additional data, 
accounting for multiple potential ecological factors that could act to 
‘polarize’ the high and low GM communities.

The altitude is known to exert significant effect on microbial 
composition at the population level (beta diversity), as reported in 
previous studies on rodents (Li et al., 2019; Li et al., 2016a; Li et al., 
2016b; Suzuki et al., 2018) and humans (Zeng et al., 2020; Lan et al., 
2017; Li and Zhao, 2015). Most studies explained this effect as an 
indirect result of other altitude-related processes, such as variation 
in the host diet, and in host genotypes. In most cases it was difficult 
to eliminate the effect of geography / spatial variation while testing 
for the effect of the altitude. In our study, we attempted to minimize 
the effect of geography by collecting samples within a small area 
featuring a steep elevation gradient. A very strong altitude effect on 
the GM composition revealed was mostly caused by a single high-
altitude locality (Kiziltepe) clustering far from the rest of the data 

(i.e., PCoA plot on Figure  2D). Further analysis using DESeq2 
revealed that this particular population harbored the highest 
number (n = 15) of significantly overrepresented ASVs  - at least 
three times that of the second high-altitude locality Karagöl (n = 4), 
which is only a few hundred meters lower in terms of absolute 
elevation (Table 1). The population residing at Kiziltepe had the 
lowest genetic diversity, but the host genetics is an unlikely factor to 
explain the microbiome difference there, given the overall lack of 
correlation between the GM and population genetic structure. 
Neither could we find any significant difference in diet composition 
between Kiziltepe and Karagöl, which undermines the role of diet 
on the microbiome composition, at least in the case of AMBR. In 
addition, we note that Kiziltepe is situated next to an open mining 
area active since 1825, primarily extracting minerals such as iron, 
lead, silver, and gold (Kahya, 2018; Anatolia, 2023). Previous studies 
have indicated a significant impact of heavy metals on the gut 
microbiota of mice (Breton et al., 2013). In the absence of other 
clues, we  can suggest that the distinct composition of the gut 
microbiota observed in Kiziltepe could potentially be attributed to 
the influence of heavy metal exposure as well as the adaptation to 
high altitude.

4.3 The effect of diet and host genetics on 
microbiome composition

The relationship between microbiome and host diet is discussed 
in several studies (Scott et al., 2013; Conlon and Bird, 2014; Beam 
et al., 2021; Leeming et al., 2021) with majority of authors finding 
significant effect of diet in GM. Even though we found significant 
changes in microbiome (Figure 2) and diet composition (Figure 4) 
among the altitudes, we did not find any correlation between the GM 
at the level of ABMR sampling localities and their respective diet 
composition. Despite the fact that we  found no significant link 
between the altitude and the plant taxonomic diversity in the ABMR 
diet, the composition of the latter was still affected by the altitude. 
This is generally expected, given a major effect of the altitude on 
vegetation. Seasonal, geographical or even cultural variation in the 
diet has been shown to have a strong influence on microbiome 
(Amato et al., 2015; Guo et al., 2021); (De Filippo et al., 2010), and 
we  attempted to minimize such effects by performing sampling 
during the same season and within the same mountain range. 
Notably, the plant order Asparagales, which includes species with 
characteristic bulbous high-nutrient content roots, was only present 
in the AMBR diet at high-altitude localities (Figures  4A,B). The 
ABMRs are known to prefer the bulbous rhizomes and collect them 
for storage in their tunnels (Sözen, 2005). It is possible that the 
ABMRs, being food generalists, also possess a ‘generalist’ gut 
microbiota equally suitable to help with the digestion of different 
plant species.

A review on effect of host genetic control over microbiome 
reported that over 110 different genetic loci were found to 
be associated with the abundance of specific gut microbes (Bubier 
et al., 2021) and other studies found significant link between certain 
genes and the abundance of bacterial taxa in the gut (Org et al., 2015; 
Zhernakova et  al., 2024). In addition, the microbiomes usually 
remain species-specific despite similar diets and shared habitat 
(Kaneko et al., 2023). We found no systematic effect of altitude on 
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genetic differentiation, i.e., two distant populations at low altitude 
differed much more than any populations across the elevation 
gradient. This result may suggest a relatively recent colonization of 
the higher elevations in our study area. It was reported that within 
the same population, the family members or the ones with closer 
social network often share similar microbiota compared to unrelated 
individuals (Lee et al., 2011; Yatsunenko et al., 2012; Tims et al., 2013; 
Raulo et  al., 2021). Another study found differences in specific 
microbial taxa between the social and solitary hyena species (Münger 
et al., 2018). Unlike in the highly social animals, the direct horizontal 
transmission of bacteria in the BMR is expected to be more difficult 
due to their solitary lifestyle. In line with this expectation, no 
correlation was observed between the host relatedness and 
microbiome in our data.

Several animal and human studies have found that sex significantly 
affects GM diversity and composition, though this pattern is not 
always consistent (Kim et al., 2020). We did not observe any significant 
differences in GM diversity and composition between female and 
male animals. This inconsistency extends to the diversity and 
composition of the diet. Previous studies have discussed the relative 
strength of sex’s impact compared to other factors, such as host genetic 
background, age, and diet, with sex generally found to have lower 
influence on shaping the GM (Kovacs et al., 2011; Elderman et al., 
2018; Org et al., 2016). Our findings support the notion that the effect 
of sex on GM is not universal and environmental factors, host diet and 
genetics have a stronger effect on GM.

4.4 Thyroid hormone levels

Previously it has been reported that thyroid hormone levels in 
Middle East blind mole-rats are influenced by climatic conditions 
(Avivi et al., 2014). Other thyroid hormone parameters were found 
to be correlated with microbiome diversity in humans (Zheng et al., 
2020; Virili et al., 2024). We found that the free thyroxine (fT4) levels 
increased significantly with altitude after correcting for sex and 
weight (Figure 5; Supplementary Table S5), while the fT4/TT4 ratio 
decreased in animals at low altitude. These findings suggest that in 
the animals living at lower elevations, a lower proportion of total T4 
resources is recruited into the biologically-active free fraction. As 
thyroid hormones are positive regulators of thermogenesis, lower 
recruitment of T4 into the free form in animals living at lower 
altitudes might be linked to warmer ambient temperatures (Yau and 
Yen, 2020; Gerhardt et al., 2023), which reduces thermoregulatory 
constraints. Overall, these results point toward higher metabolic rate 
at high altitudes (Supplementary Table S5). As an indicator of 
metabolic rate, the fT4 levels might also explain the higher 
abundance of facultatively anaerobic bacteria at high altitudes 
(see above).

The microbiota can affect thyroid hormone levels by regulating 
iodine uptake, influencing the availability of essential micronutrients 
like selenium and zinc, and impacting the absorption of thyroid 
medications and overall thyroid function (Fröhlich and Wahl, 2019); 
(Knezevic et al., 2020). We did not find any correlation between the 
thyroid hormone levels and the relative abundance of bacterial taxa. 
At the same time, all of the alpha diversity metrics were found to 
correlate with TT4 levels (Table 6). Specifically, there was negative 
correlation with TT4 and a positive correlation with fT4/TT4, 

suggesting that the recruitment of T4 into its biologically-active form 
might contribute to an increase in the alpha diversity metrics. This is 
also in line with the negative correlation between TT4 levels and alpha 
diversity metrics, because circulating fT4 suppresses thyroid hormone 
synthesis and secretion via a negative feedback loop (Ortiga-Carvalho 
et al., 2016). Furthermore, PERMANOVA and GLMM on the first 
principle component of PCoA of Bray-Curtis similarities were found 
to be positively associated with fT4/TT4 (Table 6), similar to alpha 
diversity metrics. At this stage, it is not possible to establish whether 
there is a causal relationship between thyroid hormones and 
microbiome composition, or if both respond to the altitude in an 
independent manner. The relationship between metabolism and the 
GM is well-established (Martin et al., 2019), in particular between the 
metabolic rate and thyroid hormones (Mullur et al., 2014). In the case 
of ABMR, facilitating the nutrient breakdown could be necessary to 
fuel the thyroid hormone-driven thermogenesis - which in turn would 
put direct selective pressure on the GM landscape at higher altitudes.

5 Conclusion

This study explored the effect of altitude on the gut microbiome 
composition of ABMRs, across six localities and three altitudinal 
categories, considering the factors such as diet, thyroid hormone 
levels, and host genetics. Notable differences in the relative abundance 
of a number of bacterial taxa at different altitudes may reflect the 
specific roles these bacteria play in the complex adaptation of the host 
to the challenging mountain environment. The fact that the 
abundance of strictly anaerobic bacteria was unaffected by the 
altitude may reflect the relatively narrow range of absolute elevations 
in our study (1000–3,000 m a.s.l.), or it may be a specific feature of the 
host: the latter possibility is partly supported by the fact that the 
previously identified high altitude-linked genus Prevotella was absent 
from our data, in line with the previous studies done on the BMR. At 
the same time, the facultatively anaerobic bacteria were more 
prevalent in the high-altitude host specimens. We showed that the 
microbiome alpha-diversity reached its peak at the middle altitude, 
and that it incorporated elements from both lower and higher 
elevations. The beta-diversity correlated positively with the altitude. 
The altitude also affected the host diet composition, but not its alpha-
diversity. These observations are unlikely to be caused by the host 
genetics, since we  detected no clear association between the 
population genetic structure and the altitude, nor there was any 
correlation between the host relatedness and the microbiome 
composition nor diet. Thyroid hormone levels, specifically free 
thyroxine (FT4), increased almost linearly with altitude; however, no 
specific associations were found between bacterial ASVs and 
hormone levels. At the same time, the total thyroxine (TT4) levels did 
show a positive correlation with microbiome diversity. While some 
correlations between thyroid hormone components and microbiome 
beta diversity were identified, the nature of these relationships 
remains unclear.

5.1 Perspectives

Several properties of our study design could have unavoidably 
acted as caveats of the results presented. In particular, we tried to 
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reduce the effect of seasonal variation on microbiome by 
sampling in late June to mid-July during both years when the 
fieldwork was performed. At this time of year, the high altitudes 
experience humid and colder conditions, but also feature a lusher 
vegetation compared to the low altitudes, which are both drier 
and hotter. The effect of season on the microbiome composition 
and diversity is well-known (Davenport et al., 2014; Hu et al., 
2018; Jiang et  al., 2021; Fan et  al., 2022). While the results 
presented here offer a comprehensive snapshot of the microbiome, 
diet and thyroid hormones levels variation during the summer 
months, we cannot exclude a very different pattern if the samples 
were collected during other seasons. For example, the conditions 
at the lower elevation in the Taurus mountains during early 
spring resemble those found in mid-summer at high altitudes, 
which may profoundly influence the AMBR activity pattern as 
well as diet - which in turn may cause a major shift in the data 
collected across the entire elevation gradient. In the future, it 
would be preferable to have samples from other seasons in order 
to gain better insight into the microbiome and physiological 
dynamics in this system.

Rather than exclusively concentrating on microbial diversity 
and composition, future studies could also explore the functional 
profiling of bacterial ASVs specific to each altitude category using 
high-resolution metabarcoding data (i.e., full 16S rRNA sequencing), 
or full microbial genomes. Field experiments to measure the in situ 
metabolic rate of the animals might also help to reveal the interplay 
between microbiome and host physiology. Additionally, considering 
the distinct microbiome composition we found at Kiziltepe, further 
investigation could involve comparing the soil microbiome with the 
host microbiome to understand potential correlations. For dietary 
composition analysis, more specific genetic markers that focus on 
plants (e.g., rbcL, trnL, ITS) could offer higher taxonomic 
assignment resolution. High-resolution genomic data (e.g., 
ddRAD-seq or WGS) might unveil more subtle genetic divergence 
and relatedness patterms among the sampling localities and 
altitudes. Lastly, it would be extremely interesting to check if the 
patterns we found in AMBR will also be observed in other terrestrial 
animal species residing at different elevations in the Taurus 
mountains of Anatolia.
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