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The insufficient understanding of the impact of hydrothermal products on the 
growth characteristics of compost microorganisms presents a significant challenge 
to the broader implementation of hydrothermal coupled composting for tobacco 
waste. Traditional biochemical detection methods are labor-intensive and time-
consuming, highlighting the need for faster and more accurate alternatives. 
This study investigated the effects of hydrothermal treatment on tobacco 
straw products and their influence on compost microorganism growth, using 
hyperspectral imaging (HSI) technology and machine learning algorithms. Sixty-
one tobacco straw samples were analyzed with a hyperspectral camera, and 
image processing was used to extract average spectra from regions of interest 
(ROI). Hierarchical cluster analysis (HCA) and principal component analysis 
(PCA) were applied to assess four key variables: nicotine content, total humic 
acid content, Penicillium chrysogenum H/C ratio, and Bacillus subtilis OD600 
ratio. The effects of hydrothermal treatment on compost were classified as 
promoting, inhibiting, or neutral regarding microbial growth. The Competitive 
Adaptive Reweighted Sampling (CARS) method identified the most influential 
wavelengths in the 900-1700 nm spectral range. The Random Forest (RF) model 
outperformed SVM, KNN, and XGBoost models in predicting microbial growth 
responses, achieving Rc = 0.957, RMSE = 3.584. Key wavelengths were identified 
at 1096 nm, 1101 nm, 1163 nm, 1335 nm, and 1421 nm. The results indicate that 
hyperspectral imaging combined with machine learning can accurately predict 
changes in the chemical composition of tobacco straws and their effects on 
microbial activity. This method provides an innovative and effective means of 
improving the resource usage of tobacco straws in composting, enhancing 
sustainable waste management procedures.
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Highlights

 • HCA and PCA sorted hydrothermal treatment impact on 
composting into three types.

 • Four machine learning models were used to predict the most 
influential wavebands.

 • Random Forest model showed superior performance with an Rc 
of 0.957.

 • Nicotine content and total humic acid were variables predicting 
bio-compostability.

1 Introduction

China leads the world in tobacco production and consumption 
(Fang et al., 2020). In 2022, the country generated about 5 million tons 
of tobacco waste, with straws making up over 60% of this amount (Ma 
et al., 2023). Traditional disposal methods, such as on-site stacking or 
centralized incineration, are resource-intensive and cause significant 
environmental pollution (Zou et al., 2021; Banožić et al., 2020). It is 
imperative to identify effective methods for the treatment and 
reutilization of tobacco waste to promote environmental and 
resource conservation.

Recently, hydrothermal coupling composting technology has 
emerged as a key method for efficiently and environmentally 
processing tobacco straws (Yu et al., 2022). Studies demonstrate that 
hydrothermal treatment can efficiently eliminate detrimental 
compounds, including heavy metals and pesticide residues, from 
tobacco straws while enhancing the degradability of cellulose, 
hemicellulose, and lignin (Sethupathy et  al., 2022). However, the 
complex nature of the products after hydrothermal treatment poses 
challenges. During the process, nicotine and other inhibitors may 
be generated or released, potentially inhibiting the activity of compost 
microorganisms and thereby affecting composting efficiency and 
product quality (Sun et  al., 2022). Therefore, improving the 
effectiveness of this treatment strategy depends on accurately 
predicting how these hydrothermal compounds would affect 
compost microorganisms.

Traditional methods for assessing the impact of hydrothermal 
products on compost microorganisms include chemical analysis, 
microbial experiments, and statistical analysis (Gao et al., 2012; Sarker 
et  al., 2021; Mishra et  al., 2021). Chemical analysis necessitates 
substantial reagents and apparatus, while microbial experiments 
require thorough control of experimental conditions, even though 
these methods can provide precise evaluations. Their high costs 
frequently impede the practical application of these methods, as well 
as extended data acquisition cycles, low prediction accuracy, and 
challenges in handling complex data. As a result, it is imperative to 
establish a standardized, efficient, and rapid methodology for assessing 
the impact of tobacco straw hydrothermal products on 
compost microorganisms.

Hyperspectral Imaging (HSI) is an advanced technology that 
combines spectral and imaging capabilities, enabling the rapid and 
non-destructive acquisition of detailed spectral information from 
samples (Mahanti et al., 2022). HSI can disclose intricate details about 
the components within a sample by analyzing spectra at various 
wavelengths. HSI is particularly well-suited for analyzing complex 
biomass samples, as it provides quick analysis without the necessity of 

sample pretreatment, in contrast to traditional chemical and biological 
analysis methods (Wang et al., 2023). For example, Ahn et al. (2021) 
accurately determined chlorophyll concentrations in lake water, 
thereby demonstrating the efficacy of HSI in the early detection of 
algal blooms. Similarly, Khan et al. (2022) showed that HSI could 
rapidly collect spectral data from various biomass types without 
causing any damage to the samples, thereby enabling the precise 
classification of the biomass based on its spectral characteristics.

However, analyzing HSI data is challenging due to its complexity 
and high dimensionality, which complicates the extraction of 
meaningful insights using traditional statistical methods (Ayesha 
et al., 2020). Machine learning (ML) techniques offer a promising 
alternative for efficiently and accurately analyzing such complex 
datasets by automatically identifying patterns and relationships within 
the data. In hyperspectral imaging, ML algorithms are particularly 
effective for classification, feature selection, regression, and anomaly 
detection tasks. ML can develop complex non-linear predictive 
models by learning the relationships between the spectral data of 
numerous known samples and their corresponding physicochemical 
indicators (Ang and Seng, 2021). These models can quickly process 
large datasets, uncover subtle relationships between spectral data and 
measured indicators, and provide rapid and accurate predictions for 
unknown samples.

Numerous studies have successfully combined hyperspectral 
imaging (HSI) with machine learning (ML) techniques in agriculture, 
food, medicine, and environmental science, yielding significant results 
in various applications. Elsherbiny et al. (2021) effectively predicted 
the water content of the rice canopy by evaluating multivariate 
techniques and feature selection methods. They applied crop spectral 
reflectance to various levels of water deficit. The EFS (Ensemble 
Feature Selection) method, which was validated for wheat yield 
prediction, was developed by Fei et al. (2022). This method combines 
deep neural networks (DNN) and hyperspectral vegetation indices, 
reducing breeding labor and optimizing field management practices. 
Yang et al. (2021) used hyperspectral data and machine learning to 
monitor urban black-odorous water. This study used Lasso regression 
to investigate the synchronized hyperspectral bands and their 
combinations, using three multivariate regression models to accurately 
monitor urban black-odorous water bodies.

Although this study offers important references for integrating 
HSI and ML approaches, a gap persists in predicting biomass 
processing and its interactions with microbial communities. This 
research tackles this deficiency by presenting competitive adaptive 
reweighted sampling (CARS) for feature selection, effectively 
mitigating multicollinearity challenges in high-dimensional datasets. 
Furthermore, random forest, SVM, and XGBoost models were 
employed to attain accurate predictions of microbial growth under 
limited sample conditions. Table 1 delineates the advancements in 
relevant research, elucidating the distinctions and contributions of this 
study in contrast to previous studies.

Despite the tremendous advancements in their application across 
various sectors, there is still an apparent gap in the application of HSI 
and ML techniques for forecasting microbial interactions with biomass, 
especially in the hydrothermal treatment of biomass like tobacco straw. 
Current models do not adequately capture biomass digestion’s intricate 
biochemical and microbiological dynamics. Previous studies have 
focused mainly on environmental monitoring, crop management, and 
food quality, with little emphasis on the complicated interactions 
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between biomass components and microbial communities. By 
combining HSI and ML approaches to forecast microbial growth in 
hydrothermally treated biomass, this study fills this research gap. This 
study presents a novel method for precisely forecasting microbial 
behavior in limited sample situations by utilizing sophisticated 
machine learning models, including Random Forest, SVM, and 
XGBoost, and competitive adaptive reweighted sampling (CARS) for 
feature selection. The necessity of this study lies in its potential to 
advance the understanding of biomass processing, enhance resource 
utilization, and contribute to more efficient bioengineering practices.

Therefore, using hyperspectral imaging (HSI) data, this study 
created a machine learning model to forecast how hydrothermally 
treated tobacco straw (HTS) products will affect the growth traits of 
compost microorganisms. The main objective of this article is to 
classify HTS products based on their associated microbial growth 
characteristics by selecting specific wavelengths from HSI scans, 
focusing on the near-infrared spectrum range (900–1700 nm). A 
predictive machine learning model was developed utilizing HSI image 
data of HTS products and their associated microbial growth features. 
This project seeks to improve the efficiency and precision of feasibility 
assessments for hydrothermal coupling composting of tobacco straw, 
minimize waste and expenses, and facilitate the broader use of 
hydrothermal coupled composting technology.

2 Materials and methods

2.1 Tobacco straws and composting 
microorganisms

The tobacco straws utilized in this research were obtained from 
Xiang County, Xuchang City, Henan Province, a prominent tobacco 
cultivation region in China. Following harvest, the straws underwent 
natural air-drying. The chemical properties of tobacco straw can 
be  found in Supplementary Table S1. The selected composting 

microorganisms for this investigation are Penicillium chrysogenum and 
Bacillus subtilis FYZ1-3, isolated from tobacco waste and maintained 
in our laboratory (Tian et al., 2023; Ye et al., 2023). These strains have 
shown considerable effectiveness in decomposing tobacco waste during 
composting and are utilized as representatives of fungi and bacteria in 
this research. Cultivation occurred in both solid and liquid LB medium.

2.2 Hydrothermal treatment of tobacco 
straws

The hydrothermal treatment was conducted using a WZC-small 
batch intermittent high-pressure reactor (Wuzhouding Technology 
Co., Ltd., Beijing, China). This reactor, made of 316 stainless steel, 
operates safely at pressures up to 22 MPa, with a heating range of 0 to 
300°C, and has an effective volume of 500 mL. The apparatus is 
additionally fitted with a magnetic, mechanical stirring device. Sixty 
distinct hydrothermal treatment conditions were established to account 
for hydrothermal temperatures and duration’s combined effects based 
on the hydrothermal intensity expression (Equation 1) (Chornet and 
Overend, 1991). The temperature ranged from 0 to 260°C, with 
treatment durations spanning 20–180 min. A control group, subjected 
to the same pretreatment without heating, was also included. In total, 
61 hydrothermal product samples were generated. Detailed treatment 
conditions for each group can be found in Supplementary Table S2.
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Where logR0 is the intensity factor; ti represents reaction time in 
minutes; Ti represents reaction temperature in °C; Tb = 100°C is the 
reference temperature; and ω = 14.5 is the fitting parameter.

A high-speed grinder was used to fine-mill the dry tobacco straws 
after they had been crushed in multiple stages. A 60-mesh screen 

TABLE 1 Advances in hyperspectral machine learning across different fields.

Research field Machine 
learning models

Size Feature selection 
methods

Key findings and contributions References

Agriculture (Irrigation 

Management)
BPNN, RF, and PLSR 128 VI, MF, and PCA

Predicted plant water content, enabling proactive 

measures for precision irrigation.

Elsherbiny et al. 

(2021)

Agriculture (Yield Prediction) DNN 207
MDI, Boruta, FeaLect, 

and RReliefF

An integrated feature selection (EFS) method is 

proposed to predict crop yield accurately.
Fei et al. (2022)

Food (Toxin Detection) PCNN 2510 FS

Developed a PCNN-FS framework combined 

with HSI to identify moldy peanuts and predict 

aflatoxins.

Yuan D. et al. 

(2022)

Food (Quality Classification) RF, PLS, and RNN 150 –

Developed a non-destructive prediction model 

for SSC, titratable acidity, and lycopene in 

processing tomatoes.

Zhao et al. (2023)

Environmental Monitoring 

(Water Quality)
SVM, RF, and NN 58 ReliefF and RFE

Effectively identified and monitored urban 

black-odorous water bodies.
Yang et al. (2021)

Medicine (Disease 

Classification)
SVM, RF, and CNN 13 –

Provided a promising non-invasive method for 

brain tumor classification using HSI.

Urbanos et al. 

(2021)

Biomass (Hydrothermal 

Treatment of Tobacco Straw)
RF, SVM, and XGBoost 61 CARS

Utilized CARS for efficient feature selection and 

microbial growth prediction under small sample 

conditions.

This work
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filtered the resultant material, yielding a homogenous powder with an 
average particle size of roughly 0.25 mm. A slurry was created for the 
experiment by combining 30 g of this tobacco straw powder with 
300 mL of deionized water at a 1:10 ratio. This mixture was then 
transferred to the high-temperature–pressure reactor, heated gradually 
at a rate of 5°C per minute to the set temperature, and maintained for 
the specified duration. After the treatment, the reactor was rapidly 
cooled with water depressurized, and the liquid was filtered using a 
0.22 μm filter. The hydrolysate was stored at 4°C, with a portion frozen 
at −80°C for 6 h and then freeze-dried for 24 h to obtain the solid sample.

2.3 Detection of physicochemical 
properties of HTS

The nicotine content of the samples was analyzed using gas 
chromatography–mass spectrometry (GC–MS) (Hossain and 
Salehuddin, 2013). A 0.5 g freeze-dried sample was dissolved in 10 mL 
of isopropanol, shaken for 30 min, and then centrifuged at 5000 rpm 
for 10 min at 4°C. The filtered supernatant was analyzed using a 
DB-5MS column (30 m × 0.25 mm, 0.25 μm) with an injection port 
temperature of 250°C and a split ratio of 10:1. The column temperature 
was initially set at 80°C for 2 min, then increased at a rate of 10°C/min 
to 280°C, where it was held for 5 min. Helium was used as the carrier 
gas at a 1 mL/min flow rate. The mass spectrometer operated at 70 eV 
with an ion source temperature of 230°C and a quadrupole 
temperature of 150°C, scanning from m/z 50–550. Nicotine content 
was determined based on retention time and mass spectra.

The alkali dissolution-acid precipitation method determined the 
total humic acid (HA + FA) content in the solid powder samples 
(Lamar and Talbot, 2009). A 1.0 g sample was mixed with 100 mL of 
0.1 M NaOH and shaken for 24 h. After filtering the extract and 
adjusting the pH to 1.0 with 0.1 M HCl, humic acid (HA) was 
precipitated and separated by centrifugation before being dried and 
weighed. After filtering and drying the residual solution, the residue 
was dissolved in 0.1 M NaOH. To precipitate fulvic acid (FA), the pH 
was once more brought to 1.0. The combined weights of HA and FA 
indicated the total amount of humic acid. The mean ± standard 
deviation from three tests was used to present the results.

2.4 Impact assessment of HTS on 
composting microbial growth

While the control group was given sterile water, the 
experimental group was treated with liquid-phase products from 
section 2.2 at a 3% concentration in an LB culture medium. The 3% 
concentration was chosen because prior research showed that it 
successfully demonstrated the impact of the hydrothermal products 
on microbial growth without producing undue stimulation or 
inhibition. Moreover, this concentration is consistent with results 
from earlier research (Kamal et al., 2022), where 3% was identified 
as an optimal concentration for assessing the effects of hydrothermal 
products in composting or fermentation processes. LB solid culture 
medium was then inoculated with Penicillium chrysogenum and 
placed in a 28°C environment for 48 h. Colony sizes were 
subsequently measured and compared between the experimental 
and control groups.

At the same time, 3% Bacillus subtilis seed liquid was added to the 
LB liquid culture medium for both the experimental and control 
groups. Bacterial growth was evaluated by measuring optical density 
at 600 nm (OD600) and comparing ratios between the experimental 
and control groups after an overnight shaking incubation at 37°C and 
180 rpm. To ensure the precision and repeatability of the findings, 
every experiment was carried out in triplicate under sterile conditions.

2.5 Classification of HTS

Hierarchical cluster analysis (HCA), an unsupervised method for 
pattern recognition, was applied to group hydrothermally processed 
tobacco straw products based on their effects on compost microbial 
growth. These products were categorized according to their physical 
and chemical properties and their impacts on microbial growth, 
including factors like nicotine content, total humic acid content, 
Penicillium chrysogenum colony ratio, and bacterial OD600 ratio. The 
data were standardized and analyzed using the Ward method, enabling 
sample classification according to microbial effects and establishing 
validation groups essential for machine learning (Xiang et al., 2023). 
This method successfully classified hydrothermal products into three 
categories according to their influence on compost microbial growth: 
those that enhance growth, those that have no significant effect, and 
those that suppress growth.

2.6 Hyperspectral data acquisition

The hyperspectral analysis system, supplied by Shenzhen 
HyperNano Optical Technology Co., Ltd., utilizes advanced industrial 
technology featuring a MEMS chip hyperspectral camera. Operating 
within a wavelength range of 900–1700 nm, it offers a spectral 
resolution of 5 nm across 125 spectral channels. The system includes 
a dark chamber with a halogen light source (400–2,500 nm), adjustable 
from 0 to 12 V to ensure illumination uniformity exceeding 95%.

The hyperspectral imaging system was preheated for 30 min 
before scanning to ensure stability. The voltage of the light source was 
established at 9 V, with an exposure duration of 30 ms selected. 
Hydrothermal products from each experimental group were 
uniformly distributed on a circular plate and scanned in a dark 
chamber three times. Each scan incorporated white reference images 
(using a standard whiteboard with reflectance >99%) and dark 
reference calibration images. The sample core was placed in a Petri 
dish during scanning to minimize translation inertia.

To compensate for variations in light intensity and dark current 
within the sensor, a calibration (Equation 2) was employed to adjust 
the reflectance of hyperspectral images:

 
0 B

W B

I IR
I I

−
=

−  
(2)

Where R represents the calibrated reflectance hyperspectral 
image, I0 denotes the original hyperspectral image captured, IW 
signifies the hyperspectral image of a whiteboard with a reflectance of 
99%, used as the white reference, and IB refers to the hyperspectral 
image of a dark reference obtained when the lens is covered (Weng 
et al., 2021).
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2.7 Spectral reflectance extraction

The average spectral reflectance of tobacco hyperspectral images 
was derived using a masking approach. Initially, the ratio of all band 
pairs across the hyperspectral images was computed to identify the 
maximum band ratio, highlighting the greatest difference in 
reflectance between the tobacco and its background. A mask was 
subsequently generated using the maximum band ratio to isolate the 
tobacco region. A threshold segmentation algorithm was subsequently 
employed to isolate the tobacco hyperspectral image from its 
background effectively. The average spectral reflectance of the tobacco 
hyperspectral image was calculated by averaging the spectral 
reflectance values of all pixels within the designated tobacco region.

2.8 Modeling methods

2.8.1 Data preprocessing and feature selection
Data preprocessing and feature selection are essential for 

enhancing the performance of machine learning models when dealing 
with hyperspectral data. This study employed the Savitzky–Golay (SG) 
filtering method to smooth hyperspectral data, reduce noise, and 
improve spectral signal quality. The parameters selected for SG 
filtering included a window width of w = 13 and a polynomial order of 
p = 2. This method effectively balances data smoothing with the 
preservation of spectral details, thereby increasing the accuracy and 
reliability of subsequent analyses. For feature selection, the 
Competitive Adaptive Reweighted Sampling (CARS) method was 
used to identify the most influential spectral bands for modeling. The 
CARS method iteratively reduces the size of the feature set by adjusting 
competitive weights, ultimately selecting the most representative and 
informative bands. The parameters for the CARS method in this study 
included a sample size of N = 50, a stopping factor of f = 20, and a cross-
validation fold number of cv = 10. The selected parameters aim to 
enhance feature selection, thereby maximizing the extraction of 
relevant information from the hyperspectral data. This method 
effectively decreases model complexity while preserving essential 
features that improve predictive accuracy and interpretability.

2.8.2 Machine learning models
Machine learning models can discern patterns and relationships 

within data and are particularly useful for handling complex tasks. This 
study employed four distinct machine learning regression algorithms: 
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Extreme 
Gradient Boosting (XGBoost), and Random Forest (RF). The 
parameters for each model were not defaulted but instead optimized 
through hyperparameter tuning techniques, such as grid search and 
cross-validation, to achieve optimal performance. We fine-tuned the 
kernel function (e.g., linear or RBF) and the SVM model’s regularization 
parameter (C value). In the KNN model, the number of neighbors (K 
value) and the distance metric were adjusted. For XGBoost, key 
parameters such as the learning rate, tree depth, and subsample ratio 
were optimized. Similarly, for the Random Forest model, we optimized 
the number of trees, maximum tree depth, and minimum sample size 
required for node splitting. Each algorithm has distinct advantages: 
SVM is effective for high-dimensional datasets, utilizing kernel 
functions to manage non-linear problems and demonstrating strong 
generalization abilities (Joachims, 2012). KNN is conceptually simple, 
makes no assumptions regarding data distribution, and classifies new 

instances based on the proximity to the nearest K samples. It is especially 
efficacious for small datasets with minimal noise (Maillo et al., 2019). 
XGBoost is an effective gradient-boosting algorithm that systematically 
constructs weak learners to improve model precision. It manages 
non-linear interactions and extensive datasets (Kavzoglu and Teke, 
2022). RF improves classification or regression accuracy by constructing 
multiple decision trees and combining their results. It exhibits strong 
resistance to overfitting and is suitable for high-dimensional datasets or 
those with missing values (Zhu, 2020). Selecting appropriate models 
and tuning their parameters is crucial for achieving optimal 
performance. A thorough analysis of the characteristics and limitations 
of each model can lead to the best modeling outcomes.

2.8.3 Evaluation metrics
The study evaluated four algorithms using six critical parameters: 

calibration correlation coefficient (rc), prediction correlation 
coefficient (rp), calibration coefficient determination (Rc), prediction 
coefficient determination (Rp), calibration root mean square error 
(RMSEC), and prediction root mean square error (RMSEP) (Haruna 
et  al., 2022). Following a thorough performance analysis, the 
top-performing model was identified. These metrics were selected as 
they provide complementary insights into the model’s accuracy and 
robustness. The combination of correlation and determination 
coefficients offers a comprehensive evaluation of the linear relationship 
and the model’s ability to explain variance in the data. At the same 
time, RMSE highlights prediction accuracy by quantifying the 
deviation between predicted and actual values.

Because of the comparatively lower variability in the hydrothermal 
treatment data, the residual predictive deviation (RPD), which is 
occasionally employed in domains with significant data variability, 
such as soil or food quality analysis, was considered less pertinent for 
this investigation. The measures offer a thorough and reliable 
assessment of the model’s performance.

Internal validation using K-fold cross-valuation helped improve 
the model’s generalizing and dependability. This approach randomly 
divided the dataset into k subsets, utilizing each once as a validation set 
and training from the remaining k-1 subsets. This process was repeated 
k times, and the average performance metrics across all iterations were 
calculated. Cross-validation helped prevent overfitting and provided a 
reliable estimate of the model’s performance on unseen data.

2.9 Statistical analysis

The impact of hydrothermal products on microbial growth was 
studied through three repetitions, and the data underwent variance 
analysis using the Tukey test at a significance level of p < 0.05. 
MATLAB 2022a was employed for image processing, and Python 3.8.3 
with Jupyter Notebook was utilized for data processing and developing 
machine learning models.

3 Results and discussion

3.1 Index content and statistical 
characteristics for HTS

The results for the 61 hydrothermal product samples, including 
nicotine content, total humic acid levels, and the growth performance 
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of Penicillium chrysogenum and Bacillus subtilis under different 
hydrothermal conditions, were provided in Supplementary Table S2. 
This included detailed data on each hydrothermal condition and the 
corresponding characteristics of the resulting products.

A statistical analysis of the experimental dataset was performed 
to ensure the model’s robustness and accuracy, with the findings in 
Table 2. The table presents a comprehensive summary of the principal 
statistical attributes for the calibration and validation datasets, 
encompassing the mean, standard deviation, minimum, and 
maximum values. Although the Bacillus subtilis OD600 ratio exhibits a 
relatively high standard deviation, common in chemical and biological 
experiments, the other data do not show significant natural variability.

The statistical characteristics demonstrate the diversity of 
hydrothermal products under varying settings, indicating that the 
dataset encompasses a broad spectrum of experimental scenarios, 
hence facilitating subsequent model calibration and validation. 
Furthermore, the results demonstrate substantial disparities among 
the assessed variables, affirming the model’s resilience in managing 
intricate data.

3.2 Classification of HTS

This study employed hierarchical cluster analysis (HCA) and 
principal component analysis (PCA) to categorize tobacco straw 
samples subjected to varying hydrothermal intensities into three 
distinct groups, as depicted in Figure 1. This classification elucidates 
the distribution characteristics of the samples based on four key 
variables: nicotine content, total humic acids (HA + FA) content, the 
ratio of Penicillium chrysogenum H/C, and the ratio of Bacillus subtilis 
OD600. The results demonstrated how these variables influence the 
categorization of the treated samples.

Figure 1A displays the hierarchical clustering dendrogram, which 
visually represents the similarity and clustering process of the data 
points. The vertical axis denotes the distances between samples, while 
the horizontal axis illustrates the relationships among samples and 
clusters. The data is segmented into three primary clusters by choosing 
a suitable distance threshold, each identified by distinct colors: red for 
Cluster 1, green for Cluster 2, and blue for Cluster 3.

Figure 1B illustrates the PCA results, where high-dimensional 
data is projected onto a two-dimensional plane. Principal Component 
1 (PC1) accounts for 66.25% of the variance, and Principal Component 
2 (PC2) accounts for 21.58%, representing 87.83% of the overall 
variance. In the PCA figure, solid circles of different colors denote 
separate clusters, while red arrows signify the direction and influence 
of each variable. Dashed circles highlight the dispersion range of each 

cluster, centered on mean values and extending to indicate standard 
deviation radii.

Cluster 1 samples are positioned in the upper right quadrant of 
the PCA plot, characterized by higher levels of nicotine and HA + FA 
and lower ratios of Penicillium chrysogenum H/C and Bacillus subtilis 
OD600. This configuration suggests an inhibitory effect on microbial 
growth. The longer arrows for nicotine and HA + FA point positively, 
indicating substantial contributions to PC1. Cluster 2 samples are 
scattered predominantly across the middle region of PC1 and PC2, 
with moderate levels of nicotine and HA + FA and slightly elevated 
ratios of Penicillium chrysogenum H/C and Bacillus subtilis OD600. This 
pattern suggests a less pronounced inhibitory effect. The arrows for 
Penicillium chrysogenum H/C and Bacillus subtilis OD600 point in the 
negative direction, signifying significant negative contributions to 
PC1. Cluster 3 samples are in the lower left quadrant, characterized by 
the lowest Nicotine content and highest ratios of Penicillium 
chrysogenum H/C and Bacillus subtilis OD600. This indicates a 
significant promoting effect on microbial growth.

PC1, which accounts for 66.25% of the variance, is predominantly 
influenced positively by Nicotine (0.475) and HA + FA (0.367), while 
Penicillium chrysogenum H/C (−0.589) and Bacillus subtilis OD600 
ratios (−0.541) contribute negatively. PC2 explains 21.58% of the 
variance and is primarily driven positively by Nicotine (0.473) and 
negatively by HA + FA (−0.839).

Figure 2 presents the mean differences and confidence intervals 
for four characteristic components (nicotine, HA + FA, Penicillium 
chrysogenum H/C, and Bacillus subtilis OD600) across clusters (Cluster 
1, Cluster 2, Cluster 3). Significant differences were observed for 
nicotine in all comparisons, with the largest difference between 
Cluster 1 and 3 (mean difference of 9.627). HA + FA also exhibited 
significant differences in all comparisons, notably between Cluster 1 
and 3 (mean difference of 11.29). Both Penicillium chrysogenum H/C 
and Bacillus subtilis OD600 showed significant differences across all 
groups, with Bacillus subtilis OD600 demonstrating the most substantial 
difference between Cluster 1 and Cluster 3 (mean difference of 121.9). 
The findings indicate notable distribution variations of each 
component across the clusters, affirming the clustering results’ validity. 
They provide solid statistical evidence that supports additional 
research and data interpretation, highlighting the statistically 
significant differences in each component across categories.

In summary, nicotine and HA + FA play significant roles in 
influencing microbial growth. Cluster 1, characterized by high Nicotine 
content, exhibits lower microbial growth attributed to nicotine’s 
bacteriostatic effect (Yuan W. et al., 2022). Cluster 3, characterized by 
high HA + FA content, exhibits increased microbial growth, indicating 
that humic acids enhance microbial reproduction and activity. The 
findings highlight nicotine and HA + FA as significant indicators of 
microbial community distribution and development, underscoring 
their essential roles in the composting microbial ecosystem.

3.3 Hyperspectral images of HTS

3.3.1 HSI spectra of HTS
The HSI spectra of HTS exhibit a consistent trend within the 

wavelength range of 900–1700 nm. Significant differences in 
reflectance are evident among products subjected to different 
treatment intensities, with values ranging from 0.244 to 0.371 

TABLE 2 Statistical characteristics of calibration and validation data for 
hydrothermal product indicators.

Indicator Mean Std Min Max

Nicotine 5.35 5.29 0.13 20.43

HA + FA 58.01 7.07 33.40 68.80

Penicillium chrysogenum 

H/C ratio
92.72 10.80 71.47 111.09

Bacillus subtilis OD600 ratio 89.09 54.93 6.42 156.69
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(Figure 3A). By averaging the spectral data and applying hierarchical 
cluster analysis (HCA), the hydrothermal products were classified into 
three categories (Figure 3B). The overall sequence of HSI spectral 
intensity is Cluster 1 ≈ Cluster 2 > Cluster 3, reflecting the properties 
of the hydrothermal products. HSI data correlate with hydrothermal 

products’ chemical and biological characteristics, indicating their 
potential utility in developing predictive models. The dataset 
comprising 125 wavelengths per HSI curve may present challenges, 
including increased computational complexity and noise in 
predictive modeling.

FIGURE 1

Classification of HTS based on their impact on composting microorganisms using (A) HCA and (B) PCA with loading scores. Clusters 1, 2, and 3 are 
represented by red, green, and blue, respectively.

FIGURE 2

Turkey HSD test results for four components across categories.
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3.3.2 Selection of characteristic wavelengths
HSI frequently encompasses tightly correlated adjacent bands, 

resulting in multicollinearity challenges among proximate wavelength 
variables. Feature wavelengths, essential for differentiating categories or 
identifying specific substances, generally display substantial alterations 
in the spectrum. According to previous hierarchical clustering studies, 
these feature wavelengths can be  identified by examining average 
reflectance fluctuations across designated wavelengths for each group. 
This approach reduces data dimensionality, conserves storage space, and 
retains critical information, thereby mitigating multicollinearity and 
bolstering model robustness. This method improves model accuracy 
and generalization by reducing the utilized wavelengths. Four separate 
machine learning models were used to assess the Competitive Adaptive 
Reweighted Sampling (CARS) strategy for feature wavelength selection: 
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random 
Forest (RF), and Extreme Gradient Boosting (XGBoost). These models 
were selected for their unique capabilities in managing high-
dimensional data and non-linear connections. For each model, 
hyperparameter tuning was conducted using grid search and cross-
validation to ensure optimal performance. The grid search method 
explored a range of parameter values for each model, and k-fold cross-
validation (k = 10) was applied to avoid overfitting and to select the most 
appropriate combination of hyperparameters for each model.

For the SVM model, the optimal regularization parameter (C) and 
kernel type (linear or RBF) were selected based on their ability to 
maximize the calibration correlation coefficient (rc) while minimizing 
RMSE. In the KNN model, the number of neighbors (k) was adjusted, 
and the optimal value was selected by minimizing the prediction error 
(RMSEP). The number of decision trees (n_estimators) and the 
maximum tree depth (max_depth) were optimized for the RF model 
to balance model complexity and prediction accuracy. The XGBoost 
model required the adjustment of the learning rate (eta), the number 
of boosting rounds, and the maximum tree depth to enhance model 
accuracy and computational efficiency. This assessment evaluates the 
effectiveness of CARS in dimensionality reduction and in addressing 
multicollinearity issues, presenting performance results across various 

models. Table 3 presents a comparison of the performance of these 
models in selecting characteristic wavelengths.

Overall, the RF model demonstrates superior performance across 
various metrics, including calibration correlation values and 
calibration and prediction RMSE, highlighting its robust predictive 
capability on this dataset. The XGBoost model also shows strong 
performance in calibration correlation, albeit slightly trailing behind 
random forests in prediction correlation and RMSE. Conversely, the 
KNN and SVM models exhibit comparatively lower calibration and 
prediction performance, notably with higher RMSE errors. 
Consequently, the Random Forest model emerges as the optimal 
choice for hyperspectral data analysis due to its superior performance 
and suitability for this dataset.

We utilized the CARS feature wavelength selection approach to 
improve model performance by minimizing complexity and 
identifying essential spectral bands to forecast hydrothermal 
products’ effects on microbial growth. This method identified 
wavelengths in the RF model with relevance scores beyond a 
predetermined threshold (e.g., 0.017). The importance score of 
each wavelength reflects its contribution to model accuracy, 
typically assessed by reducing impurity or errors in decision trees. 
Figure 4 illustrates the 10 selected feature wavelengths in the RF 
model and their corresponding chemical bonds. This method 
demonstrates the efficacy of integrating the CARS screening 
technique with RF modeling to attain superior outcomes in 
forecasting the impact of hydrothermal products on 
microbial proliferation.

The features identified through the CARS method accurately 
represent the chemical composition of tobacco stalks and their 
changes during hydrothermal processing. Tobacco stalks are 
composed mainly of cellulose, hemicellulose, and lignin. These 
components experience significant degradation and recombination 
reactions under elevated temperature and pressure hydrothermal 
conditions, forming new chemical bonds and molecular structures.

Figure 4B highlights the top five characteristic wavelengths and 
their corresponding chemical bonds. At 1096 nm and 1,101 nm, the 

FIGURE 3

Hyperspectral imaging (HSI) profiles of HTS in the 900–1700  nm range. (A) HSI profiles of all hydrothermal products; (B) HSI profiles of classified 
hydrothermal products.
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stretching vibrations of C-H and O-H bonds predominate, which is 
characteristic of cellulose and hemicellulose degradation products, 
such as small sugars and alcohols. The wavelength of 1,421 nm is 
primarily associated with O-H bond stretching vibrations, 
signifying substantial generation of hydroxyl groups and 
reorganization of water molecules during hydrothermal treatment, 
leading to considerable absorption at this wavelength. The 
stretching vibrations of C-H and N-H bonds are apparent at 
1163 nm and 1,335 nm, indicating partial breakdown and 
recombination of lignin into novel aliphatic and nitrogenous 
molecules. These newly formed chemical structures exhibit 
distinctive absorption features at these wavelengths.

The hydrothermal treatment of tobacco stalks involves complex 
chemical processes, encompassing dehydration, hydrolysis, 
condensation, and rearrangement reactions. These reactions lead to 
alterations in existing chemical bonds or the formation of new 
chemical bonds within the sample, resulting in distinct spectral 
absorption peaks at specific wavelengths (Xu et al., 2023; Provenzano 
et  al., 2018). Nicotine, a prominent tobacco waste alkaloid, has a 
unique chemical structure. Its absorption characteristics in the 
spectrum differ notably from those of lignin and other aromatic 
compounds. Nicotine’s characteristic absorption occurs primarily in 
the ultraviolet region (200–300 nm) rather than in the visible light 

spectrum. The characteristic wavelengths mainly indicate alterations 
in polysaccharides, lignin, hemicellulose, and other constituents of the 
hydrothermal products derived from tobacco stalks.

3.4 Predicting the impact of HTS on 
composting microbial growth using HSI 
and RF model

3.4.1 RF model prediction
The RF model was utilized to forecast four key components: 

nicotine, humic acid + fulvic acid (HA + FA), Penicillium chrysogenum 
H/C ratio, and Bacillus subtilis OD600 ratio. Figure  5 depicts the 
performance of the RF model in forecasting these components, 
together with the associated model performance measures. The RF 
model demonstrated significant accuracy in predicting nicotine and 
HA + FA levels, with prediction curves nearly matching actual data, 
thereby confirming the effectiveness of the selected wavelength 
characteristics. Predicting HA + FA content exhibited a lower RP value 
(0.606) and higher RMSE (4.464), suggesting greater variability in 
HA + FA content across samples or potential model limitations in 
capturing this feature’s complexity. In contrast, predictions for 
Penicillium chrysogenum H/C and Bacillus subtilis OD600 ratio proved 
more precise, achieving RC and RP values exceeding 98.5%. This 
demonstrates the model’s ability to accurately represent microbial 
strain growth trends across different treatment conditions, 
emphasizing its efficacy in quantitative microbial analysis and 
practical applications.

The performance metrics for all four characteristic components 
demonstrate significant accuracy and consistency. The RMSE values 
in the prediction set are slightly elevated compared to the calibration 
set, suggesting a minor increase in prediction error for new data; 
nonetheless, the total errors remain within acceptable thresholds. 
Consequently, this methodology enhances analytical accuracy and 
efficacy, providing a dependable instrument for forthcoming studies, 
especially in environmental microbiology and the optimal utilization 
of agricultural waste resources.

TABLE 3 Performance comparison of selected characteristic wavelengths 
by different models.

Model rc rP Rc Rp RMSEC RMSEP

SVM 0.839 0.944 0.704 0.891 12.12 12.42

KNN 0.889 0.966 0.793 0.932 7.931 4.934

RF 0.979 0.966 0.959 0.933 3.584 4.849

XGBoost 0.999 0.935 0.997 0.874 0.941 6.579

Support Vector Machine (SVM), K Nearest Neighbors (KNN), Random Forest (RF) and 
Extreme Gradient Boost (XGBoost), correlation coefficients of calibration (rc), correlation 
coefficients of prediction (rp), coefficients of determination of calibration (Rc), coefficients 
of determination of prediction (Rp), root mean square error of calibration (RMSEC), and 
root mean square error of prediction (RMSEP).

FIGURE 4

(A) Ten characteristic wavelengths obtained by RF and their importance; (B) Top five wavelengths and corresponding chemical bonds.
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3.4.2 Confusion matrix of the RF model
Images of hydrothermal products were entered into the model, 

and the accuracy of the category predictions was evaluated. The 
evaluation measured performance using a confusion matrix by 
comparing actual and expected categories. Figure 6 illustrates the 
confusion matrix of the RF model for predictions of the four types of 
feature components, where axes labeled 1, 2, and 3 correspond to 
Cluster 1, 2, and 3, respectively. Off-diagonal elements display low 
non-zero values, suggesting a low misclassification rate, while diagonal 
elements reveal correct predictions for each class. Owing to the small 
sample size, there are 42 samples in the training set and 19 in the test 
set. To ensure that the model can adequately learn during training and 
effectively evaluate performance during testing, the proportion of 
samples assigned to the training and test sets is deemed suitable.

Most test set samples were identified correctly, indicating the 
excellent accuracy of the confusion matrix for predicting nicotine 
levels. This demonstrates how well spectral data acquired using HSI 
technology may represent changes in nicotine concentration under 
various hydrothermal settings. It confirms the sensitivity and logic 
of feature wavelength selection and offers a solid basis for future 
studies into modifications in tobacco chemical composition. HSI 
technology acquires spectral data across multiple wavelengths, 
facilitating the investigation of chemical composition and variations. 
The RF model handles high-dimensional data and identifies essential 
wavelengths among various features, thus attaining substantial 
classification accuracy.

The RF model successfully follows changes in humic and fulvic 
acid content throughout hydrothermal treatment, as evidenced by 

FIGURE 5

RF model prediction curves and model characteristics for four components: (A) Nicotine content; (B) HA  +  FA content; (C) Penicillium chrysogenum 
H/C ratio; (D) Bacillus subtilis OD600 ratio.
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the predictions for these components’ contents. It achieves good 
accuracy with a slightly raised misclassification rate. This is 
consistent with the performance and prediction curve of the RF 
model shown in Figure 5B. The complexity of spectral characteristics 
for humic acid and fulvic acid, alongside subtle changes under 
varying hydrothermal conditions, may contribute to these challenges 
in category differentiation (Rodríguez et al., 2014). However, the 
overall prediction findings highlight the RF model’s strong 
performance and guide further improvements and optimizations in 
subsequent studies.

The RF model succeeds in predicting the ratios of Penicillium 
chrysogenum H/C and Bacillus subtilis OD600, with elevated 
prediction accuracy and a minimal misclassification rate. This 
highlights the model’s capacity to accurately capture the dynamics 
of colony ratios under various treatment settings, thus validating 
its significant utility in evaluating microbial 
community structures.

4 Discussion

In recent years, integrating the RF model and HSI has 
significantly advanced prediction and classification tasks across 
various areas. This methodology has shown significant results in 
agriculture, environmental science, and food quality evaluation and 
shows potential in chemical composition analysis. Wu et al. (2020) 
utilized HSI data with the RF model to precisely classify wheat 
diseases, significantly enhancing disease recognition efficiency. Xu 
et al. (2021) successfully detected and classified soil contamination 
swiftly using HSI data and RF, offering an efficient tool for 
environmental monitoring. Lan et  al. (2021) showcased rapid 
detection of sugar content and acidity in apples using HSI and RF, 
validating its effectiveness in food quality assessment. Divyanth 
et  al. (2022) achieved accurate classification and quantitative 
analysis of diverse chemical components in tobacco using HSI data 
paired with the RF model. In conjunction with HSI, the RF model 

FIGURE 6

Confusion matrices of the RF model for classification based on four feature components, with numbers 1, 2, and 3 on the axes corresponding to 
Cluster 1, 2, and 3, respectively: (A) Nicotine content; (B) HA  +  FA content; (C) Penicillium chrysogenum H/C ratio; (D) Bacillus subtilis OD600 ratio.
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has exhibited significant benefits and a wide range of potential 
applications in various fields. To further improve the accuracy and 
reliability of predictions, future research can concentrate on refining 
data preprocessing techniques and optimizing model parameters, 
thereby expanding the application potential.

The method proposed in this study for predicting compostability 
in hydrothermally treated tobacco straw using hyperspectral imaging 
(HSI) and chemometric modeling offers a rapid and efficient 
assessment tool. This approach streamlines the analysis process by 
leveraging HSI data and hydrothermal conditions, reducing the 
complexity and time required compared to traditional chemical and 
microbiological methods. However, the model’s reliability is 
restricted by the current dataset of 61 samples, as larger datasets 
typically enhance the model’s performance. In this context, 
non-linear approaches, such as Random Forest, which employs tree 
regression methods, are more appropriate than linear models, which 
frequently confront challenges with non-linear spectral effects.

The four models developed in this study were calibrated and validated 
using our experimental data, which specifically evaluated the impact of 
hydrothermal products on composting microorganisms. Since no models 
are specifically designed for composting with hydrothermally treated 
tobacco straw, external datasets were not used for validation. Despite 
having 61 experimental groups, the study’s data trustworthiness was 
ensured by the assurance that each group was based on actual 
hydrothermal processing. Similar studies’ models might not directly apply 
to this work due to significant changes in experimental methods and 
materials We acknowledge that there are only a few experimental groups; 
future studies will concentrate on increasing the dataset by including 
more varied tobacco waste samples, differing in kind, source, processing 
amount, and composting conditions. This will enable more validation and 
enhancement of the dependability and applicability of the model.

Simple color-based image thresholding yielded favorable outcomes 
in extracting regions of interest (ROI) and calculating average spectra 
in this study. Future research should explore more complex ROI 
segmentation techniques, including deep learning approaches and 
clustering algorithms, in light of the tobacco industry’s diverse 
conditions. These developments will improve the reliability and 
applicability of the proposed method in real-world contexts.

5 Conclusion

The results of this study confirm that a promising substitute for 
conventional chemical analysis in assessing the compostability of 
tobacco waste that has undergone hydrothermal processing is the 
combination of HSI and ML algorithms. This approach provides a 
rapid and convenient method, particularly effective in predicting 
nicotine content, total humic acid content, and their influence on the 
growth of composting microorganisms like Penicillium chrysogenum 
and Bacillus subtilis. Samples were divided into three groups using 
HCA and PCA according to the effects of heat treatment on 
composting: augmentation, inhibition, and no effect. Using CARS, the 
study assessed four machine-learning methods (SVM, KNN, XGBoost, 
and RF) to determine which spectral bands were most important for 
modeling. Except for total humic acid concentration (60%) and four 
important variables, RF showed good predictive potential, obtaining 
satisfactory findings with prediction accuracies exceeding 90%.

This study establishes the groundwork for understanding how 
hyperspectral images correlate with the chemical composition and 

compostability of hydrothermally processed tobacco straw 
products. The feasibility of predicting tobacco straw hydrothermal 
composting outcomes using hyperspectral images has been 
demonstrated. However, additional enhancements are required for 
machine learning predictive models. Subsequent research will 
prioritize increasing sample numbers and including more 
physicochemical indicators to improve the model’s overall efficacy. 
This will precisely assess composting success rates based on diverse 
physicochemical properties of hydrothermally processed materials.
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