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Soil health is crucial for global food production in the context of an ever-growing 
global population. Microbiomes, a combination of microorganisms and their 
activities, play a pivotal role by biodegrading contaminants, maintaining soil structure, 
controlling nutrients’ cycles, and regulating the plant responses to biotic and 
abiotic stresses. Microbiome-based solutions along the soil-plant continuum, and 
their scaling up from laboratory experiments to field applications, hold promise 
for enhancing agricultural sustainability by harnessing the power of microbial 
consortia. Synthetic microbial communities, i.e., selected microbial consortia, 
are designed to perform specific functions. In contrast, natural communities 
leverage indigenous microbial populations that are adapted to local soil conditions, 
promoting ecosystem resilience, and reducing reliance on external inputs. The 
identification of microbial indicators requires a holistic approach. It is fundamental 
for current understanding the soil health status and for providing a comprehensive 
assessment of sustainable land management practices and conservation efforts. 
Recent advancements in molecular technologies, such as high-throughput sequencing, 
revealed the incredible diversity of soil microbiomes. On one hand, metagenomic 
sequencing allows the characterization of the entire genetic composition of soil 
microbiomes, and the examination of their functional potential and ecological roles; 
on the other hand, culturomics-based approaches and metabolic fingerprinting 
offer complementary information by providing snapshots of microbial diversity and 
metabolic activities both in and ex-situ. Long-term storage and cryopreservation 
of mixed culture and whole microbiome are crucial to maintain the originality of 
the sample in microbiome biobanking and for the development and application 
of microbiome-based innovation. This review aims to elucidate the available 
approaches to characterize diversity, function, and resilience of soil microbial 
communities and to develop microbiome-based solutions that can pave the way 
for harnessing nature’s untapped resources to cultivate crops in healthy soils, 
to enhance plant resilience to abiotic and biotic stresses, and to shape thriving 
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ecosystems unlocking the potential of soil microbiomes is key to sustainable 
agriculture. Improving management practices by incorporating beneficial microbial 
consortia, and promoting resilience to climate change by facilitating adaptive 
strategies with respect to environmental conditions are the global challenges of 
the future to address the issues of climate change, land degradation and food 
security.

KEYWORDS

microbiome-based solutions, soil health, microbiome preservation, SynComs, 
NatComs, omics approaches, microbiome application, sustainable agriculture

1 Introduction

The increased demand for food due to the world’s growing 
population has for years caused intensified pressure on natural 
resources. The introduction of new crops with high-yield genetically 
improved and the use of new technologies in agriculture, such as 
chemical fertilizers, herbicides and synthetic pesticides, have led to 
considerable increase in production and productivity, but at a high 
environmental cost that is no longer sustainable today. There is a 
general consensus on the need to define and adopt more sustainable 
and environmentally friendly agricultural alternatives (Reidsma et al., 
2023). Increasing food production and at the same time improving 
agricultural practices to lessen environmental impact while using 
scarce natural resources efficiently are the main challenges facing the 
global agricultural sector in the coming decades. The adoption of 
microbiome-based practices all along the agrifood system represents 
a key to address this challenge (Schlaeppi and Bulgarelli, 2015; Suman 
et al., 2022). The term “microbiome” refers to the whole of microbiota 
(i.e., the communities of microorganisms colonizing a specific 
environment) together with the “theater of activity” comprising: (i) 
peptides, lipids, polysaccharides, DNA and RNA possessed by the 
microorganisms (their structural elements); (ii) metabolites produced 
by microorganisms; and (iii) the conditions of the environment in 
which the microorganisms live (Berg et al., 2020).

Soil, representing the basis of food production, is an essential 
component for supporting food security through the wide range of 
ecosystem services it provides. Soil microorganisms contribute 
significantly to biodiversity and productivity in agroecosystems by 
participating in nutrient cycles and the decomposition of organic matter 
(Daunoras et al., 2024; Iqbal et al., 2023), and regulating, supporting, 
and provisioning services (Anikwe and Ife, 2023; Saccá et al., 2017). Soil 
and plant microbiomes (rhizospheric, endophytic, and epiphytic) play 
an important role in plant growth and development, and also in soil 
health as they provide the plant with a secondary genome that supplies 
key ecological functions and benefits to the host. Microbiomes play an 
important role in the management of phyopathogens by enhancing 
stress tolerance and thus providing an adaptive advantage; they mediate 
several plant functional traits; they influence plant phenotypic plasticity, 
and are critical in ensuring the quality and safety of plant primary 
production, including fruits and related processed foods (Compant 
et al., 2019; Panke-Buisse et al., 2015; Timmusk et al., 2017). Utilizing 
the functional potential of soil and plant microbiomes may lead to 
reduced chemical inputs, increased quality and safety of crops and food 
products, while increasing the provision of beneficial ecosystem 
functions for the environment and human health (Chaparro et al., 2012; 
Gopal and Gupta, 2016; Song et al., 2020).

Utilizing microorganisms as biofertilizers is a promising natural-
based strategy as they possess multiple nutrient-sequestering and 
plant-growth-promoting characteristics and can transfer high levels of 
minerals into plant roots. In agriculture, the use of beneficial microbial 
consortia, capable of promoting plant growth resistance to biotic (i.e., 
pest and disease) and abiotic (i.e., drought, flooding, salinity, and 
nutrient) stress, might help address the challenges posed by modern 
agriculture (Woo and Pepe, 2018). Today, synthetic and natural 
communities of different microorganisms with a synergistic activity 
are constantly being developed and tested (Andreeva and Kozhevin, 
2014; de Souza et al., 2020; Tabacchioni et al., 2021; Yin et al., 2022; 
Hett et al., 2023; Neuhoff et al., 2024). Compared to a single-species 
inoculum, a multi-species inoculum has the potential to more 
efficiently increase the growth and yield of plants and improves the 
availability of minerals and nutrients thanks to its multifunctionality 
and stability (Liu et  al., 2023). Microbiome-assisted sustainable 
agriculture, therefore, represents a valid strategy for ensuring the 
health and productivity of plants, thereby influencing the entire food 
chain and, consequently, the microbiome and human health within the 
“One Health” framework (Banerjee and van der Heijden, 2023). A 
better comprehension of soil microbiome composition and function 
is crucial for the development of tailored microbiome-based 
formulations under changing climate conditions. The new approaches 
available (metagenomics, culturomics and metabolic fingerprinting) 
allow for characterizing the diversity, function and resilience of soil 
microbial communities, providing insights into their functional 
potential and fundamental ecological roles for environmental balance. 
This review delves into the knowledge and techniques applied for 
understanding the soil microbial diversity and function, highlighting 
the role of omics strategies for soil health evaluation and how 
microbiome-based technologies enable us to guarantee sustainable 
agriculture ranging from the selection to the scaling-up production, 
preservation and application (Figure 1). Ensuring the scaling up of 
beneficial microbial consortia from the laboratory to the field allows 
us to give robustness and replicability to the process, just as the storage 
and cryopreservation processes of microbial communities are 
fundamental for long-term preservation and use.

2 The plant growth promoting 
microorganisms and their role for 
sustainable agriculture

Soils are characterized by the existence of so-called microbial 
hotspots (i.e., the rhizosphere, drilosphere, or detritusphere) colonized 
by a fraction of actively microorganisms that is 2–20 times higher than 
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in bulk soil, making temporal changes in microbiome structure and 
function much more dynamic than sites with less microbial activity 
(Kuzyakov and Blagodatskaya, 2015). The rhizosphere is a hot spot for 
microbial growth and a source of beneficial microorganisms for 
sustainable agriculture (Lynch, 1990; Chamkhi et al., 2022). In the 
rhizosphere, various microorganisms including bacteria, fungi, 
viruses, actinomycetes, cyanobacteria, and protozoa thrive due to the 
diverse nutrients and organic components present. They perform 
numerous functions, such as biodegradation, conservation of soil 
structure, and cycling of biogenic elements, that provide essential 
nutrients to plants. The interactions between microorganisms and 
plant roots are fundamental for ecosystem functioning. Through these 
interactions, plants can integrate into the soil, absorb water and ions, 
and store nutrients (Wu L. et al., 2023). Microbial interactions with 
roots can vary in nature and have profound implications for plant 
nutrition and growth, enhancing plant resistance and tolerance to 
both biotic and abiotic stresses.

Plant growth-promoting rhizobacteria (PGPR) play an important 
role in promoting soil fertility and improving plant health through 
their ability to improve crop productivity and nutritional quality. 
These microorganisms can exert their action through both direct and 
indirect mechanisms. Direct mechanisms refer, for example, to the 
mobilization by microorganisms of poorly available nutrient sources 
(such as recalcitrant soil phosphates), to nitrogen fixation, to the 
production by bacteria of molecules mimicking phytohormones (e.g., 
auxins, cytokinins and gibberellins) or enzymes (e.g., 
1-aminocyclopropan-1-carboxylate deaminase) that modulate plant 
hormonal production by degrading the stress-related hormones, and 
to promote plant growth by improving nutrient absorption and stress 
tolerance (Compant et al., 2019). Indirect mechanisms may involve 
controlling plant pathogens by stimulating plant defense mechanisms 
or suppressing them antagonistically through the production of 

antibiotics, lytic enzymes, and siderophores. Other bacteria protect 
plants by modulating levels of plant hormones and inducing systemic 
resistance (Berg and Koskella, 2018). Furthermore, microorganisms 
are able to program the plant’s immune system by activating its 
defense mechanisms against pathogens with an action comparable to 
that of vaccines, helping the plant to acquire resistance and defend 
itself from pathogens (Yu et al., 2022). However, under open field 
conditions, numerous biotic and abiotic stresses can hinder the PGPR 
effectiveness and reproducibility in promoting plant growth, thereby 
limiting their application in agriculture.

Plant growth promoting microbes (PGPMs) action can change 
considerably depending on the microorganism used, plant species, 
soil type, inoculum density and environmental conditions. Studies of 
natural populations suggest that groups of microbes with distinct 
functional niches play critical roles in the adhesion and adsorption of 
organic nutrients, as well as in the breakdown of organic residues and 
incorporation into the soil. Several examples of positive plant-microbe 
interactions include plant-growth promoting rhizobacteria (PGPR) 
belonging to the genera Pseudomonas, Burkholderia, Bacillus, 
Azotobacter, Serratia and Azospirillum capable of improving the 
availability of nutrients in the soil, the absorption and assimilation of 
nutrients by plants, as well as to support the nitrogen cycle and protect 
plants from diseases (de Andrade et  al., 2023). For example, 
Azotobacter spp. can directly influence nutrition in agroecosystems 
through the fixation of nitrogen (a vital element for plants), thereby 
increasing its level in the soil (Aasfar et al., 2021). The ability of these 
bacteria to form cysts in the soil allows long-term nitrogen 
conservation and tolerance to drought and high salt stress (Vacheron 
et al., 2013; Viscardi et al., 2016). Azotobacter strains are found in 
numerous active ingredients marketed as biofertilizers. Furthermore, 
the ability of Azotobacter spp. to secrete substances that promote and 
regulate plant growth such as phytohormones, vitamins and antifungal 

FIGURE 1

The role of soil microbiome for sustainable agriculture: from selection to preservation and application.
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metabolites has been studied. Phosphate solubilization (Wani et al., 
2013) and Fe-mobilization (Rizvi and Khan, 2018) have been 
demonstrated in vitro and in soil, even under abiotic stress conditions 
(Van Oosten et al., 2018).

In addition, rhizosphere fungal communities play a key role in 
agriculture ecosystems due to the positive fungus-plant interactions 
such as those established by arbuscular mycorrhizal fungi (AMF) 
which constitute a group of root obligate biotrophs capable of 
establishing a mutualistic symbiosis with most vascular plant species 
(Rouphael et  al., 2015; George and Ray, 2023). AMF are mainly 
involved in phosphorus mobilization, enhance nutrient provision in 
exchange for carbon and increase the plant’s ability to absorb water 
and nutrients, exerting an important role in regulating growth, and 
enhancing productivity especially under abiotic stresses (Wahab et al., 
2023). Besides, the free-living opportunistic fungi like Trichoderma 
spp. are common in soil and plant root systems. They exert multiple 
beneficial effects on plants and represent the best candidates for use 
in agriculture as biofertilizers for the biological control of plant 
pathogens, mainly fungal phytopathogens, as demonstrated by their 
presence in several agricultural commercial biofertilizers (Woo et al., 
2014; Poveda and Eugui, 2022).

Understanding the complex interactions between plant roots and 
microbial communities in the rhizosphere has fueled research into the 
role and application of soil microorganisms in agriculture as 
biofertilizer and/or biocontrol agent (Solomon et al., 2024). PGPRs, 
through their complex direct and indirect mechanisms, offer 
promising alternatives to traditional agrochemical products in organic 
farming and facilitate the transition from conventional to sustainable 
agriculture. Despite their potential, the high complexity of ecosystems 
and the influence of both biotic and abiotic factors can negatively 
impact their efficacy. Nevertheless, recent advancements in omics 
sciences are expected to enhance our understanding of plant-soil-
microorganism interactions, leading to improved knowledge of PGPR 
use. This progress is essential for improving crop stability, productivity, 
and overall agricultural sustainability.

3 Molecular and bioinformatic 
approaches to monitor microbial 
diversity

Soil constitutes a complex ecosystem, housing various 
microenvironments characterized by diverse physicochemical 
gradients and intermittent environmental factors (Voroney et  al., 
2024). Microbes adapt to these niches, forming consortia with distinct 
boundaries, interacting among themselves and with other soil 
organisms through a complex web of relationships that include 
competition, cooperation, nutrient exchange, and signaling, ultimately 
contributing to the stability, productivity, and resilience of the soil 
ecosystems (Wu D. et al., 2023). Studies underscore the influence of 
soil structure and spatial isolation on microbial diversity and 
community composition. Examination of bacterial distribution in 
different soil fertilization regimes revealed that over 80% inhabit 
micropores within stable soil micro-aggregates (2–20 μm) (Gupta and 
Germida, 2015; Li et al., 2019). These micropores provide optimal 
conditions for microbial growth, including water and substrate 
availability, gas diffusion, and protection against predators (Erktan 
et al., 2020). Particle size exerts a greater impact on microbial diversity 

and community structure compared to factors like bulk pH and 
organic compound input (Philippot et  al., 2024). Research 
demonstrates higher microbial diversity in fractions containing small 
soil particles, indicating a particle-specific microbial community 
composition (Heckman et  al., 2022). Microbial diversity in soil 
ecosystems surpasses that of eukaryotic organisms by a significant 
margin. A single gram of soil can host up to 10 billion microorganisms 
spanning thousands of species (Pepper and Brooks, 2021). However, 
less than 1% of these microorganisms observed under the microscope 
are cultivated and characterized, rendering soil ecosystems largely 
unexplored. Microbial diversity encompasses complexity and 
variability across various biological levels, including genetic variability 
within species (taxa), as well as the richness and evenness of taxa and 
functional groups (guilds) within communities (Figure 2) (Torsvik 
and Øvreås, 2002; Roberts, 2019).

The primary challenge in microbiology today lies in connecting 
phylogeny with function (Berg et al., 2020; Nagy et al., 2020). While 
methods based on 16S rRNA gene analysis offer extensive information 
about the taxa present in an environment, they offer limited insights 
into the functional roles of each phylogenetic group (Jones et al., 2021; 
Djemiel et al., 2022b). Metagenomic analysis provides some functional 
information through genomic sequences and trait expression, but 
additional methods are necessary to link specific functions with the 
responsible groups. Quantitative and comparative analyses of 
expressed 16S rRNA genes and genes encoding key enzymes, in 
conjunction with environmental factors, can provide insights into the 
phylogeny and ecology of functional bacterial groups involved in 
processes such as denitrification, nitrification, and methane oxidation 
(Blazewicz et  al., 2013). Integrated comparative analyses of core 
housekeeping genes such as 16S rRNA and functional genes offer 
insights into both the phylogenetic diversity and potential functional 
diversity of microbial communities (Clark et al., 2021; Youngblut et al., 
2022). Additionally, it is crucial to comprehend how microbial cells 
are regulated under diverse conditions like carbon supply, energy 
source availability, and electron acceptor availability (Yin et al., 2021). 
This understanding helps in deciphering microbial community 
responses to environmental fluctuations.

The inability to culture many microorganisms hampers our ability 
to understand the physiological and ecological foundations underlying 
the observed spatio-temporal patterns in microbial community 
structure. Meta-omics offers a solution by recovering genomic, 
transcribed, and expressed gene information directly from the 
environment, bypassing the need for cultivation (Tripathi and Nailwal, 
2020; Viacava et  al., 2022). Multi-omics studies of extreme 
environment communities have highlighted the prevalence of gene 
families implicated in energy conservation, carbon fixation, nitrogen 
metabolism, and resistance to extreme environmental stresses (Li and 
Wen, 2021). Moreover, comparative omics analyses have been 
employed to explore functional dynamics across various spatio-
temporal scales, targeting microbial communities from geographically 
distinct systems, specific environmental gradients, diverse ecological 
niches or lifestyles (e.g., free-living and biofilm growth), as well as 
time series data (Gamalero et al., 2022; Cabrol et al., 2023).

Indeed, the analysis of microbial community structure and 
function has now become commonplace thanks to targeted and 
untargeted sequencing methods, as well as the advent of third-
generation sequencing technologies (Kumar et al., 2021; Satam et al., 
2023). In fact, the structure of the microbial community typically 
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obtained through targeted methods, i.e., sequencing the 16S rRNA, 
allows for the estimation of diversity indices (Straub et  al., 2020; 
Regueira-Iglesias et  al., 2023). A diversity index is a quantitative 
metric that indicates the variety of different types, such as species, 
within a dataset or community (Hill et al., 2003; Cameron et al., 2021). 
These indices provide statistical representations of biodiversity, 
encompassing aspects like richness, evenness, and dominance 
(Chakraborty, 2021; Díaz and Malhi, 2022). While diversity indices 
are commonly used in ecology, the types of interest can extend beyond 
species to include categories like genera, families, functional types, 
or haplotypes.

Biologists have devised three quantitative metrics to assess and 
compare species diversity (Walters and Martiny, 2020). Alpha 
diversity, often referred to as species richness, denotes the total count 
of species within a specific biological community, like a lake or a 
forest. Gamma diversity encompasses the overall number of species 
present across an extensive region, such as a mountain range or 
continent, encompassing multiple ecosystems. Beta diversity serves as 
a bridge between alpha and gamma diversity. It quantifies the rate at 
which species composition varies across a given region and is 
computed by dividing gamma diversity by alpha diversity.

While diversity indices are commonly used to assess diversity in 
microbial communities, they were originally developed for “macro”-
organisms within ecology. The microbial richness often observed in 
soil microbial communities can be  challenging to manage using 

traditional calculations. As a result, various bioinformatic tools have 
been created to enhance the estimation of microbial diversity using 
data derived from Next Generation Sequencing (NGS) techniques 
(Cameron et al., 2021). For example, the R packages Phyloseq1 and 
vegan2 are designed to manipulate those data. Phyloseq is designed for 
analyzing microbiome data, allowing for the import, manipulation, 
and visualization of microbial community data. It provides functions 
for calculating diversity indices, performing ordination analysis, and 
generating publication-quality graphics. Vegan is used for ecological 
analysis, including diversity analysis of microbial communities. It 
provides functions for calculating various diversity indices, 
performing ordination analysis, and visualizing microbial 
community data.

There are two primary methods for studying microbial 
communities with NGS: targeted (or amplicon) gene studies and 
untargeted whole-genome shotgun (WGS) metagenomics. Targeted 
analyses focus on sequencing specific gene regions to reveal the 
diversity and composition of particular taxonomic groups in an 
environmental sample. As already mentioned, key marker genes in 
microbial ecology include the 16S rRNA gene for archaea and bacteria, 

1 https://joey711.github.io/phyloseq/

2 https://github.com/vegandevs/vegan

FIGURE 2

Microbial functional guilds/groups in soil.
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the internal transcribed spacer (ITS) region for fungi, and the 18S 
rRNA gene for eukaryotes. On the other hand, WGS metagenomics 
sequences all genomes within an environmental sample, allowing for 
the analysis of biodiversity and functional capabilities of the microbial 
community. This method enables the characterization of the full 
diversity of a habitat, including archaea, bacteria, eukaryotes, viruses, 
and plasmids, as well as their gene content. Since their development, 
WGS metagenomics and targeted gene analyses have set new 
standards in microbial ecology, extensively used in combination with 
NGS technologies to characterize microbial communities. The 
primary advantage of WGS metagenomics over targeted sequencing 
is its ability to characterize both the genetic and genomic diversity of 
the analyzed community, as well as the potential and novel functions 
within the community. With sufficient sequencing depth, complete 
genomes can be  reconstructed from metagenomic data, offering 
valuable insights into the genomic diversity of microbial ecosystems 
and enabling the recovery of draft genomes from uncultured 
organisms. While recent methods can classify marker gene sequences 
down to taxonomic levels below genus, differentiating between 
genomes with highly similar marker gene regions remains challenging. 
WGS metagenomics, however, allows for more precise taxonomic 
assignments at the species and strain levels. Additionally, WGS is less 
prone to the PCR biases commonly associated with marker gene 
amplification, such as the influence of cycle number, primer selection, 
and the choice of hyper-variable regions. Despite its advantages, WGS 
metagenomics can still be  affected by biases in the metagenomic 
output, particularly when whole-genome amplification protocols are 
used for low-concentration DNA samples (Pérez-Cobas et al., 2020). 
Therefore, monitoring soil microbiome diversity using NGS-based 
molecular approaches is undoubtedly one of the most widely used and 
effective strategies currently available. However, as technology 
continues to evolve, so does the ability to accurately define soil 
microbiome diversity. In fact, with the advent of NGS, it has become 
possible to identify many non-cultivable microorganisms, significantly 
expanding our knowledge of microbial classes. Despite this, the 
identification of species and strains was not possible except with WGS 
approaches, which are extremely costly and thus not applicable in 
routine laboratory settings. At the same time, the advent of third-
generation technologies is slowly helping to bridge this gap, as the 
ability to sequence long-reads increasingly allows for species-level 
identification even with targeted approaches. Despite everything, the 
taxonomic identification of microorganisms does not completely 
define the microbiome, as it is often characterized more by its 
functions than by its composition. Different microorganisms from 
various groups (or guilds) can perform the same function. Therefore, 
it is essential to combine the molecular analysis of the microbiome’s 
genome with other analyses.

4 Culturomics-based approaches and 
metabolic fingerprinting

Within the genomic era, characterized by a highly descriptive and 
fast output of analytic data fixed in time and space, culturomics has 
re-appeared from the past bringing innovations to overcome the main 
disadvantage of the other omics: the supply of living samples and, 
therefore, the downstream possibilities of microorganisms’ study 
across the time and space continuum at a biochemical level to unveil 

physiological traits that have not yet been identified under various 
growing conditions (Liu S. et  al., 2022). The development of 
culturomics has long been hindered by the concept that most 
members of a microbiome (99%) are uncultivable (Martiny, 2019). 
However, a new concept has been introduced suggesting that most 
microorganisms are culturable under a strict replication of their 
ecological niche (Lagier et  al., 2016). In the context of the soil 
microbiome, culturomics is of utmost importance to help close the 
missing gaps between identification and functionality, since the 
majority of metagenomic sequencing data remains currently 
unassigned (Sood et al., 2021). Soil culturomics could further help 
identify new soil health indicators and, when sampled from extreme 
environments, it could further serve as a reservoir of essential enzymes 
with potential applications in biotechnology and industry (Rinke 
et al., 2013).

Traditional culture-dependent techniques have focused on using 
nutrient-rich media, favoring the growth and study of fast-growing 
and copiotrophic species (r-strategists), at the expense of slow-
growing and oligotrophic species (k-strategist) (Ji et al., 2024). To 
enhance the cultivation of previously unculturable bacteria, 
environmental modifications have been useful, for instance, extending 
the incubation period for slow-growing species (Janssen et al., 2002; 
Sait et al., 2002; Joseph et al., 2003; Stevenson et al., 2004; Davis et al., 
2005), lowering temperatures (20–25°C) to decrease metabolic rates 
and the production of inhibitory compounds (Janssen, 2008), 
optimizing the pH to the environmental one (Sait et al., 2006), and 
reducing inoculum size (Sangwan et al., 2004; Davis et al., 2005).

In recent years, significant progress has been made in cultivation-
based techniques through modifications of culture media to better 
mimic their natural habitats by using diluted nutrient media (Watve 
et al., 2020; Janssen et al., 2002) or specialized media formulations. In 
this context, multiple media have been developed such as the VL55 
medium, mimicking the low concentration of inorganic ions found in 
soil (Joseph et al., 2003; Stevenson et al., 2004) or media supplemented 
with specific substrates. Considering soil, useful substrate and media 
additives can range from multiple C-sources, (e.g., xylan) (Davis et al., 
2005), polymer mixture, enzymes to counteract the formation of 
reactive oxygen species (Stevenson et  al., 2004), nutritional 
supplements (e.g., polyamines) (Becerra-Rivera et  al., 2018) or 
signaling molecules (e.g., quorum-sensing signaling compounds 
which can improve the incidence of colony formation) (Stevenson 
et al., 2004). Utilizing media enhanced with various plant-based or soil 
extracts has further shown encouraging outcomes in growing and 
isolating rhizosphere and soil microorganisms (Mourad et al., 2018; 
Nguyen et  al., 2018). Furthermore, selective culture media (e.g., 
nitrogen free media to screen for nitrogen fixing bacteria or media 
containing antibiotics) can facilitate the targeting of specific bacteria 
and guilds (Baldani et  al., 2014; McLain et  al., 2016; Zuluaga 
et al., 2020).

Community culture and co-culture methods are a further tool to 
enhance the isolation of rare and novel bacterial species. The growth of 
multiple bacterial cells in proximity fosters interactions if they rely on 
another microbe for growth (e.g., reciprocal exchange of metabolic 
substrates) (Xian et al., 2020; Boilattabi et al., 2021). Co-culturing can 
be  also up-scaled by using devices (e.g., microscale microbial 
incubators, micro-petri dishes, microfluidic platforms, or agarose-
based microwell chips) that enable simultaneous growth in individual 
compartments allowing for the exchange of metabolites and essential 
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substances (Kapinusova et  al., 2023). Various in situ cultivation 
techniques have been further developed to obtain unculturable 
microorganisms directly from their natural environment (Sarhan et al., 
2019). Soil substrate membrane provide a simulated environment 
enabling the isolation of target microorganism onto polycarbonate 
membranes placed over culture plates containing a soil suspension and 
under controlled conditions (Svenning et al., 2003; Ferrari et al., 2005; 
Ferrari et al., 2008). On the other hand, diffusion chambers (an agar-
matrix pre-inoculated with microbes and sandwiched between two 
0.03 μm pore-size membranes and then placed in soil), and their fungal 
variant, as well as the microbial trap (Gavrish et al., 2008; Lewis et al., 
2010), prevent the entry of airborne contaminants and other bacteria 
while allowing the passage of biotic and abiotic factors, thus facilitating 
co-dependent interactions (Lewis et al., 2010; Kakumanu and Williams, 
2012). Diffusion chambers have been further up scaled to diffusion 
bioreactors using large volumes of liquid media to enhance the 
enrichment of soil bacteria (Chaudhary et al., 2019).

The approach of “lab on a chip,” another evolution of the diffusion 
chambers, has also been essential for the development of the new 
generation culturomics. Isolation chips, or i-chips, utilizing cutting-
edge microfluidics technology, extract bacteria from sequentially 
diluted soil samples and deposit them into miniature diffusion 
chambers (only a few for each chamber) which are then reintegrated 
into natural soil for further incubation, thus facilitating the isolation 
of novel soil bacteria and enabling “semi in-vivo” interactions studies 
(Berdy et al., 2017; Gurusinghe et al., 2019). Sorting and selecting cells 
based on their size, shape, or other distinguishing features before 
cultivation can further speed up the whole isolation process. Sorting 
leads to a more efficient cultivation, especially of slow growing 
microorganisms, by partitioning the overall microbial population into 
distinct subgroups containing similar microorganisms using 
specialized equipment (e.g., optical tweezers, flow cytometry 
combined with sorting cell assays, microdroplet encapsulation) 
(Zengler et al., 2005; Kumar et al., 2020). The use of a wide array of 
increasingly more specific media can lead to an optimized culture-
dependent approach only when coupled with new high-throughput 
platforms. For example, Huang et al. (2023) engineered a platform 
called “Culturomics by Automated Microbiome Imaging and 
Isolation” for robotic strain isolation and genotyping, leveraging 
machine learning guidance. The system employs an intelligent 
imaging algorithm to enhance the taxonomic variety of culturomics, 
surpassing traditional random-picking techniques. This advancement 
facilitates swift and scalable generation of cultured biobanks tailored 
to specific needs which is applicable also to the study of soil microbiota 
and its responses to climate change adaptation (Jansson et al., 2023; 
Ramasamy et al., 2023).

The development of new technological advances from the 
traditional methods have led to the growth of culturomics. Currently, 
culturomics involves employing high-throughput, large-scale and 
optimized culture methods combining various selective or enriched 
culture conditions with identification techniques like matrix-assisted 
laser desorption ionization-time of flight mass spectrometry 
(MALDI-TOF MS) and 16S rRNA or shotgun sequencing to explore the 
“metagenomics dark matter” capturing maximal diversity (Diakite 
et al., 2020; Zhang et al., 2021; Li S. et al., 2023) (Figure 3). Conventional 
untargeted cultivation methods alongside the emerging high-
throughput techniques (i.e., culturomics platforms utilizing diverse 
culture media and screening approaches) have led to the successful 

cultivation of numerous novel lineages previously inaccessible. Genetic 
information (genomic data extracted from metagenomes and single-cell 
genomics) from the targeted uncultured organisms are now employed 
to tailor the composition of culture media. Through a “reverse genomic 
approach,” these assembled genomes facilitate accurate predictions of 
the metabolic pathways (metabolic modeling) which influence culture 
conditions and, therefore, directly serving as crucial input for ad hoc 
media creation (Sood et al., 2021; Liu S. et al., 2022). Furthermore, 
media that mimic in-vivo nutritional or environmental soil conditions 
are continuously improved with the bioprospecting for novel 
compounds, facilitating the development of “unconventional” culturing 
solutions therefore avoiding the re-discovery of the same 
microorganisms (Dror et al., 2020).

The coupling of culturomics and metabolic fingerprinting will 
further have a pivotal role in deciphering microbial diversity and 
metabolic functions, improving the time-consuming use of 
phenotypical and metabolic assays on petri dishes. In this context, the 
Biolog EcoplatesTM system can help screen hundreds of diverse 
substrates by measuring the consumption of substrates under 
controlled conditions, allowing for a comprehensively characterization 
of cellular metabolism, growth patterns, and evaluating the functional 
diversity of microbial communities (Koner et  al., 2022). Other 
techniques that can characterize the metabolic profiles of the microbes 
and the production of metabolites involve techniques such as gas 
chromatography-mass spectrometry (GC-MS), liquid 
chromatography-mass spectrometry (LC-MS), or nuclear magnetic 
resonance (NMR) spectroscopy, and especially the MALDI-TOF that 
can permit to obtain a protein fingerprint or profile unique to each 
microorganism (Santos et al., 2016). Traditional and high-throughput 
culturomics methods are shown in Figure 3. Novel methodologies are 
consistently being suggested for the isolation of bacteria that were 
previously uncultivated, proving highly effective for targeted isolation 
purposes. Nevertheless, there remains a significant portion of the tree 
of life that has yet to be  successfully cultivated. The potential for 
isolating microbes guided by metagenomics is vast, offering a 
considerable boost by reducing the overall time required to isolate 
specific targets and initiate their cultivation. Future challenges will 
focus on utilizing culture-independent genetic data for high-
throughput targeted cultivation, coupled with advancements in 
cultivation techniques, which may lead to groundbreaking discoveries 
in capturing the uncultured majority (Kapinusova et al., 2023). The 
integration of multiple omics should place significant focus on 
unraveling the functional mechanisms behind crucial soil processes 
and cycles which are vital for the provision of ecosystem services and 
for introducing innovative metrics to assess soil health (Brown 
et al., 2024).

5 Potential of omics to provide soil 
health indicators

Microorganisms provide several functions in sustainable crop 
production and soil health, including decomposition of organic 
matter, biodegradation of environmental pollutants, carbon 
sequestration, preservation of soil structure, suppression of pests and 
pathogens, regulation of soil fertility and circulation of biogenic 
elements that supply nutrients to plants. For this reason, biological 
indicators—defined as a single or a set of variables used to represent 
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or infer a specific aspect of soil health—are increasingly gaining 
importance in the assessment of soil health and quality (Lutz et al., 
2023). It is therefore necessary to deepen the study and comprehending 
effective soil microbial indicators, alongside physical and chemical 
indicators, to monitor soil conditions. Land-use alterations and 
agricultural practices significantly influence the soil microbiome by 
modifying the soil’s physical and chemical characteristics. 
Additionally, agricultural management techniques such as tillage, 
pesticide use, and fertilizer application directly impact soil biodiversity 
by altering these properties (Gupta et  al., 2018). In recent years, 
significant progress has been made in developing novel soil health 
indicators, and using existing techniques in innovative ways to provide 
comprehensive insights into soil quality and functionality (Souza 
et al., 2015). The state of the art in soil health indicators reflects a 
profound evolution in our understanding of soil ecosystems. 
Traditionally, soil health assessments relied particularly on physical 
and chemical, indicators, such as soil texture, soil structure, bulk 
density, porosity, water holding capacity, infiltration rate, aggregate 
stability (physical), pH, electrical conductivity, cation exchange 
capacity (CEC), nutrient content, organic matter content, soil carbon 
(chemical) (Table 1), and in a minor extent on biological indicators 
such as microbial biomass, earthworm population, root health and 
presence of pathogens.

Biological indicators, provide insight into the living component of 
the soil, and these play key roles in the sustainability of soil by keeping 
essential functions in soil health, such as: the decomposition of soil 
organic matter, nutrient cycling, soil pollutant degradation and stability 
formation of soil structure. To enhance the implementation of soil health 
indicators, a more integrative and dynamic approach is needed. 
Combining culturomics and advanced molecular techniques, such as 
metagenomics and metabolomics, can offer deeper insights into 
microbial community structure and functional indicators. Culturomics 

offers a robust approach for analyzing biological soil health indicators by 
enabling the cultivation and characterization of diverse microbial 
communities present in the soil (Jagadesh et  al., 2024). One of the 
primary indicators that can be analyzed through culturomics is microbial 
diversity and abundance. By employing a wide range of growth media 
and conditions, culturomics can facilitate the isolation and identification 
of various bacteria, fungi, and archaea. This approach can reveal the 
presence of previously uncultured and rare microorganisms, providing 
a comprehensive understanding of soil microbial biodiversity, which is 
essential for maintaining soil health and ecosystem stability. Another 
critical indicator assessable through culturomics is microbial functional 
diversity (Chicca et  al., 2022) i.e., by identifying microorganisms 
involved in key ecological functions such as nitrogen fixation, 
phosphorus solubilization, and organic matter decomposition. Moreover, 
culturomics offers the ability to study microbial interactions and 
community dynamics. By co-cultivating different microorganisms, 
researchers can investigate symbiotic relationships, competition, and 
other interactions that influence soil health. For instance, the interaction 
between mycorrhizal fungi and plant roots can be studied to understand 
their role in nutrient uptake and plant growth (Liu H. et al., 2022). These 
interactions are crucial for maintaining soil structure, fertility, and 
overall ecosystem function.

Metagenomics provides a powerful tool for analyzing a wide array 
of biological soil health indicators by enabling the comprehensive 
assessment of microbial diversity and function without the need for 
cultivation (Djemiel et al., 2022a; Mendes et al., 2017). One primary 
indicator that can be analyzed is microbial diversity, including the 
identification of different types of microorganisms present in the soil. 
By sequencing soil DNA, metagenomics can reveal the presence of 
rare and abundant species, providing insights into the overall 
biodiversity and its correlation with soil health. High microbial 
diversity is often associated with resilient soil ecosystems capable of 

FIGURE 3

Traditional and novel approaches to culturomics.
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maintaining functionality under stress conditions (Philippot et al., 
2024; Wu et al., 2022). Another indicator is the functional potential of 
the soil microbiome, which includes genes involved in nutrient 
cycling, such as those responsible for nitrogen fixation, nitrification, 
denitrification, and phosphorus solubilization. Metagenomic analysis 
can identify these functional genes and their relative abundance, 
offering insights into the soil’s capacity to support plant growth 
through efficient nutrient turnover. For instance, the presence and 
activity levels of nifH genes, which encode nitrogenase enzymes, can 
be used to assess the potential for biological nitrogen fixation in the 
soil (Jansson and Hofmockel, 2018). Soil health is also influenced by 
the presence of genes associated with organic matter decomposition 
and carbon cycling. Metagenomics can detect genes encoding 
enzymes such as cellulases, ligninases, and chitinases, which play a 
crucial role in breaking down complex organic molecules into simpler 
compounds that can be utilized by plants and other microorganisms. 
The abundance and diversity of these genes provide an indication of 
the soil’s ability to decompose organic matter and recycle carbon, 
which is essential for maintaining soil structure and fertility 
(Carbonetto et al., 2014).

Furthermore, metagenomics allows for the detection of genes 
associated with pathogen suppression and plant growth promotion. 
For instance, genes involved in the production of antibiotics, 
siderophores, and other secondary metabolites can be  identified, 
providing information on the potential for biological control of soil-
borne diseases. Additionally, genes related to plant hormone 
production, such as those involved in the synthesis of indole-3-acetic 
acid (IAA), can indicate the presence of beneficial microbes that 
promote plant growth and health (Shi et  al., 2017). Lastly, soil 
metagenomics can reveal the presence and abundance of genes related 
to the degradation of pollutants and the resilience of the soil 
microbiome to anthropogenic disturbances. This includes genes 
involved in the breakdown of pesticides, heavy metals, and other 
contaminants, which are crucial for assessing the soil’s bioremediation 
capacity and overall environmental health (Kato et  al., 2015). By 
analyzing these biological indicators, metagenomics provides a 
comprehensive and detailed picture of soil health, offering valuable 
insights for sustainable soil management practices.

Metabolomics offers a comprehensive approach to analyzing 
various biological soil health indicators by profiling the small-
molecule metabolites present in the soil environment. One primary 
indicator is the composition and concentration of soil metabolites, 
which reflect the metabolic activities of the soil microbiome and 
plants. By analyzing these metabolites, it is possible to gain insights 
into the biochemical processes occurring in the soil, such as nutrient 
cycling, organic matter decomposition, and the synthesis of bioactive 
compounds. For example, the presence of specific amino acids, 

organic acids, and fatty acids can indicate microbial activity and the 
state of soil organic matter decomposition (Yang et al., 2023).

Another crucial indicator assessable through metabolomics is the 
soil’s nutrient status and availability. Metabolomics can identify and 
quantify metabolites involved in key nutrient cycles, such as nitrogen, 
phosphorus, and sulfur. For instance, the detection of metabolites like 
nitrate, ammonium, and urea provides information on nitrogen 
cycling processes, while the presence of phosphonates and phosphates 
indicates phosphorus availability and cycling (Wu et al., 2024). Soil 
health is also influenced by the presence of stress-related metabolites, 
which can serve as indicators of environmental stressors affecting the 
soil microbiome and plant roots. Metabolomics can detect compounds 
such as osmolytes, antioxidants, and stress-related hormones that are 
produced in response to abiotic stresses like drought, salinity, and 
temperature fluctuations. The levels of these metabolites provide 
insights into the resilience of the soil ecosystem and its capacity to 
withstand and recover from environmental stresses (Krishnamoorthy 
et al., 2022). Additionally, metabolomics can reveal the presence and 
activity of PGPR and other beneficial microorganisms by identifying 
metabolites involved in plant-microbe interactions. For example, the 
detection of phytohormones such as IAA, gibberellins, and cytokinins 
can indicate the presence of PGPR that enhance plant growth and 
development (Napieraj et al., 2023). Similarly, the identification of 
siderophores and antibiotics can signal the potential for biological 
control of soil-borne pathogens and the enhancement of plant health 
through microbial activity.

Furthermore, soil metabolomics can be  used to assess the 
degradation of organic pollutants and the bioremediation potential of 
the soil microbiome. By profiling metabolites related to the breakdown 
of pesticides, hydrocarbons, and other contaminants, researchers can 
evaluate the effectiveness of bioremediation processes and the capacity 
of the soil to detoxify harmful substances. This information is critical 
for understanding the impact of anthropogenic activities on soil 
health and for developing strategies to mitigate pollution.

By examining shifts in microbial community composition in 
response to different management practices or environmental 
conditions, it is possible to gain valuable information about soil 
resilience, disease suppression, and ecosystem stability (Nkongolo and 
Narendrula-Kotha, 2020). These indicators not only provide insights 
into soil quality but also offer early warnings of changes in soil health 
(Fierer et al., 2021), making them valuable tools for detecting subtle 
shifts in soil conditions that precede more pronounced degradation or 
disfunction. For this reason, integrating these techniques to assess soil 
health into existing soil monitoring laws, policymakers could enhance 
their capacity to protect and preserve this vital resource (Figure 4). 
Compliance with soil monitoring policies helps governments and 
stakeholders make informed decisions regarding land management, 

TABLE 1 List of physical and chemical soil indicators, and their lacking points.

Type of indicator Information Purpose Limitations

Physical Soil texture, soil structure, bulk density, 

porosity, water holding capacity, water 

infiltration rate, aggregate stability

Key for understanding soil’s physical 

condition and its ability to support plant 

growth

Often measured under specific conditions 

and may not fully capture the variability in 

soil behavior

Chemical soil pH, soil electrical conductivity (EC), cation 

exchange capacity (CEC), soil nutrient content, 

soil organic matter (SOM) content, soil carbon

Soil’s health, soil fertility, and soil suitability 

assessment

They often overlook the complex interactions 

between soil minerals and organic 

components
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conservation efforts, and regulatory interventions to maintain soil 
fertility, prevent degradation, and support sustainable development 
goals. Moreover, considering advancements in soil science, such as 
metagenomics, metabolomics and culturomics, it is imperative that 
legislative frameworks also encompass innovative techniques to 
ensure thorough soil health assessments.

6 Microbiome-based solutions for 
sustainable agriculture: how to 
develop beneficial microbial consortia

In recent years, the extraordinary value of the microbiome for 
plants has been established, and efforts are now being made to 
understand how it can be  harnessed to improve crop production 
(Kumawat et  al., 2022). The use of microbiological systems as 
environmentally friendly solutions for sustainable agriculture has 
been widely explored. Microbiome-based solutions represent an 
innovative and green revolution technology that can ensure greater 

food production, increase food quality and improve the efficiency of 
food production systems (Callens et  al., 2022). Beneficial 
microorganisms can be used as biofertilizers to increase crop yield, 
improve, and restore soil fertility, or as biopesticides to reduce the 
damage caused by pathogens and pests in agricultural fields, offering 
an alternative or substitute to decrease the dependency of agriculture 
on hazardous agrochemicals. The challenge is to identify, isolate and 
apply beneficial microorganisms able to survive in soil, compete with 
indigenous microflora, and interact with plants (Romano et al., 2020; 
Mitter et al., 2021). The effectiveness of microbial inoculants under 
field conditions is one of the major encountered problems due to the 
variable environmental factors that often obstacles their successful 
establishment (O’Callaghan et al., 2022). To reduce the gaps between 
the efficacy of PGPMs application under controlled environmental 
conditions and the limited reproducibility of their use under field 
conditions, guidelines for PGPMs field trial design and 
implementation have been developed, as well as recommendations for 
the type and scope of data collection and evaluation (Neuhoff et al., 
2024). At the same time strategies have shifted from single-strain 

FIGURE 4

From investigation of soil health indicators to practical actions including policy enhancement and evaluation of new strategies from policymakers.
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inoculation to multi-species consortia for developing inoculants. Two 
types of approaches were taken into-account to obtain microbial 
consortia for sustainable agriculture: (i) identification and synthetic 
assemblage of multi-species strains with different beneficial functions, 
(SynComs) or (ii) obtainment of complex microbial communities 
from environmental sample (NatComs).

The SynComs are mixed inoculations of at least three different 
bacterial strains/members, excluding use of indigenous, natural, or 
wild microbial communities (Marín et al., 2021). Recently, the use of 
SynComs has gained great interest for its potential advantages over 
single species/strains applications in sustainable agriculture (de Souza 
et al., 2020). The coexistence of non-competitive and diverse microbial 
species within a consortium can lead to the colonization of a broader 
range of ecological niches in the plant rhizosphere (Timofeeva et al., 
2023). Moreover, the presence of microorganisms with similar or 
complementary plant beneficial traits can help to improve the 
efficiency of the inoculant as different plant beneficial functions can 
be  present simultaneously and exhibited by different consortium 
members (Liu et  al., 2023). Recently, the integration of high-
throughput sequencing technology coupled with microbial strains and 
computational genomic analyses of their functional capabilitie has 
provided the opportunity to identify the core microbes associated with 
plants and facilitate the tailoring effective SynComs with robust, 
stable, and predictable behaviours (Höllerer et al., 2024; Jing et al., 
2024). As function-based SynCom design strategies, various genomic 
traits can be considered (i.e., nutrient acquisition, protein secretion 
systems, biosynthetic potential, secretion of plant-immunostimulating 
primary metabolites, secretion of phytohormones, antibiotic resistance 
genes) and different computational frameworks have been developed 
providing the possibility to design a complex “high-function” 
community in silico (Jing et  al., 2024). Two main methods are 
currently used to define functional microbial synthetic communities: 
top-down Synthetic Microbial Consortia (SMCs) and bottom-up 
SMCs. The top-down approach can permit to identify the functional 
communities by applying the core microbiome concept; therefore, by 
applying the bottom-up approach, microorganisms with specific plant 
growth promoting traits can be assembled to design the best microbial 
combination (Shayanthan et al., 2022).

6.1 SynComs

The development of synthetic microbial communities (SynComs) 
relies on the assembly of microorganisms with similar or different plant 
growth promoting (PGP) traits, isolated from different sources, acting 
in a synergist and/or complementary way. The use of SynComs has 
shown promising results in increasing plant growth and yield, in 
improving the availability of minerals and nutrients, providing the 
plants with more balanced nutrition, and in controlling plant diseases 
(Bradáčová et al., 2020; Liu et al., 2023; Nunes et al., 2024). Prerequisite 
of this approach is the availability of a large collection of microorganisms 
well characterized at molecular and phenotypical level. The main 
challenge in assembling diverse microorganisms is the assessment of 
their compatibility (Timofeeva et al., 2023). In vitro tests are widely used 
to reveal compatible and incompatible interactions between two 
microorganisms, but they do not provide a reliable picture of all the 
possible interactions after the application in field (Nunes et al., 2024). In 
vitro tests with AMF cannot be  performed, being these obligate 

symbionts and not cultivable in synthetic media (Dey and Ghosh, 2022). 
A binary association assay was used to design a SynCom for the model 
plant Arabidopsis thaliana that led to predictable phenotypes in the host 
plant (Herrera Paredes et al., 2018). Although using this method is 
possible to infer causal relationships between selected microorganism 
and host phenotypes, it requires technological advances to manage high 
complex communities and increases the chances of missing important 
community members. Kehe et al. (2019) used the kChip, a microfluidic 
droplet-based platform, to automatically construct SynComs with all 
possible microbe combinations using a set of species making this 
approach more efficient and possible for large scale studies. In the 
framework of SIMBA project,3 three multifunctional SynComs 
composed of five and six microorganisms belonging to various genera/
species and with different PGP traits have been designed, after the 
assessment of their in vitro compatibility, to improve the growth of 
different crops (Tabacchioni et  al., 2021). Greenhouse experiments 
revealed the potential of these SynComs alone or in combination with 
biochar and AMF to improve the growth of maize and wheat (Graziano 
et al., 2022; Hett et al., 2022). Field experiments carried out in Germany, 
under organic farming, showed the beneficial effect of one of the 
designed SynComs on maize growth and yield, although this effect was 
not confirmed in the second year of field experiments (Hett et al., 2023). 
Moreover, one of the developed SynComs was found to increase tomato 
marketable production when applied in combination with biochar and 
AMF in field experiments (Vassura et al., 2023).

Although one limit of the SynComs is the design of microbial 
consortia with a limited number of members that do not reflect the 
microbial interactions occurring in the natural environment 
(Timofeeva et al., 2023), several studies demonstrate the potential of 
SynComs composed of few microorganisms to improve plant 
performance. The efficacy of a SynCom containing Trichoderma 
atroviride, Pseudomonas putida, and Bacillus subtilis to control the 
incidence of Rhizoctonia solani and Streptomyces spp. disease of potato 
in field experiments was demonstrated (Papp et al., 2021). Li J. et al. 
(2023) developed a microbial consortium, composed of two different 
bacterial species, able to positively influence the growth of wheat and 
the soil nitrogen enzyme activity under drought conditions in 
greenhouse conditions. A microbial consortium composed of three 
different species was found to reduce the incidence of clubroot disease 
in broccoli (Moreno-Velandia et al., 2024).

Overall, it was demonstrated that SynComs perform better of 
single strain inoculants, despite a reduction in efficacy in field settings 
compared to greenhouse results was observed (Liu et al., 2023). To 
promote the use of SynComs in agriculture further research on their 
stability and persistence in the soil, their modes of conservation and 
applications, and the study of microbe-microbe and plant interactions 
is needed.

6.2 NatComs

Synthetic microbial communities fail to accurately mimic the 
natural composition since the species and/or strains used as members 
of the consortium are typically not found together in the same 

3 https://simbaproject.eu
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environment, and the environmental system itself due to the use of 
single carbon sources or mixed liquid cultures for the inoculum. 
Furthermore, diversity is usually too low to be representative of the 
entire ecosystem (Čaušević et  al., 2022). To overcome the limited 
SynComs efficacy under field conditions, a recent microbiome-based 
technology has been explored such as the transplantation of an entire 
microbiome, i.e., the rhizospheric microbiome (rhizobiome), which 
should contain functional and active microbiota to protect plant by 
disease and promote plant growth development. As in clinical settings 
the fecal microbiome transplant can restore the balance of gut microbial 
communities and their function (Kaakoush, 2020), in agriculture the 
rhizobiome microbiome transplant (RMT) represents a new plant 
microbiome engineering strategy (Orozco-Mosqueda et al., 2023). This 
technology has received little attention for the difficulty in applying it at 
large scale, but recent studies have been demonstrated its feasibility, 
especially for controlling plant disease, by transplanting “protective” 
microbiomes from resistant to susceptible plants. Choi et al. (2020) used 
soil microbiota transplant in tomato plants under defined soil 
conditions to investigate the disease progress of lethal bacterial wilt 
(BW) disease in tomato. The authors found that soil microbiota 
transplant affected plant traits, especially BW resistance in tomato, 
highlighting the efficacy of soil transplantation in influencing plant 
quantitative traits. Khatri et al. (2022) carried out the transplant of soil 
from an organic field previously recognized as “disease-suppressive” to 
a conventional field soil to evaluate the effectiveness of this technique 
to reduce the disease caused by R. solani and Fusarium oxysporum in 
wheat plants. Results revealed that transplant of “disease suppressive 
soil” reduced disease severity in plants, improved soil nutrient content, 
increased activity of hydrolytic enzymes, and increased abundance of 
genes contributing to disease-suppressiveness.

Starting from a single environmental sample, where many different 
bacteria have a history of co-existence and may have developed 
synergistic interactions, discrete single species can be isolated, and a 
systematic screening of all possible strain’s combinations for a phenotype 
of interest can be  performed. It is possible to recover community 
emergent properties by concurrent microbe isolation from a single 
environmental sample where different species co-exist and developed 
interactions and inter-dependency. Following this approach, a microbial 
consortium consisting of four different bacterial species 
(Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium 
oxydans and Paenibacillus amylolyticus) isolated from the same 
agricultural soil (de la Cruz-Perera et  al., 2013) proved capable to 
produce more biofilm in comparison to the sum of what obtained by the 
of four strains when grown singularly (Ren et al., 2015). The addition of 
the microbial consortium prior to forced drought conditions significantly 
increased the survival rate and biomass of Arabidopsis under water 
shortage, suggesting that this consortium could improve plant tolerance 
against drought (Yang et al., 2021). A tailored microbial consortium 
composed by eight indigenous strains was developed as biofertilizer for 
tomato crop by assembling including different species for the best and 
complementary plant growth promoting (PGP) traits and reflecting as 
much as possible the taxonomic composition of the indigenous microbial 
community structure (Paganin et al., 2024).

However, using conventional method of culturing in liquid 
suspensions of both SynComs or indigenous-based microbial consortia, 
it is not possible to capture the natural soil characteristics such as 
interspecific interactions, ecological niches, emergent community 
behaviors. Using the top-down approach (NatCom), more diverse and 

representative, but less controllable communities can be  collected 
directly from natural soil by detaching and purifying the cells from soil 
particles (Čaušević et al., 2022). Species-rich natural soil inocula can 
reproducibly be generated, propagated, and maintained from natural 
microbial mixtures washed from topsoil. The applicability of this latter 
strategy to open field remains to be  further explored in open 
field studies.

7 Preservation of complex 
communities

The concept of preserving intact samples and microbiomes with 
retained viability and functionality for future OMICS, cultivation, and 
application is highly relevant today. Preserving uncultured microbiota 
and intact microbiomes in as close a state as possible to that originally 
present in field is crucial in microbial research and of great importance 
(Bhattacharjee et al., 2022). The study, and therefore preservation, of 
microbial diversity and metabolic activity is necessary to elucidate 
microbial community composition, interactions and functional 
dynamics (van der Heijden and Wagg, 2013). Ideally, both culture 
dependent and independent molecular methodologies should utilize 
fresh soil samples as starting material as immediate soil analysis yields an 
accurate depiction of the microbiome (Wallenius et al., 2010). However, 
advancements in culture independent techniques revealed that over 90% 
of microorganisms of biotechnological relevance is not yet cultured nor 
stored in biobanks (Prakash et al., 2020). To unlock the potential of 
uncultured organisms, it is necessary to protect microbial biodiversity 
within samples from disruption, eventually waiting for cultivation 
methods to be optimized soon. However, analyses on freshly sampled 
soils are often challenging, especially when dealing with experiments 
conducted in remote areas, requiring a high number of samples, or 
necessitating chronological comparisons (Pavlovska et al., 2021).

Protecting microbial biodiversity within a sample from disruption 
and maintaining the composition and functional potential of its 
microbiome is therefore a primary concern Several crucial factors come 
into play to ensure the collection and maintenance of representative 
samples: sampling protocols, transportation logistics, and storage 
methodologies. The scientific community is currently focusing on 
conserving ecosystems without disturbing their microbiomes and losing 
information. Due to the vast complexity of soil matrices, a consensus on 
optimal and standard operating procedures to collect and preserve a 
microbiological sample is still lacking leading to an impossibility of 
replicability and data comparison. To solve this, problematic several 
projects are emerging that aim to establish and validate quality standards 
for microbiomes, testing different preservation approaches to identify 
the best preservation method that permits to maintain sample integrity 
(e.g., the Italian SUS-MIRRI.IT project,4,5 the EU-funded MICROBE 
project with the cooperation of research infrastructure6,7 and the EU 
microbiome support CSA project8) (Ryan et al., 2021).

4 https://www.sus-mirri.it/project/

5 https://zenodo.org/records/10887823

6 https://www.microbeproject.eu

7 https://www.cabi.org/projects/

the-european-microbiome-biobanking-ri-enabler/

8 https://www.microbiomesupport.eu
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Several advanced methods for microbiome preservation are 
available that enable the maintenance of a sample’s properties (Prakash 
et  al., 2020). A novel technique is the Cell Alive System (CAS), 
originally developed to enhance preservation in the food industry, it 
utilizes electromagnetic waves to induce oscillation in the water 
molecules inside cells therefore keeping water molecules in a 
supercooled state below zero degrees without freezing. Once it reached 
the desired temperature the sample is then rapidly frozen, preventing 
the formation of large crystals and maintaining the integrity of the 
cells (Morono et al., 2015).

One possible strategy could be the application of the long-term 
preservation methods usually applied for the storage of axenic 
samples in culture collections, such as cryopreservation and 
lyophilization, but some limitations may arise. The use of ultra-low 
temperatures can quickly halt metabolic processes, maintaining 
physiological conditions in a suspended state (Bajerski et al., 2021; 
Murray and Gibson, 2022). However, ice-crystal formation and the 
gradual increment of solutes concentration during freezing can 
be lethal for microbial cells without cryoprotective agent (Wolkers 
and Oldenhof, 2015). Similarly, the lyophilization technique can 
preserve microorganisms in a sort of inactive state but can induce 
osmotic stresses in biological membranes. Lyoprotectans can 
be used during the drying process to prevent mechanical damage 
to the cells (Broeckx et al., 2016), but it is unclear how different 
microbes behave in terms of viability and functionality when 
stabilizers are added to the media. Decreasing in survival rates of 
specific microbial taxa have been demonstrated during freezing or 
freeze-drying processes (Miyamoto-Shinohara et  al., 2000; 
Alebouyeh et al., 2024) and the effects could be magnified when 
scaling-up these techniques on complex microbial populations. 
Numerous studies have shown heterogeneous results on the impact 
of different storage temperatures and preservatives on soil microbial 
communities (Lauber et al., 2010; Rubin et al., 2013; Brandt et al., 
2014; Delavaux et al., 2020; Edwards et al., 2024). It may be that 
outcomes are also influenced by soil types (e.g., generic surface soil, 
forest soil, mineral soil, meadow soil), suggesting that each 
ecosystem’s specific microbiome is selectively susceptible to 
different treatments. This could result in undesired selection of 
resistant microorganisms when specific storage techniques are 
applied, causing compositional shifts that affect community 
representativeness and abundance in a sample. Furthermore, 
ecological perturbations and climatic variations have been observed 
to gradually shrink the core microbiome of any ecological system, 
raising the possibility of extinction and loss of valuable microbiota 
components over time.

Until now, no single method, process, preservation protocol, 
or cryoprotectant works optimally for every kind of sample due to 
microbial heterogeneity in microbiomes, which respond differently 
to various preservation methods. This heterogeneity makes it 
challenging to apply the same protocol or preservation conditions 
to all samples. The challenges of preserving microbiome samples 
optimally are significant. Researchers must be  aware of the 
potential for unintentionally and fundamentally altering the 
functionality and integrity of the microbiome, a dynamic system 
that changes in response to environmental influences and biotic 
factors. Removing a single critical microbial component due to a 
non-optimized storage approach could irreversibly affect the 
system’s integrity.

8 Scaling-up and application

The growing interest in organic agriculture, the increased use of 
PGPMs in developed countries, as well as the good consumer 
acceptance towards the use of these microorganisms as an ecological 
alternative to agrochemical products, is revolutionizing the 
development of biofertilizers (Ibáñez et al., 2023). Indeed, according 
to MarketsandMarkets,9 the global inoculants market size is projected 
to reach USD 1.7 billion by 2027, recording a CAGR of 8.1% during 
the forecast period. To respond to this market demand, the production 
of biofertilizers must necessarily be economically and ecologically 
more advantageous than the chemical one. Generally, microbial 
biomass is produced through fermentative processes using synthetic 
substrates which represent approximately 60–70% of the overall costs 
(Cardoso et al., 2020; dos Santos et al., 2022). In fact, the use of very 
expensive conventional substrates, consisting for example of yeast 
extract, beef extract, peptone and glucose, may be  acceptable for 
growth tests in flasks or in small volumes but at larger volumes, as in 
fermenters at pre-industrial or industrial scale would lead to a rapid 
increase in production costs (Lo et  al., 2020; Yuan et  al., 2021). 
Therefore, choosing an appropriate culture medium to produce high 
quantities of microbial biomass is a binding issue to achieve 
sustainable production costs (Lo et al., 2020; Vasseur-Coronado et al., 
2021). In this context, the development of a low-cost process is the 
main challenge which pushes the academic world to intensify studies 
to achieves microbials inoculant production at industrial level (Arora 
et al., 2016; Santoyo et al., 2021; Vasseur-Coronado et al., 2021; de 
Andrade et  al., 2023; Agbodjato and Babalola, 2024). To reduce 
fermentation costs, complex raw materials derived from agro-
industrial and food waste are mainly used. For example, corn syrup, 
crude glycerol, distillers’ yeast, molasses, whey, soybean meal, corn 
liquor (CSL), and starch are widely used (Cantabella et al., 2021). 
Various primary and secondary metabolites can be produced using as 
suitable nutrients these relatively inexpensive raw materials to ensure 
the growth of bacteria.

In the literature there are many studies conducted on a 
laboratory scale with the aim of evaluating the use of carbon and 
nitrogen sources derived from agro-industrial waste for the growth 
of different microorganisms (da Silva Cruz et al., 2020; Gamit et al., 
2023; Omara and El-maghraby, 2023; Torres et al., 2023; Akashdeep 
et al., 2024). Conversely, there is little information regarding the 
application of low-cost media in both small- and large-scale 
bioreactors to produce microorganisms that promote plant growth. 
Table  2 summarizes some studies conducted with the aim of 
developing low-cost growth substrates to be used in fermentation 
processes generally carried out in solid state (SSF) or in liquid state 
(LSF). Magarelli et al. (2022) have developed a process to produce 
PGPMs by submerged fermentation using the cladode juice of 
Opuntia ficus-indica, reducing both the economic and environmental 
impacts associated with fermentations. In this research, the scaling 
up of the growth process was carried out in a 21-liter bioreactor. In 
a recent work, Bolmanis et al. (2023) reach high concentrations of 
spores of Bacillus subitlis MSCL 897 in 100-liter bioreactors using a 

9 https://www.marketsandmarkets.com/Market-Reports/agricultural-

inoculants-market-152735696.html
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low-cost substrate consisting of sugar beet molasses and bean flour. 
Instead, Elsallam et al. (2021) conducted a study aimed at reducing 
the costs of industrial production of biomass of the fungus 
Trichoderma harzianum. Specifically, the strain SYA.F4 has been 
grown in flasks on culture media consisting of different agri-food 
waste such as potato, onion, garlic, pea, and cabbage peels. 
Subsequently, using pea peels the process was scaled up into a 7-liter 
fermenter by using exponential fed-batch mode reaching a high 
yield in fungal biomass. T. harzianum CECT 2929 was also 
successfully grown in SSF on grass clippings and pruning waste by 
Ghoreishi et  al. (2023). The growth of fungal strain in a 0.5 L 
cylindrical fermenter permitted to reach after 168 h spore 
concentrations equal to 3.03 × 109 spore g−1 dry matter.

Moving from a laboratory scale to a larger scale, some growth 
parameters such as substrate composition, temperature and pH are 
easily controlled. Conversely, the best conditions identified to control 
the oxygen content in the medium are not always efficient when large 
bioreactors are used. Furthermore, to guarantee the robustness and 
replicability of the scaling up process it is important to consider the 
issues relating to the phenotypic dissociation characteristic of some 
spore-forming bacterial species (Ambrico et al., 2019). In this regard, 
after identifying the best growth conditions, in small bioreactors it is 
essential to identify the volumetric oxygen mass transfer coefficient 
(kLa), a specific parameter that determines the rate at which oxygen is 
transferred from the gaseous to the liquid phase. This coefficient 
depends not only on the speed and type of stirring in the bioreactor 
but also on the properties of the media and the geometry of the vessel 
(Vanags and Suleiko, 2022). The presence of oxygen in the growth 
substrate is a key factor in aerobic bioprocesses. In bioreactors, the 

oxygen content is controlled by acting on the agitation, modifying the 
rotation speed of the turbines, and varying the volumes of air and/or 
oxygen introduced using a sparger. Therefore, to maintain adequate 
oxygen supply even in large bioreactors, ensuring the optimal growth 
of cell populations and the maintenance of their normal metabolism, 
the scale-up of aerobic fermentations must take place maintaining the 
kLa constant. Over the last few years empirical formulas and several 
experimental methods have been proposed to determine the value of 
kLa in bioreactors under different operating conditions (Karimi et al., 
2013; Trujillo-Roldán et al., 2013; Seidel et al., 2021; Mercado et al., 
2023). Trujillo-Roldán et al. (2013) by keeping the kLa constant, they 
managed to scale the growth process of Azospirillum brasilense from 
agitated flasks to 1,000-litre bioreactors. Using an experimental 
method, the authors determined the kLa in 0.5 L flasks and in 10- and 
1,000-liter bioreactors as a function of different rotation speeds. 
Subsequently, they plotted the data in graph and by interpolation they 
identified the speed of rotation to be  adopted in the two larger 
bioreactors to obtain kLa values like that determined in flask in the 
best growth conditions (kLa = 31 h−1).

Addedly to the selection of a suitable low-cost culture medium for 
optimal biomass production and scaling-up process, to achieve an 
effective and stable formulation is an important issue in inoculant 
technology. In fact, often when the inoculating microorganisms are 
used in in-vivo assays in a controlled laboratory environment, they can 
best express their potential. Conversely, their behavior is unpredictable 
when applied in the open field where they find limiting environmental 
conditions and an indigenous microbiota to compete with (Shah et al., 
2021). These situations vary from crop to crop and from field to field 
and can cause an inconsistency in the beneficial effect of inoculants, 

TABLE 2 Studies on scaling up the production process of microorganisms that promote plant growth using agro-industrial waste.

Microorganism
Type of 

fermentation 
process

Composition low-cost culture 
media

Scale 
bioreactor

References

Bacillus spp., Paenibacillus spp. LSF Food waste and green waste 120 L Oviedo-Ocaña et al. (2022)

Bacillus subtilis CW-S LSF Molasses and urea 300 L and 3,000 L Abuhena et al. (2022)

Bacillus subtilis MSCL 897 LSF Molasses and bean flour 100 L Bolmanis et al. (2023)

Azotobacter chroococcum LS132, Bacillus 

amyloliquefaciens LMG 9814, Burkholderia 

ambifaria MCI7, Pseudomonas fluorescens 

DR54 and Rahnella aquatilis BB23/T4d

LSF Opuntia pruning waste 21 L Magarelli et al. (2022)

Paenibacillus polymyxa DSM 742 LSF Brewers’ spent grains 5.5 L Didak Ljubas et al. (2022)

Pseudomonas oryzihabitans PGP01 LSF Potato waste (peels and pulps) 2 L Cantabella et al. (2021)

Bacillus siamensis SCFB3-1 LSF Anaerobic digestate obtained from fruit and 

vegetable wastes and molasses

5 L Pastor-Bueis et al. (2017)

Bacillus subtilis CGMCC13932 LSF Tofu processing wastewater from soybeans 100 L Li et al. (2021)

Trichoderma harzianum SYA.F4 LSF Pea peels 7 L Elsallam et al. (2021)

Trichoderma harzianum CECT 2929 SSF Grass clippings and pruning waste 0.5 L Ghoreishi et al. (2023)

Beauveria bassiana CECT 20374 and 

Trichoderma harzianum CECT 2929

SSF Rice husk, apple pomace, whisky draff, beer 

draff, wheat straw, orange and potato peels

0.5 L Sala et al. (2021)

Azotobacter vinelandii MTCC 1241, 

Rhodobacter erythropholis MTCC 4688, 

Bacillus megaterium NCIM 2054 and 

Rhizobium meliloti NCIM 2757

SSF Textile sludge and sugarcane bagasse 15 L Kadam et al. (2024)
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making it much more complex for developers and commercial 
distributors to provide PGPR inoculants that are effectively applicable 
under different environmental conditions (Saharan and Nehra, 2011). 
These situations vary from crop to crop and from field to field and can 
cause an inconsistency in the beneficial effect of inoculants, making it 
much more complex for developers and commercial distributors to 
provide PGPR inoculants that are effectively applicable under different 
environmental conditions (Saharan and Nehra, 2011). Furthermore, 
most governments regulate quality standards by imposing a minimum 
number of viable cells ranging from 107 to 109 colony-forming units 
per gram for an adequate formulation (Bashan et al., 2014; Malusá and 
Vassilev, 2014).

Identifying an effective and stable formulation represents an 
essential aspect to improve the adaptability of microbial inoculants to 
different environments, promote colonization and ensure survival 
during storage (Mitter et al., 2021; Naamala and Smith, 2021). The 
formulations can be both liquid and solid and the latter can be both 
wet and dehydrated. The choice of formulation type depends on the 
type of microorganism and application. Generally, liquid ones are 
used for seed treatment, seedling root dipping and soil irrigation (Dey, 
2021). These consist of microorganisms, if possible, in their inactive 
state, suspended in water, oils, or emulsions with additives to improve 
their physical, chemical and nutritional properties. The main additives 
used are natural polymers (e.g., carrageenan, arabic gum, starch, etc.), 
synthetic polymers (such as polyvinylpyrrolidone), humic acid, 
horticultural oil, glycerol, glucose and lactose (Bernabeu et al., 2018; 
Ibáñez et  al., 2023). In general, support material for biofertilizers 
should be non-toxic, widely available, inexpensive, and easy to use 
(Allouzi et  al., 2022). For example, polymers, both natural and 
synthetic, reduce heat transfer and increase water activity by ensuring 
a protective microenvironment and the amount of water biologically 
available to microorganisms (Lobo et al., 2019). Humic acids provide 
shelter and carbon sources to microorganisms, ensuring a minimum 
of metabolic activity during storage, reducing the loss of vitality 
(Sadeq et al., 2023). Gopi et al. (2019) reported that, from a screening 
of various components useful for the formulation of liquid biofertilizer, 
trehalose at a concentration of 15 mM was the best performing. Even 
after 18 months, a significant population of Azospirillum lipoferum, 
Azotobacter chroococcum, Bacillus megaterium and Bacillus 
sporothermodurans was observed in this formulation. Other 
researchers have used a combination of trehalose and glycerol to 
successfully extend the preservation of the bacteria by achieving a 
biofertilizer shelf-life of 12 months (Chompa et al., 2024). The higher 
viability of microbial cells found in formulations with trehalose is due 
to the protective effect of this disaccharide on membrane proteins and 
to the antioxidant effect guaranteed by the eight hydroxyl groups 
present in the molecule (Kumaresan and Sivakumar, 2019; Prasad 
et al., 2023).

While, glycerin, in addition to providing a carbon source to 
stimulate bacterial cell growth, regulates osmotic pressure and 
nutrient exchanges at the plasma membrane level (Nasarudin et al., 
2020). Horticultural oils can be used to extend the shelf-life of the 
water in oil emulsion formulation since these compounds are able to 
envelop the bacterial cell and protect them from dehydration and 
temperature changes (Allouzi et al., 2022). Furthermore, it has been 
shown that the presence of oils favors the production of 
exopolysaccharides as a response to various environmental stresses. 
Oils from groundnut, pongamia, and sunflower are often used for the 

preparation of liquid formulations. Jayasudha et al. (2018) confirmed 
the effectiveness of the oils on the viability of a consortium made up 
of 4 microorganisms for 3 months of storage. Wet solid formulations 
are obtained by mixing microbial biomass with solid supports, called 
carriers, that may consist of alginate, clay, peat and biochar (Loján 
et al., 2017; Riseh et al., 2021). This kind of formulations after their 
application ensures a gradual and controlled release of microorganisms 
into the rhizosphere (Liffourrena and Lucchesi, 2018; Naik et  al., 
2020). In a particular study conducted with microcapsules, obtained 
with alginate in combination with whey proteins, a slow release of 
Pseudomonas fluorescens VUPF506 cells that lasted for 60 days was 
observed. The authors of this research found that this behavior can 
be  justified by the moisture content and swelling index of the 
microcapsules (Fathi et al., 2021).

In recent years, research has been published highlighting the 
role of biochar as a microbial vector which, thanks to its porosity 
and large surface area, creates a microenvironment suitable for the 
growth of microorganisms, protecting them from soil predators 
(Ajeng et al., 2020; Mącik et al., 2020; Shabir et al., 2024). Jabborova 
et  al. (2020) evaluated the effect of different quantities of corn 
biochar (1 and 3%) in combination with different PGPRs (P. putida 
and B. japonicum) finding a high availability of nutrients in the soil. 
Studies on the shelf-life of the formulation made up of 
Bradyrhizobium japonicum (CB1809) and biochar revealed high 
survival with values of up to 95% viability after 90 days (Shabir et al., 
2024). In liquid and solid wet formulations, during storage the 
microbial cells are exposed to a high-water content therefore 
refrigeration is required which complicates the marketing and 
distribution phase. However, this disadvantage can be compensated 
by missing of expansive drying processes.

Dry solid formulations, on the other hand, have a longer shelf 
life, up to 2 years, and microorganisms can survive at higher 
temperatures than wet formulations. These can be  powders or 
granules and involve the use of organic, inorganic or synthetic 
carriers that are easy to process and sterilize (Romano et al., 2020). 
The drying process of microorganisms can be carried out by mild 
technologies, such as spray- and freeze-drying, or by air drying 
immobilization on solid supports such as talc, zeolite, bentonite, etc. 
Freeze drying can be considered one of the best techniques for drying 
microorganisms as it is able to guarantee high vitality at the end of 
the process; however, the diffusion of this technology is severely 
limited by its high cost. Spray-drying, on the other hand, is probably 
the most used method because it is rather cheap and simple 
(Arumugham et al., 2023). In many cases, arabic gum, trihalose, skim 
milk, or maltodextrin are added to the biomass to protect, by 
microencapsulation, microbial cells from the strong stress caused by 
the drying process (Kumar et al., 2022). The study conducted by 
Stojanović et al. (2022) aimed to obtain a new commercial biofertilizer 
by spray-drying with maltodextrin as a carrier. After storage at room 
temperature for a period of 1 year, the microbial formulation 
consisting of B. subtilis NCIM 2063 showed a high survival rate. In a 
work conducted by Sohaib et al. (2020) the agronomic effect on wheat 
of a formulation consisting of a microbial consortium mixed in 
zeolite was evaluated. The formulation was obtained by inoculating 
1 kg of carrier with 100 mL of bacterial suspension (108 cells mL−1). 
The authors conclude that zeolite is characterized by a high-water 
retention capacity and, when used in these ratios, allows the 
suspension to be dehydrated and stabilized. Therefore, zeolite creates 
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FIGURE 5

The microbiome-based approach: from selection to field application and storage.

a favorable environment in terms of humidity which allows 
microorganisms to continue their metabolic activity and reduces the 
risk of microbial contamination. All this leads to an increase in the 
shelf-life of the formulation. A significant increase in the shelf-life of 
a formulation based on P. fluorescens LBUM677 and P. synxantha 
LBUM223 was observed using a mixture of talc, 
carboxymethylcellulose (10% w/w) and calcium carbonate 
(Novinscak and Filion, 2020). The authors report that the viability of 
microorganisms, after a decrease recorded in the first 15 days, 
remains constant for 180 days.

In conclusion, the production of PGPR with the use of agro-
industrial wastes as growth substrates, can represent a winning 
strategy in the perspective of circular bioeconomy because it lowers 
production costs, making materials otherwise destined for disposal 
profitable and presents a more sustainable environmental footprint. 
The results obtained from applications in the field of different 
formulations both liquid and solid are very promising and the type of 
formulation to be developed depends on different parameters such as 
effectiveness, stability, cost-effectiveness and ease of application 
(Figure 5).

9 Conclusion

In recent years, the extraordinary value of the microbiome for 
sustainable agriculture has been realized, and efforts are now being 

made to understand how to harness it to improve crop production 
and soil health. The goal of researchers is to define and apply 
microbiome-based solutions to have a healthy and useful 
microbiome for plants. The challenge is to identify, isolate and 
study “good” bacteria and then reproduce and apply them to crops. 
Starting from the soil microbiome investigation by omics strategies, 
efficient microbiome-based solutions could be produced. The use 
of soil microorganisms as soil fertilizers and plant strengtheners in 
synthetic or natural microbial consortia have become an 
ecologically favorable alternative to supplement inorganic inputs 
and promote plant development and health. Selecting and bringing 
beneficial microbiomes into the field may not be enough. Many 
researchers have addressed the issue of microbial inoculants and 
have tried to ensure and secure efficacy even in the open field, not 
always successfully. It has been seen how agricultural practices or 
plant genotype can influence the plant microbiome, and thus its 
functioning. Several avenues are therefore open to a new generation 
of inoculants and the application of microbiomes in agriculture 
that could initiate a new green revolution that is much more 
sustainable than the previous one. New efforts are necessary for 
translating the potential of microbiome-based solutions into 
products for farmers and agrifood companies. Industrial and 
academic partners are calling for public-private partnerships to 
favor the scaling-up of microbial productions and their 
commercialization translating the scientific knowledge into new 
products and treatments.
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