The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Terrestrial Microbiology
Volume 15 - 2024 |
doi: 10.3389/fmicb.2024.1476016
This article is part of the Research Topic Anthropogenic Effects on the Microbial Communities of Terrestrial Ecosystems View all 29 articles
Antibiotic legacies shape the temperature response of soil microbial communities
Provisionally accepted- 1 University of Wisconsin-Madison, Madison, Wisconsin, United States
- 2 Virginia Tech, Blacksburg, Virginia, United States
- 3 Cary Institute of Ecosystem Studies, Millbrook, United States
- 4 University of Idaho, Moscow, Idaho, United States
Soil microbial communities are vulnerable to anthropogenic disturbances such as climate change and land management decisions, thus altering microbially-mediated ecosystem functions.Increasingly, multiple stressors are considered in investigations of ecological response to disturbances. Typically, these investigations involve concurrent stressors. Less studied is how historical stressors shape the response of microbial communities to contemporary stressors. Here we investigate how historical exposure to antibiotics drives soil microbial response to subsequent temperature change. Specifically, grassland plots were treated with 32-months of manure additions from cows either administered an antibiotic or control manure from cows not treated with an antibiotic. In-situ antibiotic exposure initially increased soil respiration however this effect diminished over time. Following the 32-month field portion, a subsequent incubation experiment showed that historical antibiotic exposure caused an acclimation-like response to increasing temperature (i.e. lower microbial biomass at higher temperatures; lower respiration and mass-specific respiration at intermediate temperatures). This response was likely driven by a differential response in the microbial community of antibiotic exposed soils, or due to indirect interactions between manure and soil microbial communities, or a combination of these factors.Microbial communities exposed to antibiotics tended to be dominated by slower-growing, oligotrophic taxa at higher temperatures. Therefore, historical exposure to one stressor is likely to influence the microbial community to subsequent stressors. To predict the response of soils to future stress, particularly increasing soil temperatures, historical context is necessary.
Keywords: agroecology, Carbon Cycle, Climate Change, ecosystem function, Legacy effects, Livestock agriculture, Microbial acclimation, microbiome
Received: 04 Aug 2024; Accepted: 26 Nov 2024.
Copyright: © 2024 Wepking, Lucas, Boulos and Strickland. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Carl Wepking, University of Wisconsin-Madison, Madison, 53715-1149, Wisconsin, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.