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Infectious diseases caused by pathogenic microorganisms pose a serious threat 
to human health. Despite advances in molecular biology, genetics, computation, 
and medicinal chemistry, infectious diseases remain a significant public health 
concern. Addressing the challenges posed by pathogen outbreaks, pandemics, 
and antimicrobial resistance requires concerted interdisciplinary efforts. With 
the development of computer technology and the continuous exploration 
of artificial intelligence(AI)applications in the biomedical field, the automatic 
morphological recognition and image processing of microbial images under 
microscopes have advanced rapidly. The research team of Institute of Microbiology, 
Chinese Academy of Sciences has developed a single cell microbial identification 
technology combining Raman spectroscopy and artificial intelligence. Through 
laser Raman acquisition system and convolutional neural network analysis, the 
average accuracy rate of 95.64% has been achieved, and the identification can 
be completed in only 5  min. These technologies have shown substantial advantages 
in the visible morphological detection of pathogenic microorganisms, expanding 
anti-infective drug discovery, enhancing our understanding of infection biology, 
and accelerating the development of diagnostics. In this review, we discuss the 
application of AI-based machine learning in image analysis, genome sequencing 
data analysis, and natural language processing (NLP) for pathogen identification, 
highlighting the significant role of artificial intelligence in pathogen diagnosis. AI 
can improve the accuracy and efficiency of diagnosis, promote early detection 
and personalized treatment, and enhance public health safety.
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Introduction

Pathogenic microorganisms include viruses, bacteria, parasites, and fungi that can cause 
infections in humans and animals. They spread rapidly through aerosols, body fluids, food, 
and direct contact, leading to various infectious diseases and even death (Zhang et al., 2018). 
Early detection, diagnosis, and treatment are crucial for preventing infectious diseases. Since 
the discovery of penicillin in 1928, antibiotics have become vital public health tools, saving 
countless lives globally (Fleming, 2001; Davies and Davies, 2010). Today, a wide range of 
antibacterial, antifungal, and antiviral drugs are used in clinical practice. However, the misuse 
of these antimicrobial drugs has led to increased drug resistance in microorganisms, reducing 
the effectiveness of these treatments, a phenomenon known as antimicrobial resistance 
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(Prestinaci et al., 2015). According to the World Health Organization 
(WHO) in 2020, antimicrobial resistance (AMR) is among the top ten 
global public health threats facing humanity. In 2022, The Lancet 
published a systematic analysis of the global burden of bacterial AMR, 
including data from over 200 countries. The study revealed that AMR 
poses a significant threat to global health. In 2019, AMR infections 
directly caused approximately 1.27 million deaths and indirectly 
resulted in about 4.95 million deaths worldwide (Antimicrobial 
Resistance Collaborators, 2022). By 2022, around 1.3 million deaths 
were related to antibiotic resistance (Ranjbar and Alam, 2023). If left 
unaddressed, it is projected that by 2050, antibiotic-resistant infections 
could cause 10 million deaths annually, with direct economic losses 
exceeding $10 trillion (de Kraker et  al., 2016; Ventola, 2015). 
Developing new antimicrobial drugs is becoming increasingly 
difficult, often taking 10–15 years and costing over 6 billion (Wouters 
et  al., 2020; DiMasi et  al., 2016). The emergence of more severe 
multidrug-resistant bacteria will pose significant treatment challenges. 
These data highlight the substantial burden that infectious diseases 
and antimicrobial resistance place on human health and the 
global economy.

The technologies in pathogen detection include nucleic acid and 
immunological methods (Whiley and Taylor, 2016) (Figure 1). These 
technologies help identify pathogenic bacteria or potential health 
risks, making accurate and rapid detection crucial for diagnosing and 
preventing diseases in public health, environmental pollution 
monitoring (Zhang et al., 2023), and clinical diagnosis (Smith and 
Kirby, 2020). However, current detection techniques often fall short of 
clinical needs due to long processing times, cumbersome procedures, 
and reliance on large instruments, limiting fast and efficient 
identification. The traditional methods for identifying pathogenic 
microorganisms, including smear microscopy, isolation and 
cultivation, biochemical assays etc., are not without limitations. These 
methods are often characterized by prolonged timeframes, intricate 
procedures, and suboptimal sensitivity. A case in point is the 
identification of mycobacterial strains, which can extend to a lengthy 
period of 30 to 40 days. Furthermore, certain fastidious bacteria and 
viruses demand cultivation conditions that are so stringent they may 
prove unattainable, or the organisms may be refractory to culture 
altogether. Molecular diagnostic techniques, anchored in PCR, have 
made strides in addressing some of the aforementioned challenges in 
pathogen detection. However, they encounter significant hurdles 

when it comes to the identification of unknown microorganisms. The 
absence of known nucleic acid sequences renders the design of specific 
primers an insurmountable obstacle for these technologies. While 
immunological and PCR methods boast high sensitivity and 
specificity, enabling the detection of a broad spectrum of pathogens, 
they are constrained by their targeted nature. This means that a single 
experiment is typically capable of detecting only one pathogen, which 
can lead to diminished diagnostic efficiency. The indistinguishable 
symptoms and signs of many infectious diseases further complicate 
matters, as identical clinical presentations may be induced by a variety 
of pathogens or result from co-infections. The laborious and time-
consuming process of detecting pathogens one at a time can 
potentially lead to diagnostic delays.

A key breakthrough in overcoming these limitations is the 
deployment of AI driven genome sequencing tools, which analyze 
complex genomic data to quickly and accurately identify pathogenic 
microorganisms with high throughput and speed. For example, 
DeepVariant is a mutation caller based on deep learning that can 
improve the accuracy score of single nucleotide mutation and Indel 
detection (Poplin et al., 2018). Integrating image processing and big 
data analysis into detection methods is therefore highly significant 
(Kothari et al., 2014; Jain et al., 2016). Recent advancements in AI, 
particularly in computer vision and image processing, have shown 
promising potential in the morphological detection of 
pathogenic microorganisms.

The development of AI has progressed through several key stages. 
It began in 1945 with Alan Turing’s idea of using computers to 
simulate the human brain. During the 1950s to the 1970s, AI started 
to become practical with the creation of the first generation of AI 
systems. The 2010s saw an explosion in AI capabilities, driven by 
advances in deep learning and big data technologies like chatGPT 
(LeCun et al., 2015; Esteva et al., 2017). Today, AI excels in numerous 
fields, including disease diagnosis, risk management, facial recognition 
(Figure 2).

AI has significant applications in microbial diagnosis. It uses 
machine learning algorithms to analyze microbial genome data, 
identify antibiotic resistance genes, speed up pathogen identification, 
and improve diagnostic accuracy. AI can also process vast amounts of 
complex data, provide real-time diagnostic support, aid in the early 
detection and control of infectious diseases, and enhance public health 
prevention and control efforts (Esteva et al., 2017).

FIGURE 1

Pathogenic microorganism detection technology.
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The potential of AI in microbiology is yet to be fully realized. 
Microbial research generates vast amounts of biological image data, 
and AI has proven crucial in analyzing high-throughput sequencing 
data and using natural language processing to identify pathogenic 
microorganisms. Traditional computing methods are slow in 
processing these data, whereas AI, especially deep learning, excels in 
both accuracy and speed (Camacho et al., 2018; Ching et al., 2018). 
Deep learning has introduced new applications to microbial research, 
significantly advancing microbial identification and diagnosis. The 
application of deep learning in microbial image recognition and 
classification has grown rapidly (Wainberg et al., 2018; Cao et al., 
2018; Jiang et al., 2022). This article reviews the use of AI in identifying 
and diagnosing pathogenic microorganisms.

Application of AI in image analysis of 
pathogenic microorganisms

AI, particularly machine learning and deep learning, has made 
significant strides in the automatic recognition and classification of 
pathogenic microorganisms in microscope images. These technologies 
effectively analyze and classify bacteria, viruses, fungi, and parasites. 
Deep learning has made microscope image analysis more efficient and 
universal, enabling accurate cell detection and classification (Figure 3). 
Compared to traditional methods, deep learning significantly 
enhances the accuracy and reliability of microorganism detection 
(Esteva et al., 2021; Chen and Asch, 2017).

To address the challenges of pathogen detection, particularly 
with large sample sizes and the identification of difficult bacteria, 
researchers have been exploring intelligent clinical microbial 
morphology testing. In 2020, Professor Aydogan Ozcan’s team at the 
University of California developed a highly sensitive, precise, timely, 
and low-cost microbial online monitoring AI platform. This system 
combines coherent microscopy imaging with deep neural network 

analysis to enable the intelligent identification and classification of 
live microorganisms. By analyzing growth delay holograms, the 
system achieves rapid detection of bacterial growth and species 
classification, with a detection limit of approximately 1 CFU/L for 
Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa 
within ≤9 h. This significantly reduces the testing time compared to 
the EPA gold standard method, which takes at least 24 h (Wang 
et al., 2020). Similarly, a team from the University of Geneva in 
Switzerland has developed an automated urine culture analysis 
system. The WASPLab software automatically reads and analyzes 
bacterial colony images on urine culture plates, quickly reporting 
urine culture results. Using automated equipment, the turnaround 
time is reduced by nearly 50%, minimizing manual reading errors 
and improving detection efficiency and accuracy (Cherkaoui 
et al., 2020).

Currently, the interpretation of imaging results relies heavily on 
the subjective clinical experience of professional imaging doctors. 
Clinically, there is a strong expectation for the testing department to 
diagnose pathogens rapidly and provide accurate drug sensitivity 
results. AI is now widely used in medical imaging, particularly in 
detecting and diagnosing infectious diseases. For instance, during the 
global COVID-19 outbreak in 2019, AI significantly improved the 
diagnostic accuracy and efficiency of chest CT scans and X-rays, 
enabling rapid and precise screening, identification, and 
characterization of COVID-19 (Hassan et al., 2022). AI also aids in 
detecting and analyzing secondary pulmonary infections in 
COVID-19 patients, enhancing diagnostic accuracy and helping to 
assess disease severity and predict clinical outcomes (Viswanathan 
et al., 2022). In lymphoma patients, deep learning accurately identifies 
high metabolic tumor sites in 18F-FDG-PET/CT scans, potentially 
aiding in excluding metabolically active diseases (Ikeda et al., 1987). 
These studies highlight AI’s potential in enhancing diagnostic 
efficiency and accuracy for infectious diseases and its broad 
application prospects in medical imaging.

FIGURE 2

Major milestones in the development of artificial intelligence.
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We conducted a bibliometric analysis using the Web of Science 
database to search for original research on the application of AI in 
medical imaging over the past decade, with the keywords “Artificial 
Intelligence” and “Medical Imaging.” We  analyzed the retrieved 
literature and generated a citation report. A total of 50,547 articles 
were found, with a notable increase in publication volume since 2020. 
Europe and the United  States remain leaders in this field, while 
Chinese scholars have shown rapid development in the past 2 years, 
now leading in publication volume. However, the impact of Chinese 
research is relatively low, indicating an academic quality gap with 
European and American countries in AI-assisted medical imaging 

(Tables 1, 2; Figure 4). Most clinical research focus on using deep 
learning and its derivative algorithms to improve image segmentation 
accuracy and assist clinical diagnosis. According to our statistical 
results, AI ranks ninth in the field of infection research. With 
significant progress in AI-driven microbial microscopy image 
detection, the application of deep learning in microbial image 
recognition and classification has immense development potential.

FIGURE 3

The application of AI related algorithms in image analysis.

TABLE 1 Top 10 countries/regions medical imaging in artificial 
intelligence research from 2014 to 2023.

Rank Countries/regions Number of 
publications/article

1 CHINA 14,338

2 USA 11,309

3 INDIA 5,377

4 ENGLAND 3,291

5 UK 3,184

6 SOUTH KOREA 2,575

7 GERMANY 2,505

8 CANADA 2,390

9 SAUDI ARABIA 1946

10 ITALY 1932

TABLE 2 Top 10 research area in artificial intelligence research from 2014 
to 2023.

Rank Research area Number of 
publications/article

1 Mathematical Computational 

Biology

42,691

2 Radiology Nuclear Medicine 

Medical Imaging

36,960

3 Engineering 35,466

4 Communication 33,268

5 Mathematics 20,565

6 Neurosciences Neurology 9,151

7 Science Technology Other Topics 9,003

8 Imaging Science Photographic 

Technology

6,757

9 Oncology 6,608

10 Automation Control Systems 6,347
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The application of AI in genome 
sequencing data analysis

AI is widely used in analyzing next-generation sequencing (NGS) 
data, particularly for pathogen identification and classification. AI 
technology can quickly process NGS data and identify pathogens in 
samples, which is crucial for the timely diagnosis of infectious 
diseases. In a study published in Nature Medicine, scientists have 
developed an AI framework that integrates a multi detection platform 
for detecting and identifying biomolecules. The system analyzes three 
representative plasmids with different color signals, which are derived 
from drug-resistant Klebsiella pneumoniae bacteria. Compared with 
traditional technology, this system demonstrates excellent recall and 
accuracy, detecting 93.8% of events in real-time and achieving a 
classification accuracy of 99.8%. This study demonstrates the potential 
of AI in medical diagnosis, especially in clinical environments that 
require rapid and accurate analysis (Ganjalizadeh et al., 2023). A study 
published in Scientific Reports, researchers used AI algorithms 
combined with NGS data from T cell receptors (TCRs) to diagnose 
glioma patients. This study explores multidimensional classification 
and feature selection of TCR sequence diversity index, as well as 
two-dimensional classification and feature selection analysis of TCR 
related sequences. The results indicate that through these analyzes, 
researchers were able to identify two sets of core sequences, each 
containing three sequences, sufficient to achieve a 96.7% accuracy in 
glioma detection and diagnosis (Zhou et al., 2024).

The metagenomic high-throughput sequencing technology (mNGS) 
has shown great potential in pathogen detection. It identifies pathogenic 
microorganisms by directly sequencing nucleic acids in samples, without 
the need to pre-set target sequences, thus overcoming the limitations of 
traditional microbial detection methods. The IDseq platform is a cloud 
based open-source platform developed by the Chan Zuckerberg 
Initiative. Based on pathogen metagenomics detection technology, high-
throughput sequencing technology is used to analyze microorganisms 
and host nucleic acids in clinical samples, enabling unbiased detection of 
various pathogenic microorganisms, including bacteria, fungi, viruses, 
and parasites. This technology has shown important application value in 
the detection of infectious diseases pathogens, especially when the 

traditional etiological diagnosis methods are difficult to meet the clinical 
needs. This platform has the comprehensiveness to process diverse 
samples and detect numerous pathogens, high sensitivity to improve 
pathogen detection sensitivity, and in-depth analysis capabilities for drug 
resistance and virulence analysis. Its open-source nature and cloud 
computing foundation make it easy to access and process big data on a 
global scale, reducing the need for bioinformatics experts and local server 
level hardware resources through automated processes, thereby lowering 
costs and time. The platform is user-friendly and supports real-time 
pathogen detection, including newly emerging pathogens. It also 
supports the generation of environmental background models and data 
sharing, promoting scientific research collaboration (Kalantar et  al., 
2020). In a case of pathogen discovery in childhood meningitis in 
Bangladesh, researchers used the IDseq platform to reanalyze three 
meningitis samples with the aim of exploring unknown pathogens. These 
three samples include one meningitis sample caused by Streptococcus 
pneumoniae (CHRF 0002), one meningitis sample caused by 
chikungunya virus (CHRF 0094), and one water control sample (CHRF 
0000). The IDseq platform has successfully identified pathogens through 
effective host sequence filtering and quality control. Especially in the 
CHRF 0094 sample, after host filtering and QC steps, the chikungunya 
virus accounted for 63% of non-host reads, and through the coverage 
visualization tool of the IDseq portal, researchers were able to observe the 
whole genome coverage of the chikungunya virus in the sample. This 
indicates that the IDseq platform can effectively assist researchers in 
quickly obtaining in-depth insights into sample quality, microbial 
content, and cohort trends (Saha et al., 2019).

AI algorithms can accurately classify pathogens based on genomic 
data, which is crucial for monitoring their evolution and transmission. 
MetaPhlAn (Metagenomic Phylogenetic Analysis) is a widely used 
bioinformatics tool that provides species-level analysis of microbial 
composition from metagenomic shotgun sequencing data. A 2023 
Nature article detailed how researchers integrated extensive new 
microbial genome and metagenomic data into the MetaPhlAn 
database, defining 26,970 Species-Level Genome Bins (SGBs). This 
expansion allows MetaPhlAn 4 to analyze metagenomic data more 
accurately, particularly in identifying uncharacterized species and 
improving the explanatory power of microbial community 

FIGURE 4

(A) Search for keywords “artificial intelligence” and “medical imaging” to rank the top major concepts in terms of article volume. (B) The number of 
articles and publications retrieved using “artificial intelligence” and “medical imaging” as keywords from 2014 to 2023.
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composition analysis (Blanco-Miguez et  al., 2023). Antibiotic 
resistance is a pressing global health threat. Rapid whole-genome 
sequencing offers opportunities to predict antibiotic resistance from 
genomic data. In 2024, the Helmholtz Center for Infection Research 
in Braunschweig, Germany, evaluated four advanced machine 
learning methods (Kofer, PhenotypeSeeker, Seq2Geno2Pheno, and 
Aytan Aktig), a baseline ML method, and ResFinder. The results 
showed significant performance differences among these technologies 
and datasets, with ML methods excelling in closely related strains and 
ResFinder performing better with more divergent genomes. 
ResFinder, combining AI technology, can detect and classify antibiotic 
resistance genes from NGS data, providing crucial data for public 
health monitoring (Hu et al., 2024).

To address data diversity, break down information silos, meet the 
demands of big data analysis, enhance research efficiency, support 
interdisciplinary research, and leverage modern information 
technology, integrating databases and knowledge bases has become 
essential. AI algorithms, combined with extensive databases like 
NCBI1 and EMBL-EBI2, and knowledge bases, can significantly 
improve the accuracy of pathogen identification and classification. For 
instance, Kraken2 is a highly efficient pathogen classification tool that 
uses AI technology and a comprehensive reference database to enable 
rapid analysis of NGS data.

Application of NLP in identification of 
pathogenic microorganisms

What is Natural Language Processing (NLP)? NLP is a machine 
learning technology that enables computers to interpret, process, and 
understand human language. It serves as a crucial bridge for 
communication between humans and machines.

Medical literature is an essential resource for both medical and 
clinical research. The vast variety of pathogenic microorganisms and 
parasites associated with infectious diseases, however, poses significant 
challenges for doctors and researchers when it comes to consulting 
and organizing this massive volume of literature. The application of 
NLP technology facilitates the extraction of valuable insights from 
medical literature and enhances the accuracy and convenience of 
laboratory data analysis. NLP technology can process microbial data 
through structured data techniques, such as standardizing EMR 
(Electronic Medical Records) and laboratory data, then storing this 
information in databases. Additionally, deep learning algorithms can 
denoise, segment, and extract features from imaging data (Ananiadou 
et  al., 2010; Chen et  al., 2015; Wang et  al., 2018; Lee et  al., 2020; 
Rajkomar et al., 2019). An article published in Scientific Reports in 
2024 introduced a MarkerGeneBERT system, an NLP system 
developed by CapitalBio Technology, which automatically extracts 
information on species, tissues, cell types, and cell marker genes from 
single-cell sequencing literature. In a study, the system extracted 8,873 
human and 9,064 mouse cell markers from 3,987 studies, 
demonstrating 76% completeness and 75% accuracy, surpassing the 
CellMarker2.0 system. In addition, MarkerGeneBERT has discovered 

1 https://www.ncbi.nlm.nih.gov/

2 https://www.ebi.ac.uk/

89 new cell types and 183 new marker genes. In terms of gene 
recognition, the system achieved an F1 score of 87%, with a cell name 
recognition accuracy of 92%. More than 20,000 genes and 4,000 cell 
types were identified from literature, with accuracies of 90.8 and 
92.7%, respectively. Additionally, 1764 new cell types were added, all 
of which were not previously recorded in the database (Cheng 
et al., 2024).

In 2022, David Burstein’s team published an article in Nature 
Communications on using NLP to interpret microbial gene function. 
They developed a deep learning model that utilized gene embeddings, 
calculated based on the co-occurrence rate of gene families, as input 
for a classifier to predict gene function. The word2vec algorithm was 
employed to calculate the gene embedding space, providing a simple, 
fast, and direct method. Through scarcity analysis, the study 
highlighted functional categories with high discovery potential and 
uncovered hypothetical bacterial membrane-binding mechanisms and 
microbial defense systems in the human microbiome. Additionally, 
NLP models can be fine-tuned to explore specific systems or functions, 
such as training classifiers for particular genes or creating new 
embeddings using relevant corpora (such as virus genomes, specific 
microbial communities). This approach is applicable not only for 
inferring functions of genes without sequence similarity to 
characteristic proteins but also for exploring diverse functions of 
homologous genes. This greatly enhances the understanding of 
microbial gene functions and aids in interpreting unknown microbial 
gene functions and evolution (Miller et al., 2022). In the same year, 
another article in Nature Communications introduced a universal 
“gene semantic” model using NLP. This model employed convolutional 
neural networks (CNN) to classify peptide sequences and identify 
potential antimicrobial peptides (AMPs). The deep learning model 
demonstrated significantly higher accuracy and recall in identifying 
AMPs compared to traditional methods. A new set of AMPs sequences 
was identified from the human gut microbiome, showing strong 
antibacterial activity in vitro and validating the model’s predictions 
(Ma et al., 2022).

Representative case

Antibiotics have been used to treat life-threatening infections for 
nearly a century, but with the increase of drug-resistant bacteria, 
traditional therapies are no longer effective against these infections. 
The crisis of antibiotic resistance has become an urgent global health 
issue that requires the discovery of a new generation of nucleic acid 
and peptide based antibiotics. However, traditional methods for 
developing antimicrobial peptides (AMPs) are slow and costly.

In 2023, Nat Commun published an article exploring methods to 
accelerate the development of AMPs by combining cell-free protein 
synthesis (CFPS) and deep learning techniques. Researchers use 
generative deep learning models to learn from a large number of 
unlabeled natural protein sequences and propose new AMPs 
sequences. Combined with the CFPS system, this in vitro transcription 
and translation system uses DNA templates for protein synthesis, 
enabling rapid and small-scale production and screening of hundreds 
of peptides, overcoming the cytotoxicity issues in traditional cell 
expression systems. Within 24 h, researchers designed, produced, and 
screened 500 candidate AMPs, ultimately identifying 30 functional 
AMPs, of which 6 exhibited high antibacterial activity against 
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multidrug-resistant pathogens and low cytotoxicity to human cells. 
This study demonstrates the potential of deep learning and CFPS 
technology in accelerating the development of AMPs, providing an 
efficient and economical new approach to combat microbial resistance 
(Pandi et al., 2023).

In 2024, Fudan University and a team of Virtue scientists 
combined AI and biomedical research to predict nearly 1 million new 
antimicrobial peptides from the global microbiome. They developed 
a new machine learning algorithm that effectively reduces the false 
positive rate in AMP recognition. They predicted nearly 1 million 
novel non redundant antimicrobial peptides from 63,410 
environmental and host related metagenomes worldwide, as well as 
87,920 high-quality bacterial and archaeal genomes. They also created 
the AMP comprehensive database AMPSphere, which was published 
in the main issue of Cell (Santos-Junior et al., 2024).

In May 2023, Professor James Collins and his team published a 
paper in Nature Chemical Biology, using AI algorithms to discover a 
novel antibiotic abaucin that can specifically kill the drug-resistant 
bacterium Acinetobacter baumannii. This study is the first to use AI 
and interpretable deep learning to discover a groundbreaking new 
class of antibiotics that are effective against multidrug-resistant 
pathogens, demonstrating the enormous potential of AI in drug 
discovery and combating antibiotic resistance (Liu et al., 2023).

In a study published in the journal Antibiotics, researchers used a 
decision tree based machine learning algorithm to predict antibiotic 
resistance. This study trained 10 machine learning classifiers and 
generated predictive models for meropenem, ciprofloxacin, and 
cefotaxime drugs. Research has found that certain models exhibit 
higher F1 scores, accuracy, precision, and specificity among all 
machine learning models used. For example, RandomForestClassifier 
showed moderate F1 score (0.6), accuracy (0.61), and specificity 
(0.625) for ciprofloxacin. For cefotaxime, RidgeClassifier performed 
well and displayed F1 score (0.652), accuracy (0.654), and specificity 
(0.652) values. For meropenem, KNeighborsClassifier showed 
moderate F1 scores (0.629), accuracy (0.629), and specificity (0.629) 
(Yasir et  al., 2022). In 2022, a collaboration between the Federal 
Institute of Technology Zurich, Basel University Hospital, and Basel 
University used mass spectrometry combined with AI algorithms to 
identify multidrug-resistant pathogens. Researchers collected over 
300,000 clinical strains from four diagnostic laboratories in 
Switzerland between 2016 and 2018, using Bruker’s MALDI Biotyper 
microbial mass spectrometry system. The mass spectrometry data 
were associated with drug resistance information to create the 
DRIAMS dataset, which includes data for 803 bacterial strains, over 
300,000 clinical strains, and 768,300 antibiotic resistance entries for 
more than 70 antibiotics. Using this dataset, they trained three 
machine learning algorithms—logistic regression, gradient-boosted 
decision trees (LightGBM), and deep neural networks (MLP)—to 
establish a classification model for drug-resistant bacteria. The 
prediction model was validated with Staphylococcus aureus, 
Escherichia coli, and Klebsiella pneumoniae, showing AUROC values 
of 0.80, 0.74, and 0.74, respectively, indicating accurate predictions of 
antibiotic resistance. This study highlights the significant impact of AI 
in the image analysis of pathogenic microorganisms. Automated and 
intelligent image analysis technologies enable medical institutions to 
diagnose infectious diseases more quickly and accurately, enhancing 
overall public health prevention and control capabilities (Weis et al., 
2022; Tahir et al., 2018).

Advantages and challenges

The main advantages of AI in diagnosing pathogenic 
microorganisms are:

 (1) Rapid Processing and Analysis: AI can quickly process large 
volumes of microbial data, including genomic and 
metabolomic information, significantly reducing the time 
needed for differential diagnosis. AI programs can complete 
complex data analysis in minutes, saving substantial time 
compared to traditional methods (Erlich and Narayanan, 2014; 
He et al., 2010; Topol, 2019).

 (2) High Accuracy: AI models, through training, achieve high-
precision identification and classification, especially with 
complex microbial communities. Using machine learning and 
deep learning algorithms, AI can recognize specific microbial 
features and provide accurate diagnostic results (Knights et al., 
2011; Libbrecht and Noble, 2015; Esteva et al., 2017).

 (3) Automation and Scalability: AI systems automate the microbial 
identification and diagnosis process, reducing manual 
operations and improving laboratory efficiency. These models 
continuously update and optimize with new data, adapting to 
evolving pathogenic microorganisms (Mamoshina et al., 2016).

 (4) Data Integration and Knowledge Discovery: AI integrates 
information from various sources—genomic, metabolite, and 
clinical data—to offer comprehensive diagnostic insights. 
Through big data analysis, AI uncovers new characteristics and 
resistance mechanisms in pathogens, contributing to public 
health and disease prevention (Marx, 2013; Libbrecht and 
Noble, 2015; Topol, 2019).

Currently, AI integration in global healthcare is driving a 
technological revolution. However, AI faces several major challenges:

 (1) Data Issues: Despite accumulating a large amount of medical 
data, high-value data is still scarce and scattered. Lack of unified 
data standards, widespread data silos, and enhanced 
requirements for personal medical information security (Topol, 
2019; Raghupathi and Raghupathi, 2014). The other main 
challenges faced by AI in processing genomic data include 
incomplete and noisy data, which may lead to inaccurate analysis 
results. To overcome these issues, researchers have proposed 
various strategies, such as using interpolation techniques to fill 
missing values, using hybrid models to enhance robustness to 
noise, improving model generalization ability through data 
augmentation and transfer learning, and applying multi view 
learning and deep learning techniques to more comprehensively 
understand and predict genomic data. These methods help 
improve the accuracy and reliability of genomic data analysis, 
providing stronger support for researchers and clinical 
applications (Gupta and Gupta, 2019).

 (2) Data Interpretability: To prevent errors or inaccuracies in the 
application of artificial intelligence in healthcare, one can 
improve the data interpretability of AI models through various 
strategies. These include the use of transparent and simple 
algorithms, the application of local and global interpretation 
techniques, the calculation of SHAP values, the conduct of 
internal model analyzes, the assurance of model accountability, 
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the inference of causality, the establishment of clear model 
boundaries, the implementation of adversarial testing, the 
practice of continuous evaluation, the development of user-
friendly interpretations, and the adoption of multimodal 
interpretation methods. Such methods aid in enhancing user 
trust in AI decision-making processes, ensuring model 
transparency and accountability, and fulfilling regulatory 
requirements (Finlayson et al., 2019; Chu et al., 2023).

 (3) Data Privacy: In order to protect data privacy in artificial 
intelligence applications that enhance pathogen identification, 
various technologies and methods can be adopted, including 
federated learning, group learning, privacy computing 
technology, PHDtools platform, and differential privacy. These 
methods can effectively protect data involving personal privacy 
while improving the accuracy of pathogen identification by 
means of collaborative training models, combining edge 
computing and blockchain, applying homomorphic encryption 
and secure multi-party computing, developing interactive 
online platforms, and introducing data processing noise. These 
developments provide new ideas and solutions for privacy 
protection of medical data (Obermeyer and Emanuel, 2016; 
Price and Cohen, 2019; Ahuja, 2019; Martin and Zimmermann, 
2024; Khalid et al., 2023).

Conclusion

With the advancement of algorithmic computing power, computer 
hardware, and the advent of the big data era, AI technology has 
flourished and penetrated the medical field, transforming traditional 
medical practices. This review discusses the significant role of AI in 
identifying and diagnosing pathogenic microorganisms. Machine 
learning and deep learning algorithms enable faster, more accurate 
pathogen recognition with automation, efficiency, high sensitivity, and 
specificity. AI-assisted imaging technology allows computers to 
analyze vast amounts of medical imaging data, helping doctors make 
quicker and more accurate diagnoses. Natural language processing in 
AI extracts valuable information from scientific literature and 
databases, aiding clinical decision-making and research. Additionally, 
AI algorithms accurately classify pathogens based on genomic data, 

crucial for monitoring pathogen evolution and transmission. Using 
machine learning to optimize antibiotic use in healthcare settings is a 
forward-thinking approach to combating antimicrobial resistance 
now and in the future. In order to further promote the development 
of this field, interdisciplinary collaboration between artificial 
intelligence researchers and microbiologists is particularly important. 
This will help combine the professional knowledge of microbiology 
with the powerful analytical capabilities of artificial intelligence to 
jointly develop more accurate and efficient pathogen 
identification tools.

Author contributions

YG: Writing – review & editing, Writing – original draft. ML: 
Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This study was 
funded and supported by Natural Science Foundation of Shenyang 
city (No. 23-503-6-13).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Ahuja, A. S. (2019). The impact of artificial intelligence in medicine on the future role 

of the physician. PeerJ 7:e7702. doi: 10.7717/peerj.7702
Ananiadou, S., Pyysalo, S., Tsujii, J., and Kell, D. B. (2010). Event extraction for 

systems biology by text mining the literature. Trends Biotechnol. 28, 381–390. doi: 
10.1016/j.tibtech.2010.04.005

Antimicrobial Resistance Collaborators (2022). Global burden of bacterial 
antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655. doi: 
10.1016/S0140-6736(21)02724-0

Blanco-Miguez, A., Beghini, F., Cumbo, F., McIver, L. J., Thompson, K. N., Zolfo, M., 
et al. (2023). Extending and improving metagenomic taxonomic profiling with 
uncharacterized species using MetaPhlAn 4. Nat. Biotechnol. 41, 1633–1644. doi: 
10.1038/s41587-023-01688-w

Camacho, D. M., Collins, K. M., Powers, R. K., Costello, J. C., and Collins, J. J. (2018). 
Next-generation machine learning for biological networks. Cell 173, 1581–1592. doi: 
10.1016/j.cell.2018.05.015

Cao, C., Liu, F., Tan, H., Song, D., Shu, W., Li, W., et al. (2018). Deep learning and its 
applications in biomedicine. Genomics Proteomics Bioinformatics 16, 17–32. doi: 
10.1016/j.gpb.2017.07.003

Chen, J. H., and Asch, S. M. (2017). Machine learning and prediction in medicine – 
beyond the peak of inflated expectations. N. Engl. J. Med. 376, 2507–2509. doi: 10.1056/
NEJMp1702071

Chen, Y., Lasko, T. A., Mei, Q., Denny, J. C., and Xu, H. (2015). A study of active 
learning methods for named entity recognition in clinical text. J. Biomed. Inform. 58, 
11–18. doi: 10.1016/j.jbi.2015.09.010

Cheng, P., Peng, Y., Zhang, X. L., Chen, S., Fang, B. B., Li, Y. Z., et al. (2024). A natural 
language processing system for the efficient extraction of cell markers. Sci. Rep. 14:21183. 
doi: 10.1038/s41598-024-72204-6

Cherkaoui, A., Renzi, G., Martischang, R., Harbarth, S., Vuilleumier, N., and 
Schrenzel, J. (2020). Impact of Total Laboratory automation on turnaround times for 
urine cultures and screening specimens for MRSA, ESBL, and VRE carriage: 
retrospective comparison with manual workflow. Front. Cell. Infect. Microbiol. 
10:552122. doi: 10.3389/fcimb.2020.552122

Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., 
Way, G. P., et al. (2018). Opportunities and obstacles for deep learning in biology and 
medicine. J. R. Soc. Interface 15:20170387. doi: 10.1098/rsif.2017.0387

https://doi.org/10.3389/fmicb.2024.1474078
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.7717/peerj.7702
https://doi.org/10.1016/j.tibtech.2010.04.005
https://doi.org/10.1016/S0140-6736(21)02724-0
https://doi.org/10.1038/s41587-023-01688-w
https://doi.org/10.1016/j.cell.2018.05.015
https://doi.org/10.1016/j.gpb.2017.07.003
https://doi.org/10.1056/NEJMp1702071
https://doi.org/10.1056/NEJMp1702071
https://doi.org/10.1016/j.jbi.2015.09.010
https://doi.org/10.1038/s41598-024-72204-6
https://doi.org/10.3389/fcimb.2020.552122
https://doi.org/10.1098/rsif.2017.0387


Gao and Liu 10.3389/fmicb.2024.1474078

Frontiers in Microbiology 09 frontiersin.org

Chu, W. T., Reza, S. M. S., Anibal, J. T., Landa, A., Crozier, I., Bagci, U., et al. (2023). 
Artificial intelligence and infectious disease imaging. J. Infect. Dis. 228, S322–S336. doi: 
10.1093/infdis/jiad158

Davies, J., and Davies, D. (2010). Origins and evolution of antibiotic resistance. 
Microbiol. Mol. Biol. Rev. 74, 417–433. doi: 10.1128/MMBR.00016-10

de Kraker, M. E., Stewardson, A. J., and Harbarth, S. (2016). Will 10 million people 
die a year due to Antimicrobial Resistance by 2050? PLoS Med. 13:e1002184. doi: 
10.1371/journal.pmed.1002184

DiMasi, J. A., Grabowski, H. G., and Hansen, R. W. (2016). Innovation in the 
pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33. doi: 
10.1016/j.jhealeco.2016.01.012

Erlich, Y., and Narayanan, A. (2014). Routes for breaching and protecting genetic 
privacy. Nat. Rev. Genet. 15, 409–421. doi: 10.1038/nrg3723

Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., et al. (2021). Deep 
learning-enabled medical computer vision. NPJ Digit. Med. 4:5. doi: 10.1038/
s41746-020-00376-2

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., et al. (2017). 
Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 
115–118. doi: 10.1038/nature21056

Finlayson, S. G., Bowers, J. D., Ito, J., Zittrain, J. L., Beam, A. L., and Kohane, I. S. 
(2019). Adversarial attacks on medical machine learning. Science 363, 1287–1289. doi: 
10.1126/science.aaw4399

Fleming, A. (2001). On the antibacterial action of cultures of a penicillium, with 
special reference to their use in the isolation of B. Influenzae. 1929. Bull. World Health 
Organ. 79, 780–790.

Ganjalizadeh, V., Meena, G. G., Stott, M. A., Hawkins, A. R., and Schmidt, H. (2023). 
Machine learning at the edge for AI-enabled multiplexed pathogen detection. Sci. Rep. 
13:4744. doi: 10.1038/s41598-023-31694-6

Gupta, S., and Gupta, A. (2019). Dealing with Noise Problem in Machine Learning 
Data-sets: A Systematic Review. Procedia Computer Science 161, 466–474. doi: 10.1016/j.
procs.2019.11.146

Hassan, H., Ren, Z., Zhao, H., Huang, S., Li, D., Xiang, S., et al. (2022). Review and 
classification of AI-enabled COVID-19 CT imaging models based on computer vision 
tasks. Comput. Biol. Med. 141:105123. doi: 10.1016/j.compbiomed.2021.105123

He, Z., Deng, Y., Van Nostrand, J. D., Tu, Q., Xu, M., Hemme, C. L., et al. (2010). 
GeoChip  3.0 as a high-throughput tool for analyzing microbial community 
composition, structure and functional activity. ISME J. 4, 1167–1179. doi: 10.1038/
ismej.2010.46

Hu, K., Meyer, F., Deng, Z. L., Asgari, E., Kuo, T. H., Munch, P. C., et al. (2024). 
Assessing computational predictions of antimicrobial resistance phenotypes from 
microbial genomes. Brief. Bioinform. 25:bbae206. doi: 10.1093/bib/bbae206

Ikeda, Y., Keese, S. M., Fenton, W. A., and Tanaka, K. (1987). Biosynthesis of four 
rat liver mitochondrial acyl-CoA dehydrogenases: in vitro synthesis, import into 
mitochondria, and processing of their precursors in a cell-free system and in 
cultured cells. Arch. Biochem. Biophys. 252, 662–674. doi: 
10.1016/0003-9861(87)90072-5

Jain, M., Olsen, H. E., Paten, B., and Akeson, M. (2016). The Oxford Nanopore 
MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 
17:239. doi: 10.1186/s13059-016-1103-0

Jiang, Y., Luo, J., Huang, D., Liu, Y., and Li, D. D. (2022). Machine learning advances 
in microbiology: a review of methods and applications. Front. Microbiol. 13:925454. doi: 
10.3389/fmicb.2022.925454

Kalantar, K. L., Carvalho, T., de Bourcy, C. F. A., Dimitrov, B., Dingle, G., Egger, R., 
et al. (2020). IDseq-an open source cloud-based pipeline and analysis service for 
metagenomic pathogen detection and monitoring. Gigascience 9:giaa111. doi: 10.1093/
gigascience/giaa111

Khalid, N., Qayyum, A., Bilal, M., Al-Fuqaha, A., and Qadir, J. (2023). Privacy-
preserving artificial intelligence in healthcare: techniques and applications. Comput. 
Biol. Med. 158:106848. doi: 10.1016/j.compbiomed.2023.106848

Knights, D., Costello, E. K., and Knight, R. (2011). Supervised classification of 
human microbiota. FEMS Microbiol. Rev. 35, 343–359. doi: 
10.1111/j.1574-6976.2010.00251.x

Kothari, A., Morgan, M., and Haake, D. A. (2014). Emerging technologies for rapid 
identification of bloodstream pathogens. Clin. Infect. Dis. 59, 272–278. doi: 10.1093/
cid/ciu292

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444. 
doi: 10.1038/nature14539

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., et al. (2020). BioBERT: a pre-
trained biomedical language representation model for biomedical text mining. 
Bioinformatics 36, 1234–1240. doi: 10.1093/bioinformatics/btz682

Libbrecht, M. W., and Noble, W. S. (2015). Machine learning applications in genetics 
and genomics. Nat. Rev. Genet. 16, 321–332. doi: 10.1038/nrg3920

Liu, G., Catacutan, D. B., Rathod, K., Swanson, K., Jin, W., Mohammed, J. C., et al. 
(2023). Deep learning-guided discovery of an antibiotic targeting Acinetobacter 
baumannii. Nat. Chem. Biol. 19, 1342–1350. doi: 10.1038/s41589-023-01349-8

Ma, Y., Guo, Z., Xia, B., Zhang, Y., Liu, X., Yu, Y., et al. (2022). Identification of 
antimicrobial peptides from the human gut microbiome using deep learning. Nat. 
Biotechnol. 40, 921–931. doi: 10.1038/s41587-022-01226-0

Mamoshina, P., Vieira, A., Putin, E., and Zhavoronkov, A. (2016). Applications of deep 
learning in biomedicine. Mol. Pharm. 13, 1445–1454. doi: 10.1021/acs.
molpharmaceut.5b00982

Martin, K. D., and Zimmermann, J. (2024). Artificial intelligence and its 
implications for data privacy. Curr. Opin. Psychol. 58:101829. doi: 10.1016/j.
copsyc.2024.101829

Marx, V. (2013). Biology: the big challenges of big data. Nature 498, 255–260. doi: 
10.1038/498255a

Miller, D., Stern, A., and Burstein, D. (2022). Deciphering microbial gene function 
using natural language processing. Nat. Commun. 13:5731. doi: 10.1038/
s41467-022-33397-4

Obermeyer, Z., and Emanuel, E. J. (2016). Predicting the future – big data, machine 
learning, and clinical medicine. N. Engl. J. Med. 375, 1216–1219. doi: 10.1056/
NEJMp1606181

Pandi, A., Adam, D., Zare, A., Trinh, V. T., Schaefer, S. L., Burt, M., et al. (2023). 
Cell-free biosynthesis combined with deep learning accelerates de novo-
development of antimicrobial peptides. Nat. Commun. 14:7197. doi: 10.1038/
s41467-023-42434-9

Poplin, R., Chang, P. C., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., et al. (2018). 
A universal SNP and small-indel variant caller using deep neural networks. Nat. 
Biotechnol. 36, 983–987. doi: 10.1038/nbt.4235

Prestinaci, F., Pezzotti, P., and Pantosti, A. (2015). Antimicrobial resistance: a global 
multifaceted phenomenon. Pathog. Glob. Health 109, 309–318. doi: 
10.1179/2047773215Y.0000000030

Price, W. N. 2nd, and Cohen, I. G. (2019). Privacy in the age of medical big data. Nat. 
Med. 25, 37–43. doi: 10.1038/s41591-018-0272-7

Raghupathi, W., and Raghupathi, V. (2014). Big data analytics in healthcare: promise 
and potential. Health Inf. Sci. Syst. 2:3. doi: 10.1186/2047-2501-2-3

Rajkomar, A., Dean, J., and Kohane, I. (2019). Machine learning in medicine. N. Engl. 
J. Med. 380, 1347–1358. doi: 10.1056/NEJMra1814259

Ranjbar, R., and Alam, M. (2023). Antimicrobial Resistance Collaborators (2022). 
Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Evid. 
Based Nurs. 27:16.

Saha, S., Ramesh, A., Kalantar, K., Malaker, R., Hasanuzzaman, M., Khan, L. M., et al. 
(2019). Unbiased metagenomic sequencing for pediatric meningitis in Bangladesh 
reveals Neuroinvasive chikungunya virus outbreak and other unrealized pathogens. 
MBio 10:10. doi: 10.1128/mBio.02877-19

Santos-Junior, C. D., Torres, M. D. T., Duan, Y., Rodriguez Del Rio, A., Schmidt, T. S. 
B., Chong, H., et al. (2024). Discovery of antimicrobial peptides in the global 
microbiome with machine learning. Cell 187, 3761–3778.e16. doi: 10.1016/j.
cell.2024.05.013

Smith, K. P., and Kirby, J. E. (2020). Image analysis and artificial intelligence in 
infectious disease diagnostics. Clin. Microbiol. Infect. 26, 1318–1323. doi: 10.1016/j.
cmi.2020.03.012

Tahir, M. W., Zaidi, N. A., Rao, A. A., Blank, R., Vellekoop, M. J., and Lang, W. (2018). 
A fungus spores dataset and a convolutional neural network based approach for fungus 
detection. IEEE Trans. Nanobioscience 17, 281–290. doi: 10.1109/TNB.2018.2839585

Topol, E. J. (2019). High-performance medicine: the convergence of human and 
artificial intelligence. Nat. Med. 25, 44–56. doi: 10.1038/s41591-018-0300-7

Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P. T. 
40, 277–283.

Viswanathan, V. S., Toro, P., Corredor, G., Mukhopadhyay, S., and Madabhushi, A. 
(2022). The state of the art for artificial intelligence in lung digital pathology. J. Pathol. 
257, 413–429. doi: 10.1002/path.5966

Wainberg, M., Merico, D., Delong, A., and Frey, B. J. (2018). Deep learning in 
biomedicine. Nat. Biotechnol. 36, 829–838. doi: 10.1038/nbt.4233

Wang, H., Ceylan Koydemir, H., Qiu, Y., Bai, B., Zhang, Y., Jin, Y., et al. (2020). Early 
detection and classification of live bacteria using time-lapse coherent imaging and deep 
learning. Light Sci. Appl. 9:118. doi: 10.1038/s41377-020-00358-9

Wang, Y., Wang, L., Rastegar-Mojarad, M., Moon, S., Shen, F., Afzal, N., et al. (2018). 
Clinical information extraction applications: a literature review. J. Biomed. Inform. 77, 
34–49. doi: 10.1016/j.jbi.2017.11.011

Weis, C., Cuenod, A., Rieck, B., Dubuis, O., Graf, S., Lang, C., et al. (2022). Direct 
antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using 
machine learning. Nat. Med. 28, 164–174. doi: 10.1038/s41591-021-01619-9

Whiley, H., and Taylor, M. (2016). Legionella detection by culture and qPCR: 
comparing apples and oranges. Crit. Rev. Microbiol. 42, 65–74. doi: 
10.3109/1040841X.2014.885930

Wouters, O. J., McKee, M., and Luyten, J. (2020). Estimated Research and Development 
investment needed to bring a new medicine to market, 2009-2018. JAMA 323, 844–853. 
doi: 10.1001/jama.2020.1166

https://doi.org/10.3389/fmicb.2024.1474078
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1093/infdis/jiad158
https://doi.org/10.1128/MMBR.00016-10
https://doi.org/10.1371/journal.pmed.1002184
https://doi.org/10.1016/j.jhealeco.2016.01.012
https://doi.org/10.1038/nrg3723
https://doi.org/10.1038/s41746-020-00376-2
https://doi.org/10.1038/s41746-020-00376-2
https://doi.org/10.1038/nature21056
https://doi.org/10.1126/science.aaw4399
https://doi.org/10.1038/s41598-023-31694-6
https://doi.org/10.1016/j.procs.2019.11.146
https://doi.org/10.1016/j.procs.2019.11.146
https://doi.org/10.1016/j.compbiomed.2021.105123
https://doi.org/10.1038/ismej.2010.46
https://doi.org/10.1038/ismej.2010.46
https://doi.org/10.1093/bib/bbae206
https://doi.org/10.1016/0003-9861(87)90072-5
https://doi.org/10.1186/s13059-016-1103-0
https://doi.org/10.3389/fmicb.2022.925454
https://doi.org/10.1093/gigascience/giaa111
https://doi.org/10.1093/gigascience/giaa111
https://doi.org/10.1016/j.compbiomed.2023.106848
https://doi.org/10.1111/j.1574-6976.2010.00251.x
https://doi.org/10.1093/cid/ciu292
https://doi.org/10.1093/cid/ciu292
https://doi.org/10.1038/nature14539
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1038/nrg3920
https://doi.org/10.1038/s41589-023-01349-8
https://doi.org/10.1038/s41587-022-01226-0
https://doi.org/10.1021/acs.molpharmaceut.5b00982
https://doi.org/10.1021/acs.molpharmaceut.5b00982
https://doi.org/10.1016/j.copsyc.2024.101829
https://doi.org/10.1016/j.copsyc.2024.101829
https://doi.org/10.1038/498255a
https://doi.org/10.1038/s41467-022-33397-4
https://doi.org/10.1038/s41467-022-33397-4
https://doi.org/10.1056/NEJMp1606181
https://doi.org/10.1056/NEJMp1606181
https://doi.org/10.1038/s41467-023-42434-9
https://doi.org/10.1038/s41467-023-42434-9
https://doi.org/10.1038/nbt.4235
https://doi.org/10.1179/2047773215Y.0000000030
https://doi.org/10.1038/s41591-018-0272-7
https://doi.org/10.1186/2047-2501-2-3
https://doi.org/10.1056/NEJMra1814259
https://doi.org/10.1128/mBio.02877-19
https://doi.org/10.1016/j.cell.2024.05.013
https://doi.org/10.1016/j.cell.2024.05.013
https://doi.org/10.1016/j.cmi.2020.03.012
https://doi.org/10.1016/j.cmi.2020.03.012
https://doi.org/10.1109/TNB.2018.2839585
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.1002/path.5966
https://doi.org/10.1038/nbt.4233
https://doi.org/10.1038/s41377-020-00358-9
https://doi.org/10.1016/j.jbi.2017.11.011
https://doi.org/10.1038/s41591-021-01619-9
https://doi.org/10.3109/1040841X.2014.885930
https://doi.org/10.1001/jama.2020.1166


Gao and Liu 10.3389/fmicb.2024.1474078

Frontiers in Microbiology 10 frontiersin.org

Yasir, M., Karim, A. M., Malik, S. K., Bajaffer, A. A., and Azhar, E. I. (2022). 
Application of decision-tree-based machine learning algorithms for  
prediction of Antimicrobial Resistance. Antibiotics (Basel) 11:11. doi: 10.3390/
antibiotics11111593

Zhang, D., Bi, H., Liu, B., and Qiao, L. (2018). Detection of pathogenic microorganisms 
by microfluidics based analytical methods. Anal. Chem. 90, 5512–5520. doi: 10.1021/
acs.analchem.8b00399

Zhang, J., Li, C., Yin, Y., Zhang, J., and Grzegorzek, M. (2023). Applications of artificial 
neural networks in microorganism image analysis: a comprehensive review from 
conventional multilayer perceptron to popular convolutional neural network and potential 
visual transformer. Artif. Intell. Rev. 56, 1013–1070. doi: 10.1007/s10462-022-10192-7

Zhou, K., Xiao, Z., Liu, Q., Wang, X., Huo, J., Wu, X., et al. (2024). Comprehensive 
application of AI algorithms with TCR NGS data for glioma diagnosis. Sci. Rep. 
14:15361. doi: 10.1038/s41598-024-65305-9

https://doi.org/10.3389/fmicb.2024.1474078
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.3390/antibiotics11111593
https://doi.org/10.3390/antibiotics11111593
https://doi.org/10.1021/acs.analchem.8b00399
https://doi.org/10.1021/acs.analchem.8b00399
https://doi.org/10.1007/s10462-022-10192-7
https://doi.org/10.1038/s41598-024-65305-9

	Application of machine learning based genome sequence analysis in pathogen identification
	Introduction
	Application of AI in image analysis of pathogenic microorganisms
	The application of AI in genome sequencing data analysis
	Application of NLP in identification of pathogenic microorganisms
	Representative case
	Advantages and challenges
	Conclusion

	References

