Skip to main content

ORIGINAL RESEARCH article

Front. Microbiol.
Sec. Biology of Archaea
Volume 15 - 2024 | doi: 10.3389/fmicb.2024.1474697
This article is part of the Research Topic Molecular, Cellular, and Ecological Processes of Haloarchaea View all 8 articles

MinD proteins regulate CetZ1 localisation in Haloferax volcanii

Provisionally accepted
  • The Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia

The final, formatted version of the article will be published soon.

    CetZ proteins are archaea-specific homologues of the cytoskeletal proteins FtsZ and tubulin. In the pleomorphic archaeon Haloferax volcanii, CetZ1 contributes to the development of rod shape and motility, and has been implicated in the proper assembly and positioning of the archaellum and chemotaxis motility proteins. CetZ1 shows complex subcellular localization, including irregular midcell structures and filaments along the long axis of developing rods and patches at the cell poles of the motile rod cell type. The polar localizations of archaellum and chemotaxis proteins are also influenced by MinD4, the only previously characterized archaeal member of the MinD family of ATPases, which are better known for their roles in the positioning of the division ring in bacteria. Using minD mutant strains and CetZ1 subcellular localization studies, we show here that a second minD homolog, minD2, has a strong influence on motility and the localization of CetZ1. Knockout of the minD2 gene altered the distribution of a fluorescent CetZ1-mTq2 fusion protein in a broad midcell zone and along the edges of rod cells, and inhibited the localization of CetZ1-mTq2 at the cell poles. MinD4 had a similar but weaker influence on motility and CetZ1-mTq2 localization. The MinD2/4 mutant strains formed rod cell shapes like the wildtype at an early log stage of growth. Our results are consistent with distinct roles for CetZ1 in rod shape formation and at the poles of mature rods, that are positioned through the action of the MinD proteins and contribute to the development of swimming motility in multiple ways. They represent the first report of MinD proteins controlling the positioning of tubulin superfamily proteins in archaea.

    Keywords: Cytoskeleton, motility, protein localization, Tubulin superfamily, halophile, Archaea

    Received: 02 Aug 2024; Accepted: 28 Oct 2024.

    Copyright: © 2024 Brown and Duggin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Iain G. Duggin, The Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, 2007, NSW, Australia

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.