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Keloid scarring is a fibroproliferative disease of the skin, which can significantly 
impact one’s quality of life through cosmetic concerns, physical discomfort (itchy; 
painful), restricted movement, and psychological distress. Owing to the poorly 
understood pathogenesis of keloids and their high recurrence rate, the efficacy 
of keloid treatment remains unsatisfactory, particularly in patients susceptible to 
multiple keloids. We conducted fecal metagenomic analyzes and both untargeted 
and targeted plasma metabolomics in patients with multiple keloids (MK, n  =  56) 
and controls with normal scars (NS, n  =  60); tissue-untargeted metabolomics (MK, 
n  =  35; NS, n  =  32), tissue-targeted metabolomics (MK, n  =  41; NS, n  =  36), and 
single-cell sequencing analyzes (GSE163973). Differences in the gut microbiota 
composition, plasma metabolites, and tissue metabolites were observed between 
the MK and NS groups; the core gut microbiota, Oxalobacter formigenes, 
Bacteroides plebeius, and Parabacteroides distasonis, were identified via the gut 
microbiome co-occurrence network. Single-cell data helped clarify the specific 
cells affected by plasma metabolites. An area under the curve analysis using a 
random forest model based on fecal metagenomics, plasma metabolomics, and 
tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites 
were effective in distinguishing between MK and NS groups. Decreased Bacteroides 
plebeius could lower uracil levels, altering systemic lipid metabolism, which may 
change the metabolic phenotype of secretory reticular fibroblasts in wounds, 
potentially leading to MK. These findings may open new avenues for understanding 
the multifactorial nature of keloid formation from the gut-skin axis and highlight 
the potential for novel therapeutic strategies targeting keloid lesions and the 
underlying systemic imbalances affected by the gut microbiome.
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Introduction

Keloid scarring, a fibroproliferative disease of the skin, is 
characterized by continued progressive expansion of the wound 
beyond the boundaries into the adjacent healthy skin (Limandjaja et al., 
2020). In individuals prone to keloids, even minor cutaneous injuries 
such as insect bites, acne, and folliculitis can lead to the formation of 
multiple keloids (MK) throughout the body (Lee and Jang, 2018; 
Ogawa, 2017). Cosmetic and functional problems following keloid 
formation have a profound impact on patients’ quality of life and their 
psychological health (Chiang et al., 2016; Huang et al., 2014). Owing to 
the poorly understood pathogenesis of keloids and their high 
recurrence rate (Xu et al., 2022; Andrews et al., 2016), the efficacy of 

keloid treatment remains unsatisfactory, particularly in patients 
susceptible to MKs (Ogawa, 2022). Previous studies have predominantly 
focused on the pathogenesis of keloids, treating them as a uniform 
condition without distinguishing between single and multiple lesions. 
Hence, there is a pressing need for more focused studies that investigate 
the unique characteristics and causative factors of MK formation to 
better understand their development and realize more effective and 
personalized therapeutic approaches. Previous studies have indicated 
that the gut microbiota can interact with various distant organs by 
secreting metabolic substances (Zhao et al., 2023), and their association 
with many diseases in humans has been identified, such as Alzheimer’s 
disease, hypertension, and colon cancer (D’Argenio et al., 2022; Li et al., 
2017; Zheng et al., 2020). Similarly, the gut microbiota is linked to 
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several dermatological diseases (psoriasis, atopic dermatitis, and 
rosacea) via interactions with the internal body environment (Musthaq 
et al., 2018). Hence, many studies have introduced the concept of the 
gut-skin axis to uncover the connection between the gut microbiome 
and skin (Salem et al., 2018; Fang et al., 2022; Mahmud et al., 2022). 
The gut microbiota regulates skin barrier function and influences the 
renewal and differentiation of stem cells by secreting metabolic 
products such as short-chain fatty acids (SCFAs) (Salem et al., 2018). 
Additionally, metabolic reprogramming has been reported to play a 
crucial role in human conditions (Baik et al., 2019; Mossmann et al., 
2023) and has been found in keloids (Li et  al., 2018); therefore, 
examining the characteristics of the metabolites derived from gut 
microbiota in keloid tissues may provide a potential target for keloids.

In this study, we conducted fecal metagenomics, untargeted and 
targeted plasma metabolomics, untargeted and targeted tissue 
metabolomics, and single-cell sequencing to explore the potential 
correlation between the gut microbiome and MKs, which may partly 
explain the pathogenesis of MKs in patients. In summary, our study 
provides a valuable dataset and, to the best of our knowledge, is the 
first to describe a generalizable gut microbial and plasma/tissue 
signature of MK, which may offer new clues for understanding its 
etiology and pathogenesis.

Materials and methods

Participants

In this study, from June 2021 to September 2023, 116 individuals 
[patients with MKs (MK), n = 56 and controls with normal scars (NS), 
n = 60] were recruited from Fujian Medical University Union Hospital, 
China to undergo fecal metagenomics and untargeted/targeted plasma 
metabolomics; of these, 67 (MK, n = 35; NS, n = 32) were selected for 
tissue-untargeted metabolomics and 77 (MK, n = 41; NS, n = 36) for 
tissue-targeted metabolomics. The inclusion criteria were as follows: 
the MK group had at least three keloid lesions throughout the body, 
developed lesions within the past year, experienced pathological scar-
related symptoms such as itching and pain, and experienced scar 
recurrence despite undergoing various therapies, such as resection, 
local radiotherapy, and drug injections. In the NS group, scar 
formation occurred within 2 years after injury or surgery. The 
exclusion criteria were as follows: (i) individuals on antibiotics, 
microecological preparations, immune modulators, hormonal drugs, 
or traditional Chinese medicine in the past month (Becattini et al., 
2016); (ii) individuals with endocrine system diseases, inflammatory 
bowel disease, or frequent diarrhea; (iii) patients who underwent 
digestive system surgical procedures within the last 3 years; or (iv) 
patients who underwent hemodialysis, cleansing enemas, or oral 
bowel cleansing agents within the last 2 weeks. Written informed 
consent was obtained from all patients enrolled in the study. This 
study was approved by the Ethics Committee of the Fujian Medical 
University Union Hospital (No. 2021KJCX020).

Fecal, plasma, and tissue sample collection

Fecal samples were obtained and placed in collection tubes 
designed for stool specimens containing a DNA stabilizer. Following 

this, the samples were rapidly frozen by placing them on dry ice and 
subsequently stored at −80°C until analysis. Blood samples were 
collected from the 116 participants under fasting conditions. 
Subsequently, these samples were centrifuged at 3,000 rpm and 4°C 
for 10 min, after which they were preserved at −80°C until analysis. 
The tissue samples were rapidly frozen on dry ice after surgery and 
stored at −80°C until analysis.

Fecal DNA extraction and metagenomic 
sequencing

In accordance with the manufacturer’s guidelines, DNA was 
extracted from fecal samples using the PF Mag-Bind Stool DNA Kit 
(Omega Bio-Tek, United  States). TBS-380 and NanoDrop2000 
instruments were used to determine the concentration and purity of 
the extracted DNA, respectively. Additionally, DNA quality was 
evaluated using 1% agarose gel electrophoresis. The DNA extract was 
fragmented to achieve an average size of approximately 400 bp using 
Covaris M220 (Gene Company Limited, China). Subsequently, a 
paired-end library was generated using NEXTFLEX Rapid DNA-Seq 
(Bioo Scientific, Austin, TX, United States). Paired-end sequencing 
was conducted on an Illumina NovaSeq 6000 platform (Illumina Inc., 
San Diego, CA, United States) using the NovaSeq 6000 S4 Reagent Kit. 
Data were analyzed using the online platform of Majorbio Cloud 
Platform1 (Ren et al., 2022). Low-quality reads were defined as those 
with a length <50 bp, a quality value <20, or those containing N bases. 
This processing was performed using the fastp software (version 
0.23.0) (Chen et al., 2018). Taxonomic and functional profiling were 
conducted using MetaPhlAn3 (version 3.0.14) and HUMAnN3, the 
next iteration of HUMAnN, the HMP Unified Metabolic Analysis 
Network (version 3.0.1) with default parameters (Beghini et al., 2021). 
Microbial species were included in our analysis if they had a minimum 
relative abundance of 0.01% in at least 10% of the samples; thus, 149 
species were identified. Microbial pathways were annotated using the 
MetaCyc metabolic pathway database (Caspi et  al., 2018). Linear 
discriminant analysis (LDA) was used to determine differential 
abundance and identify functional pathways in the gut microbiome.

Untargeted and targeted metabolomic 
profiling of plasma/tissue samples

For untargeted metabolomic profiling, liquid chromatography-
tandem mass spectrometry (LC-MS/MS) analysis was performed 
using Thermo UHPLC-Q Exactive HF-X system equipped with an 
ACQUITY HSS T3 column (100 mm × 2.1 mm i.d., 1.8 μm; Waters, 
United States). Pretreatment of the raw LC-MS data was conducted 
using Progenesis QI (Waters Corporation, Milford, MA, 
United States). Metabolites were identified by searching the human 
metabolome database,2 Metlin metabolomics database,3 and Majorbio 
Cloud platform (see text footnote 1). For targeted metabolomic 
profiling, aiming to explore short-chain fatty acid (SCFA) levels, the 

1 www.majorbio.com

2 http://www.hmdb.ca/

3 https://metlin.scripps.edu
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ExionLC AD system coupled with a QTRAP® 6500+ mass 
spectrometer (Sciex, United States) was used for LC-MS/MS analysis 
of the plasma samples. Raw LC-MS data were loaded into the Sciex 
software OS. Automatic identification and integration of all ion 
fragments were performed using the default parameters, and all 
integrations were verified manually. Metabolite concentrations were 
determined using a linear regression standard curve. Data were 
analyzed using the online Majorbio Cloud platform (Ren et al., 2022). 
Metabolites were considered significantly different between the two 
groups if they had a variable importance in the projection (VIP) score 
>1 and a false discovery rate (FDR) value <0.05, as determined using 
the orthogonal partial least squares discriminant analysis model and 
Student’s t-test, respectively. To examine the potential functions of 
metabolites, metabolic features were annotated using the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database (Ogata 
et al., 1999).

Gut microbiome co-occurrence network

To investigate the different interaction models of the gut 
microbiota, a co-occurrence network was constructed in the MK and 
NS groups using 149 differentially abundant species. The 
co-occurrence network included only Spearman’s correlations that 
met the following criteria: p < 0.05, |correlation coefficient| >0.3, and 
the top  200 correlation coefficients. Based on within-module 
connectivity Zi, (measuring how well a node was connected to other 
nodes in its module) and among-module connectivity Pi, (measuring 
how well a node was connected to nodes in different modules), the 
nodes were categorized into four groups: module hubs (Zi >2.5 and Pi 
<0.62), connectors (Zi <2.5 and Pi >0.62), network hubs (Zi >2.5 and 
Pi >0.62), and peripherals (Zi <2.5 and Pi <0.62) (Olesen et al., 2007; 
Guimerà and Nunes Amaral, 2005). In the co-occurrence network, the 
core species were evaluated using the ZiPi score (ZI <2.5, Pi >0.62).

Single-cell RNA-sequence data processing

To further investigate the specific cell types influenced by host 
metabolism, we  explored linoleic acid and glycerophospholipid 
metabolism at single-cell resolution via scMetabolism (Wu et  al., 
2022). Single-cell sequencing data were downloaded from The Gene 
Expression Omnibus,4 accession number GSE163973 (Deng et al., 
2021). For each sample, we eliminated cells with unique molecular 
identifier counts of >6,000 or <200 to filter out unwanted variations 
and low-quality cells. Additionally, cells identified as doublets using 
DoubletFinder (McGinnis et  al., 2019) were removed to preclude 
doublet-related biases. We defined the top 2,000 most variable genes 
based on their average expression and dispersion as highly variable 
genes (HVG). We reduced data dimensionality by performing the 
principal component analysis on the HVG. The first 30 principal 
components were selected for clustering. Data visualization was 
achieved by applying unsupervised t-distributed stochastic neighbor 

4 http://www.ncbi.nlm.nih.gov/geo/

embedding to the cell loadings of selected principal components and 
utilizing cluster assignments from graph-based clustering.

Correlation and statistical analysis

Spearman’s rank correlation coefficient was used to assess the 
associations between fecal metagenomics, plasma metabolomics, and 
tissue metabolomics. We  only displayed those correlations with a 
p < 0.05 in the heatmap. The data were randomly divided into training 
(70%) and testing (30%) datasets for the random forest (RF) model 
using the randomForest package (version 4.7-1.1). Variable 
importance was assessed based on the mean decrease in accuracy. 
Receiver operating characteristic (ROC) curves and area under the 
curve (AUC) were calculated using SPSS (version 27.0.1.0). p < 0.05 
was adopted for statistical significance. Additionally, the FDR p-value 
was computed for multiple comparisons using the Benjamini–
Hochberg method.

Results

Study overview

In the present study, 116 participants were recruited from Fujian 
Medical University Union Hospital (Supplementary Table S1). No 
significant differences in age, sex, or body mass index were observed 
between the MK and NS groups. Metagenomic sequencing was used 
to generate gut metagenomic data, whereas untargeted/targeted 
metabolomic profiling was used to obtain plasma/tissue metabolomics 
data. To elucidate the potential pathogenic mechanism of MK, 
we compared MK and NS group patients using fecal metagenomics 
and plasma and tissue metabolomics. An overview of this study is 
shown in graphical abstract.

Gut microbiome signatures of the MK and 
NS groups

We first analyzed the gut microbial composition of 116 fecal 
samples by metagenomic sequencing. We found significant differences 
in α-diversity between the MK and NS groups, revealed by Chao, 
Shannon, and Simpson indices (Supplementary Figures S1A–C). 
β-diversity was evaluated by PCoA analysis (p = 0.001, ANOSIM test) 
(Figure  1A) and hierarchical clustering tree 
(Supplementary Figures S2–S4), which indicated that the gut 
microbiota community of patients with MK was significantly different 
from that of the NS group. Next, we constructed Venn diagrams and 
bar plots to illustrate the differences in the overall gut microbiota 
composition between the MK and NS groups. Venn diagrams 
demonstrated that the MK and NS groups shared 9 phyla, 70 genera, 
and 149 species (Supplementary Figures S5B–D). The bar plots 
showed the relative abundances at the phylum, genus, and species 
levels. At the phylum level, in the NS group, Bacteroidetes was the 
most abundant phylum, followed by Firmicutes. However, in the MK 
group, the relative abundance of Firmicutes was higher than that of 
Bacteroidetes (Figure 1B). At the genus level, the relative abundance of 
Bacteroides in MK was distinctly different from that in NS. Moreover, 
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the proportion of Prevotella was larger than that of Bifidobacterium in 
NS (Figure  1C). At the species level, the gut microbiome of NS 
controls presented a larger relative abundance of Bacteroides vulgatus, 
Bacteroides uniformis, Bacteroides plebeius, and Bacteroides 
thetaiotaomicron and a lower abundance of Escherichia coli than the 
gut microbiome of patients with MK (Figure 1D).

Next, linear discriminant analysis effect size (LEfSe) was used to 
analyze the taxonomic profiles and ascertain disparities in the gut 
microbiome between the MK and NS groups. A total of 49 species 
exhibiting differential abundance were identified (LDA >2.5, p < 0.05) 
(Supplementary Table S2). Notably, 40 of these species, including 
Escherichia coli, Klebsiella pneumoniae, and Collinsella aerofaciens, 
were more abundant in the MK group. Conversely, we  found an 
abundance of nine species in NS controls, including Bacteroides 
vulgatus, Bacteroides plebeius, and Bacteroides uniformis. To elucidate 
the distinct microbial functions between the MK and NS groups, 
we analyzed the functional pathways across all metagenomes using 
HUMAnN3 and the MetaCyc database. The abundant pathways 
underwent LEfSe analysis, which revealed 54 pathways exhibiting 
differential abundance between MK and NS individuals (LDA >3, 
p < 0.05) (Supplementary Figure S5A). Of the 54 distinct functional 
pathways, 10 exhibited a notable increase in abundance in patients 
with MK. Our analysis revealed that sucrose biosynthesis II (PWY-
7238) and glycogen degradation II (PWY-5941) pathways displayed 
the most significant differential increases in patients with MK and that 

these two pathways were predominantly influenced by 
Faecalibacterium prausnitzii (Supplementary Figures 2A,B). For NS 
controls, dTDP-β-L-rhamnose biosynthesis (DTDPRHAMSYN-PWY) 
and 6-hydroxymethyl-dihydropterin diphosphate biosynthesis 
I (PWY-6147) pathways were the most enriched pathways among 44 
abundant functional pathways. The main contributors to these two 
pathways were Prevotella copri and Faecalibacterium prausnitzii, 
respectively (Supplementary Figures 2C,D). Faecalibacterium 
prausnitzii contributes to the gut-skin axis, which is closely associated 
with atopic dermatitis, a chronic, non-infectious inflammatory 
dermatosis (Song et al., 2016; Lee et al., 2022). Keloid scarring is a 
long-lasting, non-contagious inflammatory disorder. The secretory 
components of Faecalibacterium prausnitzii are also proven to 
modulate cutaneous wound inflammation (Stefia et al., 2020). Hence, 
Faecalibacterium prausnitzii may have a significant effect on the 
development of MK.

Gut microbiome co-occurrence network in 
the MK and NS groups

Owing to the complicated interactions within the human gut 
microbiome (Schmidt et al., 2018), we constructed a co-occurrence 
network with patients with MK and NS controls to explore the 
potentially different interaction models of the gut microbiota between 

FIGURE 1

Alterations in the gut microbiome. (A) The β-diversity is shown by principal coordinate analysis based on the Bray–Curtis dissimilarity index (ANOSIM 
test, p  =  0.001). Bar plots show the average relative abundance of gut microbiota in the multiple keloid (MK) and normal scar (NS) groups at the 
(B) phylum, (C) genus, and (D) species levels, and on the right side of the bar plots, the bacterial names are listed, with the order from top to bottom 
indicating a decrease from higher to lower average relative abundance.
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FIGURE 2

Gut microbiome co-occurrence network. Co-occurrence network of gut microbial species in patients with multiple keloid (MK, A) and normal scar 
(NS, B). Red lines indicate a positive correlation, whereas green lines signify a negative correlation. Zi-Pi plot illustrates the distribution of gut bacteria in 
(C) MK and (D) NS. The threshold values of Zi and Pi for categorizing gut bacteria are 2.5 and 0.62, respectively.

the two groups (Figures 2A,B). Overall, the co-occurrence network of 
patients with MK with 149 identified species presented 182 positive 
and 18 negative correlations (p < 0.05, correlation coefficient >|0.3|, 
and the top  200 correlation coefficients) (Figure  2A and 
Supplementary Table S3). Similarly, the NS controls showed 186 
positive and 14 negative correlations (Figure  2B and 
Supplementary Table S3). The core species in the co-occurrence 
network were evaluated using the ZiPi score (Supplementary Table S4) 
(Zi <2.5, Pi >0.62); 41 and 22 core species were identified in the 
co-occurrence networks of the MK and NS sites, respectively 
(Supplementary Table S4). Bacteroides coprocola, Bacteroides plebeius, 
Parabacteroides distasonis, Parabacteroides merdae, Eubacterium 
rectale, Tyzzerella nexilis, and Oxalobacter formigenes co-occurred in 
both MK and NS.

Subsequently, LEfSe analysis revealed that Oxalobacter formigenes 
was significantly increased in patients with MK, whereas Bacteroides 
plebeius and Parabacteroides distasonis were elevated in the NS 
controls (Supplementary Table S2). Therefore, Oxalobacter 
formigenes, Bacteroides plebeius, and Parabacteroides distasonis were 
deemed the most important species because they played an important 
role in the interaction with other microbiota within the gut 
microbiome, and the abundance of these three species was 
significantly different between the MK and NS groups (Figures 2C,D). 
Oxalobacter formigenes was positively correlated with Alistipes 
putredinis, Alistipes shahii, and Alistipes indistinctus in the MK 
network (Figure  2A), whereas it was positively correlated with 
Clostridium sp. CAG:242 in the NS network (Figure 2B). Moreover, 

Bacteroides plebeius was positively associated with Barnesiella 
intestinihominis and Bacteroides coprocola in the MK network 
(Figure  2A), whereas it was positively associated with both 
Bacteroides coprocola and Prevotella stercorea in the NS network; a 
negative correlation was found between Bacteroides plebeius and 
Parabacteroides distasonis (Figure 2B). Parabacteroides distasonis was 
positively correlated with Bacteroides cellulosilyticus, Bacteroides 
thetaiotaomicron, Bacteroides uniformis, and Flavonifractor plautii in 
patients with MK (Figure 2A), whereas it was positively associated 
with Bacteroides ovatus, Bacteroides thetaiotaomicron, Bilophila 
wadsworthia, and Blautia sp. CAG:257 in the NS controls; a negative 
correlation was observed between Parabacteroides distasonis and 
both Bacteroides coprocola and Bacteroides plebeius (Figure 2B).

Similarly, psoriasis, a noninfectious chronic inflammatory 
condition of the skin, is characterized by a scaly erythematous 
eruption (Hawkes et  al., 2017). A previous study revealed that 
following co-housing and fecal microbial transplantation trials, 
transplantation of gut microbiota from mice presenting an intense 
psoriasis-like skin phenotype aggravated psoriasiform skin 
inflammation in mice displaying minor symptoms. This 
exacerbation was accompanied by increased infiltration and 
differentiation of T helper 17 cells, microbiota-derived fatty acids, 
and abundance of Prevotella, but decreased levels of Parabacteroides 
distasonis (Zhao et  al., 2023). Therefore, as in psoriasis, the gut 
microbiome may contribute to the pathogenesis of MK by 
modulating the host immune system, which is affected by 
microbiota-derived metabolites.
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Plasma metabolomics profile reveals 
different metabolites between the MK and 
NS groups

To investigate the potential links between the gut microbiome and 
plasma metabolome, we performed untargeted metabolomics on 116 
plasma samples (MK, n = 56, NS, n = 60). A total of 780 metabolites 
were identified, of which 99 were significantly different between the 
MK and NS groups (FDR <0.05, VIP >1) (Supplementary Figures S7A,B 
and Supplementary Table S5). In addition, 99 significantly altered 
metabolites were involved in 58 metabolic pathways, including fatty 
acid, steroid hormone, and primary bile acid biosynthesis pathways 
(Supplementary Table S6). Patients with MK displayed specific 

metabolic pathway alterations since the KEGG enrichment analysis 
demonstrated that 99 significantly altered metabolites were enriched 
in 14 pathways, including mineral absorption, bile secretion, 
aminoacyl-tRNA biosynthesis, protein digestion, and absorption 
pathways (Figure 3A). Furthermore, we observed that the primary bile 
acid biosynthesis and bile secretion pathways were both downregulated 
in patients with MK, suggesting that bile secretion was significantly 
lower in patients with MK than in the NS controls. Bile acids, which 
function as signaling molecules that regulate metabolism and 
inflammation via the nuclear farnesoid X receptor and Takeda G 
protein-coupled receptor 5 (Chávez-Talavera et al., 2017), may affect 
the development of local keloids by regulating metabolism and 
inflammation. The variation in primary bile levels between the MK 

FIGURE 3

Plasma and tissue metabolomics features of participants. (A) KEGG enrichment analysis demonstrates enriched functional pathways based on 99 
significantly altered metabolites. (B) KEGG enrichment analysis demonstrates enriched functional pathways based on 179 significantly altered 
metabolites.
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and NS groups may be due to the dysbiosis of intestinal flora (Sinha 
et al., 2020).

Given that microbiota-derived SCFAs may be involved in a series 
of diseases in the host (Canfora et al., 2015; Aho et al., 2021; Fawad 
et al., 2022), we examined plasma SCFAs in the participants using 
plasma-targeted metabolomics. We  quantified eight SCFAs in the 
plasma, of which caproic acid was significantly increased in patients 
with MK (FDR <0.05, VIP >1) (Supplementary Figures S3C,D and 
Supplementary Table S7). Similar elevated caproic acid levels have 
been observed in patients with multiple sclerosis than in normal 
controls, which is caused by immune system-mediated damage 
(Nakahara et  al., 2012), suggesting that caproic acid exhibits 
pro-inflammatory characteristics attributable to the activation of the 
p38 MAPK signaling pathway (Saresella et al., 2020). Furthermore, in 
rheumatoid arthritis, an autoimmune condition characterized by 
chronic joint inflammation, a significant elevation in caproic acid 
levels was observed, but these levels markedly decreased following 
treatment with Danggui Sini decoction, a Traditional Chinese 
medicine prescription from the Treatise on Febrile Diseases (He et al., 
2023). The pro-inflammatory effects of caproic acid may play a crucial 
role in MK pathogenesis. Targeting caproic acid-related pathways may 
offer novel strategies for managing MK and emphasize the importance 
of exploring metabolic-inflammatory links in understanding and 
treating MK.

Correlation between tissue metabolomics 
and plasma metabolomics

In our study, we  did not observe significantly altered SCFAs 
between MK and NS via tissue-targeted metabolomics (MK, n = 41, 
NS, n = 36) (FDR <0.05, VIP >1) (Supplementary Figures S8A,B and 
Supplementary Table S8). However, 67 samples were used for tissue-
untargeted metabolomics (MK, n = 35, NS, n = 32), and 882 
metabolites were identified, of which 179 metabolites were 
significantly different between the MK and NS groups (FDR <0.05, 

VIP >1) (Supplementary Figures S7E,F and Supplementary Table S9). 
A total of 179 significantly altered metabolites were involved in 63 
metabolic pathways (Supplementary Table S10) but enriched in 15 
pathways between the two groups, including ovarian steroidogenesis, 
carbohydrate digestion and absorption, galactose metabolism, ABC 
transporters, and linoleic acid metabolic pathways (Figure  4B). 
We  observed that 12-hydroxyeicosatetraenoic acid (12-HETE), 
15-hydroperoxyeicosatetraenoic acid (15(S)-HpETE), and dinoprost 
were involved in the ovarian steroidogenesis pathway and were 
significantly downregulated in patients with MK. 12-HETE, 15(S)-
HpETE, and dinoprost share the same arachidonic acid precursor. The 
deficiency of essential fatty acids, which are precursors of arachidonic 
acid, may be one of the causes of the formation of scar tissue (Louw, 
2000a); thus, the lack of arachidonic acid may lead to a reduction in 
downstream metabolites that might contribute to the formation of MK.

Furthermore, we  explored the correlation between tissue and 
plasma metabolomics (Supplementary Figure S9). Notably, 50 plasma 
metabolites, including 18-hydroxycorticosterone, N-methylhydantoin, 
and uracil, were highly correlated with tissue metabolites. Interestingly, 
18-hydroxycorticosterone, an aldosterone precursor, was significantly 
decreased in the MK group than in the NS control in both plasma and 
tissue metabolomics. A previous study reported that corticosterone 
synthesis can be inhibited by intestinal bacteria-derived arachidonic 
acid (Yan et  al., 2020), which suggests that reduced intestinal 
corticosterone synthesis might affect corticosterone levels in keloids. 
Overall, our data implies that plasma metabolites might affect local 
keloid lesions and perhaps partly explain the etiology and 
pathogenesis of MK.

Correlation between gut microbiome and 
plasma metabolomics

Mounting evidence indicates that the pleiotropic effects of gut 
microbiota on host metabolism are primarily mediated by gut 
microbial metabolites (Canfora et al., 2019). Hence, we investigated 

FIGURE 4

Correlation between gut microbiome and plasma metabolites. (A) The heatmap shows the associations between the enriched functional pathways of 
gut microbiota [multiple keloids (MK), n  =  56, normal scars (NS), n  =  60] and 50 differential plasma metabolites (MK, n  =  56, NS, n  =  60), highly 
associated with tissue metabolites (MK, n  =  35, NS, n  =  32). (B) The heatmap shows the associations between differential abundant gut bacteria (MK, 
n  =  56, NS, n  =  60) and 50 differential plasma metabolites (MK, n  =  56, NS, n  =  60), highly associated with tissue metabolites (MK, n  =  35, NS, n  =  32). 
*p  <  0.05, **p  <  0.01, and ***p  <  0.001.
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the relationship between the 50 plasma metabolites that were highly 
associated with tissue metabolites and the enriched functional 
pathways of the gut microbiota (Figure 4A). Notably, capric acid was 
positively associated with the L-lysine biosynthesis III (PWY-2942) 
and pyrimidine deoxyribonucleoside salvage (PWY-7199) super 
pathways. It was negatively correlated with the glycogen degradation 
II (PWY-5941) and pentose phosphate pathway (non-oxidative 
branch) I (NONOXIPENT-PWY). Additionally, we observed elevated 
serotonin levels in patients with MK and found a negative correlation 
between serotonin and pathways such as the super pathway of 
L-aspartate and L-asparagine biosynthesis (ASPASN-PWY), L-lysine 
biosynthesis III (PWY-2942), and pyrimidine deoxyribonucleoside 
salvage (PWY-7199). Conversely, a positive correlation was observed 
between serotonin and pathways, such as UDP-N-acetyl-D-
glucosamine biosynthesis I  (UDPNAGSYN-PWY) and glycogen 
degradation II (PWY-5941). Serotonin plays a vital role in the skin, as 
mast cells in the skin have been reported to release serotonin 
(Meixiong et al., 2019), and prior research has suggested its relevance 
in the development of tissue fibrosis development (Sagonas and 
Daoussis, 2022; Dolivo et al., 2018; Dees et al., 2011). Furthermore, 
we  found 24 significant associations between caproic acid and 
microbial functional pathways (Supplementary Figure S10).

Next, to identify which gut microbiota were closely associated 
with plasma metabolites, the correlation between 50 plasma 
metabolites, which were highly associated with tissue metabolites, and 
49 significantly altered gut microbiota was analyzed (Figure 4B). The 
heatmap illustrates that each plasma metabolite exhibits at least two 
significant relationships with the gut microbiota. Clostridium citroniae, 
Eggerthella lenta, Gordonibacter pamelaeae, Clostridium leptum, 
Adlercreutzia equolifaciens, Asaccharobacter celatus, Ruthenibacterium 
lactatiformans, and Bilophila wadsworthia were significantly correlated 
with many plasma metabolites than the other gut microbiota. 
Consequently, we  focused primarily on the core gut microbiota 
identified through the gut microbiome co-occurrence network. The 
heatmap revealed a positive association of Oxalobacter formigenes 
with 3-methylbut-2-enoylcarnitine, 4-vinylcyclohexene dioxide, 
2-propyl-2,4-pentadienoic acid, and nonactinic acid but a negative 
correlation with uracil, N-methylhydantoin, 3-deoxyestrone, 
elymoclavine, and citrusinine I. Moreover, Bacteroides plebeius was 
positively associated with methylprednisolone acetate and uracil and 
negatively correlated with dodecylbenzenesulfonic acid and 
5-(2-methylpropyl)tetrahydro-2-oxo-3-furancarboxylic acid. In 
addition, Parabacteroides distasonis revealed a positive relationship 
with 3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid but a 
negative correlation with rhodamine 6G. Overall, our data 
demonstrated numerous significant relationships between plasma 
metabolites, microbial functional pathways, and microbiota, 
suggesting that altered microbial metabolites caused by variations in 
the gut microbiome might affect host plasma metabolomics in patients 
with MK.

Metabolic activity at a single-cell resolution

KEGG enrichment analysis revealed 14 and 15 enriched pathways 
in the plasma and tissue metabolomics, respectively. Linoleic acid and 
glycerophospholipid metabolic pathways were both presented in the 
KEGG enrichment analysis of plasma and tissue metabolomics. 

Furthermore, the pathogenic Escherichia coli infection pathway was 
enriched in plasma and tissue metabolomics, and Escherichia coli was 
significantly increased in the MK group. These data suggest that 
metabolites produced by the gut microbiota may affect keloids via the 
circulatory system. To further investigate the specific cell types 
influenced by host metabolism, we explored the metabolic activity of 
linoleic acid and glycerophospholipid metabolism at single-cell 
resolution via scMetabolism (Wu et al., 2022). Unbiased clustering 
reveals 22 cellular clusters (Supplementary Figure S11). Based on a 
previous study (Deng et al., 2021), single-cell data were classified into 
10 clusters (Figures 5A,B).

The scMetabolism results suggested that linoleic acid and 
glycerophospholipid metabolic pathways were mainly located in 
fibroblasts (Figures 5C,D), which play a crucial role in the development 
of keloids (Macarak et al., 2021); they were located in a subcluster of 
fibroblasts, and 45 clusters were separated from fibroblasts (Figure 5E). 
We  found that clusters C31 and C35 had the highest metabolic 
activities for linoleic acid and glycerophospholipid metabolism. 
Recent research has indicated that normal human dermal fibroblasts 
comprise four distinct subpopulations: secretory-papillary, secretory-
reticular, mesenchymal, and pro-inflammatory (Solé-Boldo et  al., 
2020). C31 and C35 were annotated as secretory reticular fibroblasts 
(Figure 5E). Furthermore, we found that clusters C31 and C35 were 
primarily derived from the NS group (Supplementary Figures S12A–E), 
which demonstrated that keloids may be deficient in linoleic acid and 
glycerophospholipid metabolism compared with normal scars. In 
addition, a previous study indicated that linoleic acid levels in keloids 
were lower than those in normal skin (Louw, 2000b). Interestingly, a 
study of dry eye syndrome with an inflammatory component revealed 
that linoleic acid may reduce ocular surface inflammation, indicating 
its potential anti-inflammatory properties (Barabino et  al., 2003). 
However, a previous study highlighted the complex role of 
glycerophospholipids in inflammation, indicating their potential to 
exhibit both pro- and anti-inflammatory effects contingent on the 
context (Zhang et al., 2017). Taken together, the analysis of metabolic 
activity at a single-cell resolution revealed that metabolites from the 
gut microbiota may influence the tissue metabolic microenvironment, 
subsequently influencing the phenotype of cells, including fibroblasts.

MK diagnosis based on microbiome and 
metabolomics

Currently, MK diagnosis relies primarily on clinical 
manifestations. Managing MKs poses a preventive therapeutic 
challenge, underscoring the importance of mitigating scar formation 
after skin injury. Here, we investigated whether the gut microbiome, 
plasma metabolomics, and tissue metabolomics could serve as 
biomarkers for identifying high-risk patients prone to developing 
MKs following skin injury. Therefore, we built RF models using the 
relative abundances of fecal metagenomics and plasma/tissue 
metabolomic features. Variable importance was indicated by the mean 
decrease in the accuracy of the RF models. The top five gut microbiota 
and plasma/tissue metabolites with the highest mean decrease in 
accuracy scores were selected for the AUC analysis (Figures 6A–C).

Based on the fecal metagenomic data, Bacteroides 
thetaiotaomicron, Bacteroides ovatus, Streptococcus salivarius, 
Parabacteroides distasonis, and Streptococcus parasanguinis were used 
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as predictive markers for MK, with an AUC of 0.791 [95% confidence 
interval (CI): 0.709–0.873] (Figure  6D). Based on plasma 
metabolomics data, 3-(cyclohexylamino)-2-hydroxy-1-
propanesulfonic acid, 5-butyltetrahydro-2-oxo-3-furancarboxylic 
acid, 2-propyl-2,4-pentadienoic acid, 2-butyne-1,4-diol, and 
5-(2-methylpropyl)tetrahydro-2-oxo-3-furancarboxylic acid were 
used as predictive markers for MK, with an AUC of 0.959 (95% CI: 
0.926–0.992) (Figure 6E). Based on the tissue metabolomics data, 
4a-carbinolamine tetrahydrobiopterin, 1-aminocyclohexanecarboxylic 
acid, N, N-dimethylacrylamide, 2-deoxycastasterone, and 
galactosylhydroxylysine were used as predictive markers for MK, with 
an AUC of 0.998 (95% CI: 0.993–1) (Figure 6F). Our data indicate that 
gut bacteria and plasma and tissue metabolites are effective predictors 
for distinguishing patients with MK from NS controls.

Discussion

This study based on fecal metagenomics, plasma metabolomics, 
and tissue metabolomics revealed that gut bacteria, plasma, and tissue 
metabolites were effective in distinguishing between the MK and NS 
groups. This study provides a valuable dataset and, to the best of our 
knowledge, is the first to describe a generalizable gut microbial and 
plasma/tissue signature of MK, which may offer new clues for 
understanding its etiology and pathogenesis.

The pathogenesis of keloids remains incompletely understood, 
and most current research primarily focuses on the pathogenesis of 
keloid lesions, such as the hyperactivity of fibroblasts, imbalance in 
collagen synthesis and degradation, and deposition of the extracellular 
matrix (Berman et al., 2017; Limandjaja et al., 2020). Although current 
research focusing on the pathogenesis of keloid lesions is 

comprehensive, it still fails to explain why patients with MK develop 
MKs on various body parts, which is a gap in understanding the 
susceptibility to keloids. Therefore, it is imperative to expand our 
investigative focus beyond localized keloid lesions to explore the 
systemic factors in keloid pathogenesis. A differential proportion of 
gut microbiota between the MK and NS groups was observed in the 
present study. Additionally, we  found Oxalobacter formigenes, 
Bacteroides plebeius, and Parabacteroides distasonis, the core gut 
microbiota in the MK and NS groups, with different abundances 
between the two groups. Metabolomics data suggest the presence of a 
gut-skin axis in patients with MK, where microbiome-induced 
alterations in host plasma metabolomics influence keloid lesions. 
Subsequently, 50 plasma metabolites closely linked to the tissue 
metabolites were used to investigate their correlations with gut 
metabolomics. To the best of our knowledge, this study is the first to 
report an integrated analysis of the gut microbiome, plasma, and 
tissue metabolomics of patients with MKs.

Bacteroides plebeius was present in a high proportion in the NS 
group, whereas its relative abundance was notably lower in the MK 
group. Bacteroides plebeius potentially influences the gut microbiome 
by enhancing probiotic abundance and mitigating damage to the 
intestinal mucosal barrier (Pei et al., 2022). As a probiotic, Bacteroides 
plebeius might play a role in immune system regulation, as its 
decreased presence has been observed in osteoarthritis, a condition 
characterized by low-grade inflammation (Chen et al., 2023; Molnar 
et  al., 2021). Furthermore, a significant correlation was observed 
between Bacteroides plebeius and uracil, which is known for its role as 
a modulator of mucosal immunity and gut microbial homeostasis in 
Drosophila (Lee et al., 2013). Prior research has demonstrated that 
bacteria are capable of secreting uracil, a compound that is found to 
modulate lipid metabolism of its host (Whon et al., 2017). Moreover, 

FIGURE 5

Metabolic activity at a single-cell resolution between keloids and normal scars. (A) A t-distributed stochastic neighbor embedding (t-SNE) plot shows 
the components in the keloids and normal scars, color-coded by cell lineages. (B) A dot plot of marker genes and their relative expression levels in all 
cells are shown. (C,D) The metabolic activity of linoleic acid metabolism and glycerophospholipid metabolism are shown. (E) A t-SNE plot shows the 
components of fibroblasts in the keloids and normal scars, color-coded by clusters.
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uracil exhibits indirect anti-inflammatory effects by suppressing 
cyclooxygenase-2 (Kim et al., 2013; Ghoshal et al., 2011; Shao et al., 
2021). Given that keloids represent a chronic, noncontagious 
inflammatory disorder, a decrease in Bacteroides plebeius could result 
in lower uracil levels, contributing to the disturbances in systemic 
metabolic regulation in MK. This was complemented by plasma and 
tissue metabolomics studies that showed distinct metabolic profiles in 
patients with MK. Subsequently, the metabolic phenotype of secretory 
reticular fibroblasts within wound may be altered due to systemic 
metabolic dysregulation, potentially resulting in MK (Figure 7).

Although the roles of the gut and skin microbiota in the host 
immune response differ, their synergistic effects in systemic diseases, 
such as scar formation, have become increasingly recognized. The gut 
microbiota regulates systemic immune responses through short-chain 
fatty acids (SCFAs) such as butyrate and propionate, while the skin 
microbiota primarily influences skin barrier function via local 
immune regulatory mechanisms (Salem et  al., 2018). Certain 
microbes, such as Bacteroides plebeius, have been found to 
be expressed in both the gut and skin, suggesting that they may exert 
immunomodulatory effects through the gut-skin axis (Mahmud et al., 
2022). Abundant evidence has demonstrated the significant role of 
SCFAs in maintaining health and contributing to disease development; 
they are the primary metabolites produced by gastrointestinal 
bacterial fermentation (Dalile et  al., 2019). Targeted tissue 
metabolomics did not reveal any significant differences in SCFAs 
between the MK and NS groups. However, plasma-targeted 
metabolomics data revealed that the SCFA, caproic acid, was 
upregulated in the MK group and was positively correlated with 
Rothia mucilaginosa, Eubacterium halli, Dorea formicigenerans, 
Ruthenibacterium lactatiformans, Sellimonas intestinalis, and 

Collinsella stercoris but negatively associated with Bacteroides 
thetaiotaomicron. Previous research has shown that SCFAs exert 
pro-inflammatory effects through G protein-coupled receptors (Kim 
et al., 2013). Thus, gut microbiota-derived caproic acid may contribute 
to MK formation by regulating the inflammatory response. Glucose 
transporter type 4 (GLUT4) is a rate-limiting protein that facilitates 
glucose entry into cells and is primarily found in skeletal muscle cells. 
Short-chain fatty acids upregulate GLUT4 expression and facilitate its 
translocation to the cell membrane, thereby enhancing glucose uptake 
by muscle cells (He et al., 2020). However, inhibition of glycolysis 
leads to dose- and time-dependent suppression of keloid fibroblast 
proliferation via metabolic reprogramming (Li et al., 2018). Similarly, 
single-cell data demonstrated that glycolysis and gluconeogenesis 
activities were notably higher in keloid scars than in normal scars 
(Supplementary Figure S13). Overall, these findings suggest that 
SCFAs play a complex and significant regulatory role in MK and NS 
conditions through inflammation modulation, metabolic regulation, 
and cell proliferation. A deeper understanding of these mechanisms 
may support the development of novel therapeutic approaches and 
preventive strategies in patients with MK.

We developed machine learning prediction models using the gut 
microbiome to classify patients with and without MK. The RF 
classifiers demonstrated high accuracy in predicting MK and NS using 
the gut microbiome. Clinically, fecal microbiomes show promise as 
noninvasive biomarkers for distinguishing patients with MK from NS 
controls. Once patients were classified into the MK group, 
we immediately implemented appropriate scar prevention measures 
(Lee and Jang, 2018) to hinder or mitigate scar formation, alleviate 
patient discomfort, and enhance their quality of life. Additionally, 
using machine learning algorithms and gut microbiome network 

FIGURE 6

Multiple keloid (MK) prediction based on metagenomic and metabolomic features. Variable importance is indicated by the mean decrease in accuracy 
from random forest (RF) models based on significantly altered (A) bacteria, (B) plasma metabolites, and (C) tissue metabolites. (D) Receiver operating 
characteristic curve (ROC) of the RF model using gut microbiota profile to distinguish patients with MK from healthy controls. (E) ROC of the RF model 
using plasma metabolomic profile to distinguish patients with MK from healthy controls. (F) ROC of the RF model using tissue metabolomic profile to 
distinguish patients with MK from healthy controls.
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analysis, we  discovered specific gut bacteria, such as Bacteroides 
thetaiotaomicron and Bacteroides ovatus, which exhibited a high mean 
decrease in accuracy scores in distinguishing the MK and NS groups, 
while simultaneously playing crucial roles in the overall gut 
microbiome. Therefore, these gut bacteria may affect the development 
and progression of scarring in patients with MK. This insight could 
lead to the development of new therapeutic strategies for manipulating 
the gut microbiome. By targeting these specific bacterial strains, 
interventions may be aimed at mitigating scar development in these 
patients. Managing patients with MK poses a significant challenge, as 
these individuals often exhibit extensive keloidal scarring on various 
body parts, with MKs frequently coalescing. This complicates surgical 
excision, which typically requires multiple surgeries complemented by 
adjuvant radiotherapy. Despite these interventions, the recurrence rate 
of keloid lesions is notably high. This high rate of keloid recurrence 
after treatment highlights a significant gap in current therapeutic 
measures and underscores the need for novel and more effective 
treatment strategies. Innovation in therapeutic approaches is urgently 
needed to prevent recurrence and minimize the need for invasive skin 
procedures. Advances in the understanding of the gut-skin axis can 
potentially revolutionize the management of keloids, ultimately 
translating into a marked improvement in the quality of life of those 
burdened by MKs.

This study has limitations. Firstly, gut microbiota exhibits regional 
and ethnic variations, but our study only includes Chinese subjects. 
Hence, further validation in diverse populations is necessary. 
Secondly, the lack of evidence supporting the causal relationship 
between gut microbiome and MK development is a common 
limitation in observational studies. Thus, the causal connection needs 
to be further verified through in vitro and in vivo models. However, 
keloid, especially MK, lacks recognized animal models, making it 
challenging to validate causal relationships between gut microbiome 
and MK development in vivo. Notably, our study may offer new 
insights into constructing animal models for keloid by altering the gut 
microbiota composition through fecal microbiota transplantation or 
changing the metabolic profiles of the model animals via in 
vitro injection.

Conclusion

Our study delves into the intricate interplay between systemic 
factors such as fecal metagenomics, and plasma and tissue 
metabolomics, and the development of MKs in patients with 

MK. We hypothesized that an altered gut microbiota could influence 
systemic inflammatory responses via changing systemic metabolism, 
potentially triggering keloid formation on various body sites. 
Furthermore, we  found that decreased Bacteroides plebeius could 
lower uracil levels, changing systemic lipid metabolism and thereby 
modifying the metabolic phenotype of secretory reticular fibroblasts 
in wound, which may contribute to the development of MK. These 
findings indicate a complex systemic network involving the gut-skin 
axis, where alterations in the gut microbiota and systemic metabolites 
may contribute to keloid pathogenesis. This systemic perspective 
could open new avenues for understanding the multifactorial nature 
of keloid formation and highlight the potential for novel therapeutic 
strategies targeting not only keloid lesions but also the underlying 
systemic imbalances.
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FIGURE 7

Bacteroides plebeius could lower uracil levels, changing systemic lipid metabolism and thereby modifying the metabolic phenotype of secretory 
reticular fibroblasts.
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