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Introduction: Enterococcus faecium is a widespread acid-lactic bacterium 
found in the environment, humans, and animal microbiota, and it also plays a 
role in the production of traditional food. However, the worldwide emergence 
of multidrug-resistant E. faecium strains represents a major public health threat 
and is the primary reason that the genus Enterococcus is not recommended 
for the Qualified Presumption of Safety (QPS) list of the European Food Safety 
Authority (EFSA), raising concerns about its presence in food products.

Methods: In this study, 39 E. faecium and 5 E. lactis isolates were obtained from 
artisanal brine cheeses and dry sausages, sourced from 21 different Montenegrin 
producers. The isolates were collected following the ISO 15214:1998 international 
method and processed for whole-genome sequencing (WGS).

Results: Genome analysis based on core genome multilocus sequence type 
(cgMLST) revealed a high diversity among isolates. Furthermore, the isolates 
carried antimicrobial resistance genes; the virulence genes acm, sgrA, and 
ecbA; the bacteriocin genes Enterolysin A, Enterocin A, Enterocin P, Duracin Q, 
Enterocin B, Bacteriocin 31, Enterocin EJ97, Sactipeptides, and Enterocin SEK4; 
the secondary metabolite genes T3PKS, cyclic lactone autoinducer, RiPP-like, 
and NRPS and a maximum of eight plasmids.

Conclusion: This study highlights the need for careful monitoring of E. faecium 
and E. lactis strains in food to ensure they do not pose any potential risks to 
consumer safety.
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Introduction

Enterococcus sp. are Gram-positive and facultative anaerobe lactic 
acid bacteria (LAB). Within this genus, 63 of the 87 identified species 
are validly published according to the German Collection of 
Microorganisms and Cell Culture GmbH (DSMZ; https://lpsn.dsmz.
de/search?word=Enterococcus). Among them, Enterococcus faecium 
(E. faecium) represents one of the most ubiquitous species, as it is a 
commensal microorganism of the gastrointestinal tract of humans and 
animals, but it can also be found in environmental niches, such as soil, 
water, plants, or food (Delpech et al., 2012). In the latter, E. faecium is 
one of the most prevalent bacteria in traditionally manufactured 
cheeses (Serio et al., 2007), meat (Lauková et al., 2020), fermented 
vegetables, and fermented milk (Ben Belgacem et al., 2009), where it 
provides several beneficial effects, acting either as a probiotic (Foulquié 
Moreno et al., 2006; Jahansepas et al., 2019), or contributing to specific 
aroma, flavor, and taste (Delpech et al., 2012) during the fermentation 
process through the generation of flavor compounds (Abeijón et al., 
2006). In several countries, the use of non-starter LAB is indispensable 
for producing traditional cheese and meat products (Delpech et al., 
2012; Abeijón et al., 2006; Yerlikaya and Akbulut, 2019; Giraffa, 2003; 
Tsanasidou et al., 2021), suggesting that E. faecium endemic bacterial 
strains might have specific properties that make them a valuable 
resource for future food production (Daza Prieto et al., 2023; Woods 
et al., 2019; Ruppitsch et al., 2021). The UK Advisory Committee on 
Novel Foods and Processes (ACNFP) previously approved the use of 
E. faecium strain K77D as a starter culture in fermented dairy products 
(Hanchi et  al., 2018). Additionally, E. faecium is a producer of 
enterocins, and numerous studies have aimed at their purification and 
characterization, as well as to determine their potential as a preservative 
in dairy products. For instance, E. faecium RZS C5 produces enterocins 
with activity against foodborne pathogens in milk and cheese (Hanchi 
et al., 2018; Huang et al., 2013; Leroy et al., 2003).

Numerous studies have demonstrated the benefits of enterococci as 
additives in food production (Santos et al., 2015; Fugaban et al., 2021; 
sim et al., 2018). However, other studies have shown that enterococci 
also play an important role as contaminants in foods, leading to spoilage 
(Giraffa, 2002). Additionally, their use has become controversial due to 
the increasing acquisition of multiple antimicrobial resistances, the 
most concerning the emergence of vancomycin-resistant E. faecium 
(VREfm) clones and their adaptation to the hospital environment (Lee 
et al., 2019; De Oliveira et al., 2020; Leclercq et al., 1988). The World 
Health Organization (WHO) classifies VREfm as a priority pathogen 
(Tacconelli et al., 2018) and this is one of the reasons why the genus 
Enterococcus has not been recommended for the Qualified Presumption 
of Safety (QPS) list of the European Food Safety Authority (EFSA; 
Koutsoumanis et  al., 2023) neither has obtained the “generally 
recognized as safe” (GRAS) status of food additives that was first 
described in 1958 by the United States Food and Drug Administration 
(FDA) in the Food Additives Amendment of 1958 (1958).

The rapid evolution of NGS technologies, combined with the dual 
role of E. faecium in food microbiology and public health—as 
beneficial additives or starters in food production, as well as 
contaminants causing spoilage or carrying antimicrobial resistance 
genes (ARGs) or virulence determinants—has resulted in an 
increasing number of genomic studies that aimed to distinguish 
between food-grade and pathogenic strains (Martín-Platero et al., 
2009; Montealegre et al., 2016).

As a result, three different E. faecium “lineages” or “clades” have been 
described: clade A1, which includes hospital-associated strains; clade A2, 
which includes animal-associated strains; and clade B, which includes 
commensal/community-associated strains (Montealegre et al., 2016). 
The latter was recently reassigned to E. lactis in a genome-based study 
(Belloso Daza et  al., 2021). Since then, several groups focused their 
studies on this re-classification of E. faecium clade B (Belloso Daza et al., 
2022). The best example of E. faecium strains with different evolutionary 
trajectories is E. faecium clonal complex 17 (CC17; clade A1 hospital-
associated E. faecium) and E. faecium clonal complex 94 (CC94; clade B 
community/commensal E. faecium; Peng et  al., 2022). Additionally, 
several studies have reported that E. faecium clade A1 strains differ up to 
5% from E. faecium clade B (now re-classified as E. lactis) strains 
(Galloway-Peña et al., 2012; Wei et al., 2024). CC17 E. faecium is the most 
dominant CC in hospital environments and is the main responsible for 
healthcare-associated infections worldwide due to its ability to acquire 
and disseminate ARGs (Lee et al., 2019; De Oliveira et al., 2020). On the 
other hand, community-associated E. faecium are commensal strains that 
are part of the human microbiome participating in the metabolism of 
nutrients and synthesis of vitamins (Krawczyk et al., 2021). Regarding 
antimicrobial resistance (AMR), E. faecium and E. lactis are generally 
intrinsically resistant to aminoglycosides, macrolides, and pleuromutilin 
antibiotics. As a result, these antibiotics are not commonly used to treat 
infections. Instead, vancomycin, linezolid, daptomycin, tigecycline, 
quinupristin/dalfopristin, and ampicillin are preferred. However, the 
usage of vancomycin and ampicillin has decreased, primarily due to the 
growing resistance to these antibiotics highlighting the need for new 
therapeutic options (Arias and Murray, 2012). Community-associated 
E. faecium and E. lactis strains are more often susceptible to the antibiotics 
typically used to treat E. faecium infections compared to clinical strains. 
However, some vancomycin-resistant strains have also been described 
among the community-associated isolates (D’Agata et al., 2001; Schwalbe 
et al., 1999). A crucial aspect to consider an E. faecium strain as “safe” is 
the absence of the ARGs vanA/vanB, the virulence genes (VGs) hylEfm 
and esp., and the insertion sequence IS16, as required by the European 
Food Safety Authority (EFSA; EFSA Panel on Additives and Products or 
Substances used in Animal Feed (FEEDAP) et al., 2018). While clinically 
associated E. faecium strains typically carry the above-mentioned genetic 
markers, these markers are generally absent in community-associated 
E. faecium strains.

While VREfm is responsible for numerous outbreaks worldwide 
(Zhou et al., 2018; Gorrie et al., 2019), E. lactis is a commensal in the 
gastrointestinal tract of humans and animals and some strains of this 
species are used in the clinic for gastrointestinal disorders such as 
acute diarrhea (Holzapfel et al., 2018). The present study aimed to 
characterize E. faecium and E. lactis strains present in traditionally 
produced Montenegrin food products using whole-genome 
sequencing and to assess their safety status via comparison to hospital-
associated strains and investigation of ARGs, VGs, bacteriocins, 
secondary metabolites, plasmids, and chromosomal point mutations.

Materials and methods

Origin and cultivation of isolates

In this study, 25 white brine cheeses and 13 beef and pork dry 
sausages were collected between 2016 and 2022 from producers 
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located in different municipalities/cities in Montenegro 
(Supplementary Figure 1 and Supplementary Table 1).

Cheese and salami samples, sourced from diverse origins and 
collected over different time periods as part of two distinct projects 
(detailed in the funding information), were processed using the ISO 
15214:1998 method (International Organization for Standardization, 
1998). Briefly, samples were homogenized using a stomacher and 
subjected to decimal dilutions (10−1–10−6) in buffered peptone water 
(Thermo Scientific/Vienna/Austria). From each dilution, 0.1 ml 
aliquots were inoculated on De Man, Rogosa, and Sharpe agar (MRS) 
and M17 (Thermo Scientific, Vienna, Austria) agar and subsequently 
incubated under anaerobic conditions at 30 and 37°C for 72 and 48 h, 
respectively. For species identification, up to five single colonies/
samples were selected and grown on Columbia Blood Agar with 5% 
Sheep Blood (COS; BioMérieux, Vienna, Austria) plates at 37°C for 
24 h using matrix-assisted laser desorption/ionization time-of-flight 
mass spectrometry (MALDI-TOF-MS) on a microflex LT/SH (Bruker, 
Billerica, MA, USA) with the database MBT Compass IVD 4.2. A total 
of 39 E. faecium and 5 E. lactis isolates were identified from the 38 
food samples and further analyzed.

The isolates from 2019 were designated with the ID INF-X, while 
those isolated in 2022 were named using the prefix CoE-XX-22.

DNA extraction and whole-genome 
sequencing

High-molecular-weight DNA was isolated from overnight 
cultures grown on COS agar using the MagAttract HMW DNA Kit 
(Qiagen, Hilden, Germany) following the manufacturer’s instruction 
for Gram-positive bacteria. DNA purity was quantified using 
DropSense 16 (Trinean NV/SA, Gentbrugge, Belgium). Genomic 
libraries were prepared using the Nextera XT DNA library preparation 
kit (Illumina, San Diego, CA, USA). Paired-end sequencing was 
performed on a NextSeq2000 instrument (Illumina, San Diego, CA, 
USA) with a read length of 2 × 150 bp (Illumina, San Diego, CA, USA) 
and a minimum coverage of 30×.

Sequence data analysis

Raw reads were de novo assembled using SPAdes (version 3.11.1; 
Bankevich et al., 2012). Contigs were filtered for a minimum coverage 
of 5 and a minimum length of 200 base pairs using SeqSphere+ 
software v8.5.1 (Ridom, Münster, Germany). QC parameters of 
assembled genomes are shown in Supplementary Table  2. 
Confirmation of species identification was conducted by whole-
genome pairwise comparison analysis, 16S rDNA analysis, (https://
tygs.dsmz.de, accessed on 25th March 2024), and ANI analysis v3.9.7 
(Richter et al., 2016). The Type Strain Genome Server analysis (TYGS) 
tool from the German Collection of Microorganisms and Cell Cultures 
GmbH (DSMZ) was used for digital DNA–DNA hybridization 
(dDDH) using the d4 formula as recommended for draft genomes.

Isolate typing was conducted using SeqSphere+ software v9.0.10 
including classical multilocus sequence typing (MLST; Homan et al., 
2002) and core genome (cg)MLST (Mark de et al., 2015; comprising 
1,423 core genome targets). Their genetic relatedness was assessed and 
for additional genomic comparisons, 31 E. faecium and 31 E. lactis 

genome assemblies were downloaded from pubMLST,1 from a 
genome-based study on E. faecium performed in 2021 (Belloso Daza 
et al., 2021) and GenBank. A Minimum Spanning Tree (MST) with all 
isolates was generated to visualize clusters by applying a cluster 
threshold set to ≤10 allelic differences. Additionally, a neighbor-
joining tree of the core genome alignment of all isolates was visualized 
and annotated with iTOL (Letunic and Bork, 2024).

NCBI AMRFinder+ v3.11.2. (Letunic and Bork, 2024) and tools 
from the Center for Genomic Epidemiology (https://www.
genomicepidemiology.org/; accessed on 14 June 2024) were used to 
detect ARGs. All matches for ARGs fulfilling the recent EFSA 
guidelines of at least 80% identity and 70% query coverage (EFSA, 
2024) were reported. Antimicrobial resistance to antibiotics (amikacin, 
kanamycin, streptomycin, ampicillin, ciprofloxacin, erythromycin, and 
tetracycline) was tested using E-test (BioMérieux, Vienna, Austria). 
The virulence factor database (VFDB) was used to detect VGs (Liu 
et al., 2022). Thresholds were set for the target scanning procedure to 
≥85% identity with the reference sequence and ≥99% with the aligned 
reference sequence. The CGE Mobile Element Finder v1.0.5. was used 
with the <90% identity and >95% alignment method to detect mobile 
genetic elements (MGEs; Johansson et al., 2021). Chromosome and 
Plasmid Finder v1.0. through MOB-suite v3.1.4. available in 
SeqSphere+ v8.5.1. was used with the mash neighbor distance >0.06 to 
detect plasmids (Robertson and Nash, 2018). BAGEL4 (van Heel et al., 
2018) was used to detect bacteriocins and antiSMASH 7.0 (Blin et al., 
2023) to detect secondary metabolite “biosynthetic gene clusters.”

Results

Whole-genome sequence-based species 
identification and subtyping

Digital DNA–DNA hybridization using formula d4 (cutoff >70%; 
Supplementary Figure 2 and Supplementary Table 3) and ANI analysis 
(cutoff >95% identity; Supplementary Tables 4.1, 4.2) identified 39 
isolates as E. faecium and 5 isolates as E. lactis.

MLST- and cgMLST-based characterization of the 39 E. faecium 
isolates revealed a high diversity. E. faecium isolates belonged to 16 
different sequence types (STs) and 19 different cgMLST complex types 
(CTs). A total of 21 E. faecium isolates were grouped into one cgMLST 
cluster (cluster 2) and 18 singletons were identified (n = 39). Cluster 2 
(ST1453/CT2909) isolates were from 18 different cheeses from 11 
different producers. All cluster 2 E. faecium isolates differed from each 
other by a maximum of five alleles. A total of 18 E. faecium singletons 
belonged to 15 different ST profiles and 18 different CT profiles 
differing by 42–1,000 alleles and were obtained from 7 different 
cheeses and 11 dry sausages from 9 different producers (Figure 1).

The MLST- and cgMLST-based characterization of the five 
E. lactis isolates obtained from five different dry sausages revealed that 
three isolates (CC94/ST697/CT6825) grouped in the same cluster 
(cluster 4). One E. lactis isolate was a singleton and differed by a 
minimum of 566 alleles from cluster 4 (Figure 1).

1 https://pubmlst.org/bigsdb?db=pubmlst_efaecium_isolates&l=1&page=profiles

https://doi.org/10.3389/fmicb.2024.1473938
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://tygs.dsmz.de
https://tygs.dsmz.de
https://www.genomicepidemiology.org/
https://www.genomicepidemiology.org/
https://pubmlst.org/bigsdb?db=pubmlst_efaecium_isolates&l=1&page=profiles


Daza Prieto et al. 10.3389/fmicb.2024.1473938

Frontiers in Microbiology 04 frontiersin.org

FIGURE 1

Minimum spanning tree (MST) based on cgMLST analysis of our E. faecium (n = 39) and E. lactis (n = 5) isolates and the closest publicly available 
isolates. Numbers on connection lines represent allelic differences between isolates. Isolates are colored by species (dark green = E. faecium isolates 
from our study, light green: E. faecium isolates from the study performed by Belloso Daza et al. (2021), GenBank and PubMLST, dark orange = E. lactis 
isolates from our study and light orange: E. lactis isolates from the study performed by Belloso Daza et al. (2021), GenBank and PubMLST). The 
threshold for cluster identification is set at ≤10 allelic differences. Data are shown in every isolate: isolate ID and sequence type (ST).
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The E. lactis isolates CC94/ST296/CT426 (CoE-451-22) clustered 
in cluster 1 with 22 publicly available E. lactis strains from various 
origins, showing only one to seven allelic differences: 12 isolates 
obtained from probiotics and one from an unknown source from 
China, three isolates obtained from probiotics and one isolate from an 
unknown source from USA, one bovine isolate from Belgium, one 
isolate obtained from a cow from Russia, one stool isolate from a 
hospitalized patient from Brazil, one isolate from yogurt from Canada, 
and one isolate from fermented milk from an unknown country 
(Supplementary Table 5). All 23 strains showed a maximum allelic 
difference of 7 to E. lactis NCIMB 10415.

Based on cgMLST analysis, E. lactis isolates showed a lower 
percentage of good core targets (maximum 95.7% in comparison to 
E. faecium isolates 99.4%).

Detection of antimicrobial resistance 
genes, virulence genes, bacteriocin, 
secondary metabolites genes, plasmids, 
and chromosomal point mutations

Genome analysis with AMRFinder+ revealed that our E. faecium 
and E. lactis isolates carried the intrinsic ARG aac-(6′)-I (conferring 
resistance to aminoglycosides) and msrC (conferring resistance to 
macrolides). Five E. lactis isolates from two different producers and 15 
E. faecium isolates from 12 producers carried the intrinsic ARG eatA 
(conferring resistance to pleuromutilins; Figure  2). Susceptibility 
testing for erythromycin showed susceptibility in all E. faecium and 
E. lactis tested isolates. Susceptibility testing for aminoglycosides 
(amikacin, kanamycin, and streptomycin) showed antibiotic resistance 
in all tested E. faecium and E. lactis isolates. None of the enterococci 
isolates carried van genes. One E. faecium singleton (CoE-038-22) 
isolated from beef sausage possessed the acquired tetL and tetM ARGs 
encoded on a plasmid, conferring resistance to tetracycline 
(Supplementary Table 6). Susceptibility testing of the strain revealed 
resistance to tetracycline (32 μg/ml). Genome analysis with ResFinder 
revealed that all E. faecium isolates carried a minimum of 4 and a 
maximum of 17 mutations simultaneously in the class B penicillin-
binding protein 5 (pbp5) gene (Supplementary Table 7), associated 
with resistance to ampicillin. Susceptibility testing of a subset of six 
strains of enterococci showed that all were susceptible to ampicillin 
(0.19–0.50 μg/ml). E. lactis isolates did not carry mutations in pbp5. 
LRE-Finder predicted that all E. faecium isolates and E. lactis isolates 
were linezolid susceptible. VFDB showed that 1 E. lactis isolate and 13 
E. faecium isolates (n = 14) carried at least 1 VG. Twelve E. faecium 
isolates carried acm (encoding a protein responsible for collagen 
adhesion), two E. faecium isolates carried ecbA (encoding a protein 
which binds to the collagen type V), and one E. lactis isolate carried 
sgrA (encoding a surface adhesion protein). VirulenceFinder revealed 
that all enterococci isolates carried the VGs acm and efaAfm (encoding 
a protein responsible for cell wall adhesion) with a minimum of 90% 
identity (Supplementary Table 6). All E. faecium isolates and four 
E. lactis isolates (n = 43) carried at least one MGE. The most prevalent 
MGEs were the insertion sequence ISEf1 and IS1062, both found in 
23 isolates, followed by the insertion sequences ISS1N and ISEfm, 
found in 18 and 14 isolates, respectively (Supplementary Table 6). 
According to EFSA guidelines for the safety assessment of E. faecium 
strains, none of the isolates carried the VGs hylEfm and esp, and the 
insertion sequence IS16 (EFSA Panel on Additives and Products or 

Substances used in Animal Feed (FEEDAP) et al., 2018). MOB-suite 
database and PlasmidFinder detected 33 Montenegrin E. faecium 
isolates and 5 E. lactis isolates that carried at least 1 plasmid 
(Supplementary Table 6). Six E. faecium isolates carried no plasmids. 
BAGEL4 analysis revealed that 33 isolates carried Enterolysin A genes, 
8 isolates carried Enterocin_A genes, 7 isolates carried Enterocin_X_
chain_alpha genes, and 5 carried Enterocin_P genes. Four isolates 
carried no genes for bacteriocins (Supplementary Table  8). 
AntiSMASH 6.0 predicted that all E. faecium isolates and E. lactis 
isolates carried type III polyketide synthase (T3PKS) and cyclic 
lactone autoinducer genes. Thirty-nine out of 44 isolates carried the 
ribosomally synthesized and post-translationally modified peptides 
(RiPP-like cluster), and 1 E. lactis isolate (CoE-451-22) carried the 
NRPS cluster (Supplementary Table 8).

Discussion

Vancomycin-resistant E. faecium represents nowadays a 
significant public health challenge (Koutsoumanis et  al., 2023). 
Conversely, Enterococcus species have been described in several 
countries as essential for the production of artisanal food products, 
underscoring the importance of correctly distinguishing between 
beneficial and pathogenic strains to ensure consumer safety. To 
achieve this, whole-genome sequencing (WGS) is today the method 
of choice to select safe and beneficial strains in food production 
(Ruppitsch et al., 2021; EFSA Panel on Additives and Products or 
Substances used in Animal Feed (FEEDAP) et al., 2023; EFSA Panel 
on Additives and Products or Substances used in Animal Feed 
(FEEDAP) et al., 2021; EFSA Panel on Additives and Products or 
Substances used in Animal Feed (FEEDAP) et al., 2024a; EFSA Panel 
on Additives and Products or Substances used in Animal Feed 
(FEEDAP) et al., 2024b; EFSA Panel on Additives and Products or 
Substances used in Animal Feed (FEEDAP) et al., 2024c).

In our study, WGS revealed a high diversity among E. faecium 
isolates obtained from traditionally produced Montenegrin food, with 
one large cgMLST cluster (ST1453/CT2909) comprising isolates 
obtained from brine cheeses in the northern region of Montenegro. 
ST1453 E. faecium isolates were previously reported in traditional brine 
cheese from Montenegro (Ruppitsch et al., 2020). All ST1453 E. faecium 
isolates carried the intrinsic aac-(6′)-I and msrC ARGs, while only 
seven of the isolates possessed the intrinsic eatA ARGs. Additionally, 
five isolates were found to carry the acm virulence genes (VGs), and all 
isolates contained plasmids. To the best of our knowledge, no infections 
have been linked to ST1453 so far, which suggests that this clone seems 
to be  adapted to artisanal cheese products in Montenegro. This 
observation is consistent with the review of Giraffa G. (Giraffa, 2003), 
who reported that enterococci might have a positive influence on 
cheese due to lipolytic activity, citrate utilization, and production of 
aromatic volatile compounds. The fact that all our ST1453-positive 
cheese samples were produced in the same municipality, probably with 
a similar supply of milk and infrastructures, may explain the 
colonization with the same E. faecium strain.

Regarding the E. faecium singletons, ST22, ST32, ST92, and 
ST296 were the most reported in the literature whereas other 
detected STs in our study have barely been reported. E. faecium 
ST32 strains have been previously isolated from chicken meat 
(Leinweber et al., 2018), having an association with vancomycin-
resistant genes, which in contrast were absent in our case. 
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E. faecium ST22 [which is a single locus variant of E. faecium ST32 
(Freitas et al., 2020)] was reported by Cabal et al. (2022) with no 
acquired ARGs nor VGs, which is also in concordance with our 
findings. As for E. faecium ST92, Galloway-Peña et  al. (2009) 
reported its association with vancomycin and ampicillin resistance 
in clinical isolates and outbreaks in the USA in 1980, which was the 
first detection of ampicillin resistance in E. faecium. In contrast, our 
E. faecium ST92 isolates did not carry any acquired ARGs. However, 
it carried several mutations in pbp5 associated with ampicillin 
resistance. Interestingly, most of the strains in our study, despite 
having specific mutations in pbp5 detailed in Supplementary Table 7, 
which are known to reduce the affinity for ß-lactam antibiotics and 
confer resistance, were susceptible. Specifically, the point mutations 
found are nucleotide substitutions that are responsible for increased 
resistance by decreasing the affinity for ß-lactam antibiotics, 
leading to ampicillin resistance. On the other hand, other authors 
such as Rice et al. (2004) reported that the decreased affinity of 
pbp5 is not the only factor involved in the expression of resistance 
to ß-lactams in E. faecium. In concordance with our findings, 
Belloso Daza et  al. (2022) reported that some E. lactis strains 
harboring multiple mutations in pbp5 were still susceptible 
to ampicillin.

E. lactis ST697/CT6825 isolates were obtained from different 
beef sausages from the same producer in the northeast of 
Montenegro. This rare ST was reported from a patient isolated in 
Spain in 2010. Unfortunately, no genome nor a study was available 
from this isolate for comparison with our isolates. E. lactis ST697 
strains, lacking VGs, were isolated from sausages from the same 
producer, therefore we  assume that they might be  also endemic 
within the company or producer’s infrastructure. E. lactis CC94/
ST296/CT426, isolate CoE-451-22 was obtained from sausage and 
clustered with several isolates from different countries and sources. 
Due to its relatedness and the similarity of all the other strains 
within this cluster with E. lactis NCIMB 10415, an approved feed 
additive since 1999 (EFSA Panel on Additives and Products or 
Substances used in Animal Feed (FEEDAP) et  al., 2024c), 
we hypothesize that E. lactis ST296 could have been transferred from 
the feed to the animals and during slaughter and meat processing to 
the sausage. In concordance with previous studies, our strain E. lactis 
ST296 carried only intrinsic ARGs (Murray et al., 2020).

The absence of acquired ARGs, including van genes, in food-
derived enterococci is an important parameter when assessing the 
safety of these food products for consumers. No vancomycin-
resistance-associated ARGs were detected among our strains, which 

FIGURE 2

Neighbor-joining phylogenetic tree represents the investigated E. faecium (n = 70) and E. lactis (n = 36) based on the core genome alignment of the 
genomes. Origin and ARGs are displayed for each isolate.
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are mostly found in clinical strains, but not in food strains, as 
reported previously (Jahansepas et al., 2019). Most E. faecium and 
E. lactis isolates from our study carried the intrinsic ARGs aac (6′)-I, 
eatA, and msrC, which have been described in the literature (Diarra 
et al., 2010; Shridhar et al., 2022). The presence of intrinsic ARGs 
alone should not pose any health risk to consumers, as they are 
resistant to antibiotics that by default are not used in the treatment of 
clinical E. faecium infections. Additionally, some studies reported 
that macrolide resistance is not solely linked to the presence of the 
msrC gene but depends on specific mutations within the gene (Guido 
et al., 2001).

Acquired ARGs such as tetM/tetL, conferring resistance to 
tetracycline, were found in one E. faecium isolate (ST29) encoded in 
a mobilizable plasmid, obtained from dry sausage. Although these are 
acquired ARGs, this is not the first time they have been detected in 
E. faecium isolates obtained from food, specifically from fermented 
meat products, as reported by Jahan et al. (2013), who reported that 
the Enterococcus sp. isolates included in their study (including 13 
E. faecium) had 65% resistance to tetracycline. Although E. faecium 
could serve as a reservoir for tetM/tetL genes for other bacteria, 
tetracycline is not a first-line treatment option for humans. None of 
our strains carried optrA ARGs conferring resistance to linezolid. 
Nevertheless, it is important to note that numerous studies warn about 
the danger of the presence of the optrA gene confirming resistance to 
linezolid (Xuan et  al., 2023). Therefore, monitoring of optrA 
is recommended.

VGs are crucial for the adaptation, pathogenicity, and colonization 
of bacterial infection (Kim et al., 2016; Fu et al., 2022). None of our 
isolates carried hylefm and esp VGs, whose absence is a key aspect 
according to EFSA guidelines to consider a strain of E. faecium as “safe” 
(EFSA Panel on Additives and Products or Substances used in Animal 
Feed (FEEDAP), 2012). The VG acm and efaAfm were present in all 
E. faecium isolates and all E. lactis isolates in our study, which is in 
concordance with other food and probiotics Enterococcus studies 
(Strateva et al., 2016; Yuksekdag et al., 2021). For instance, acm has 
been reported in a fermented dry sausage E. faecium isolate from Italy, 
in the probiotic JDM1 E. lactis strain, and in the probiotic SF68 
E. faecium strain (or E. faecium NCIMB 10415, now re-classified as 
E. lactis NCIMB 10415; Belloso Daza et al., 2022; Holzapfel et al., 2018; 
Fu et al., 2022). The VG EfaAfm, one of the most prevalent in E. faecium 
food isolates (Wang et al., 2024), has been obtained from white cheese 
(Yuksekdag et al., 2021), roe deer and boar meat (Guerrero-Ramos 
et  al., 2016), and in the probiotic E. faecium OV3-6 strain 
(Choeisoongnern et al., 2021). Much less prevalent, sgrA was found in 
one E. lactis isolate, and ecbA was found in two different E. faecium 
isolates from beef dry sausages (sudzuk). Previous studies reported that 
the presence of only one of these virulence genes does not indicate 
pathogenicity; however, the expression and/or combination of these 
genes could pose a potential risk (Soheili et al., 2014).

All E. faecium isolates and E. lactis isolates from our study carried 
plasmids, being the most prevalent rep1 and repUS15. VREfm strains 
were reported harboring vanA gene cluster encoded on a rep1 
replicon (Yu et al., 2012). While another VREfm strain was reported 
to carry repUS15 plasmid without ARGs (Katsuyama and Ohnishi, 
2012). The strain with the acquired tetM/tetL was encoded on a 
mobilizable plasmid repUS43, which is in accordance with the results 
from a recent study (Yu et al., 2012). The presence of plasmids in 
E. faecium strains is considered as a potential risk (Schwalbe et al., 

1999; EFSA, 2024), due to the horizontal transfer of ARGs. Therefore, 
monitoring is essential to mitigate the potential health risks 
associated with their spread in food.

E. faecium isolates obtained from food are reported to produce 
enterocins, proteins with antimicrobial activity against foodborne 
pathogens such as Listeria monocytogenes (Gontijo et al., 2020; 
Schittler et  al., 2019; Tsigkrimani et  al., 2022). Therefore, the 
application of enterocin-producing E. faecium has been described 
to show potential as a biopreservative against food-borne 
pathogens (Giraffa, 2003). Our strains carried Enterolysin A, 
Enterocin A, Enterocin P, Duracin Q, Enterocin B, Bacteriocin 31, 
Enterocin EJ97, Sactipeptides, and Enterocin SEK4. Enterocin A and 
enterocin B have been reported from E. faecium on several 
occasions (Martín-Platero et  al., 2009) and some authors also 
informed about the presence of enterocin A, enterocin B, and 
enterocin P in one E. lactis strain (Ben Braïek et al., 2018). The most 
common secondary metabolites in our isolates were T3PKS 
(polyketides family), cyclic lactone autoinducer, and RiPP-like. The 
polyketides have been isolated from plants, bacteria, and fungi (Lv 
et  al., 2014) and have been described to have anticancer, anti-
cholesterol, and antimicrobial properties (Yu et  al., 2012). 
Specifically, T3PKS in bacteria have significant biological functions 
such as biosynthesis of some lipidic, natural compounds, and 
various secondary metabolites, ranging from signaling molecules 
to bioactive natural products (Katsuyama and Ohnishi, 2012). 
Furthermore, PKS and RiPP-like cluster genes were detected in two 
E. lactis strains isolated from the rumen of a healthy calf 
(Korzhenkov et  al., 2021), while lactones are used for adding 
flavors and fragrances to fermented and unfermented dairy 
products, which seem to have a beneficial use in the making of 
artisanal cheeses and dry sausages.

In conclusion, all but one investigated E. faecium and E. lactis 
isolates carried only intrinsic ARGs and some virulence genes, which 
alone are not associated with pathogenicity. Some of these isolates may 
be endemic and could play beneficial roles in traditional cheese and 
sausage production by enhancing organoleptic qualities and 
contributing to biopreservation through the production of enterocins, 
a possibility that warrants further research. However, since all isolates 
carry plasmids, which is a named risk factor for intentional use 
according to EFSA recommendations further investigation and 
ongoing genomic monitoring remain crucial to ensure 
consumer safety.
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