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We investigated the metabolome of the iron- and sulfur-oxidizing, extremely 
thermoacidophilic archaeon Metallosphaera sedula grown on mineral pyrite (FeS2). 
The extraction of organic materials from these microorganisms is a major challenge 
because of the tight contact and interaction between cells and mineral materials. 
Therefore, we applied an improved protocol to break the microbial cells and separate 
their organic constituents from the mineral surface, to extract lipophilic compounds 
through liquid–liquid extraction, and performed metabolomics analyses using 
MALDI-TOF MS and UHPLC-UHR-Q/TOF. Using this approach, we identified several 
molecules involved in central carbon metabolism and in the modified Entner-
Doudoroff pathway found in Archaea, sulfur metabolism-related compounds, 
and molecules involved in the adaptation of M. sedula to extreme environments, 
such as metal tolerance and acid resistance. Furthermore, we identified molecules 
involved in microbial interactions, i.e., cell surface interactions through biofilm 
formation and cell–cell interactions through quorum sensing, which relies on 
messenger molecules for microbial communication. Moreover, we successfully 
extracted and identified different saturated thiophene-bearing quinones using 
software for advanced compound identification (MetaboScape). These quinones 
are respiratory chain electron carriers in M. sedula, with biomarker potential for 
life detection in extreme environmental conditions.
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1 Introduction

Analogous to the first microorganisms that inhabited the early Earth, 
chemolithoautotrophic microorganisms use ancient metabolic pathways to harvest energy 
either through mineral redox alterations, or directly from inorganic compounds, such as 
nitrogen, iron, or sulfur (Vargas et al., 1998; Wächtershäuser, 1988, 1990; Weiss et al., 2016; 
Camprubi et al., 2017; Morrison and Mojzsis, 2021). Archaea from the order Sulfolobales (e.g., 
Sulfolobus spp., Acidianus spp. and Metallosphaera spp.) are capable of oxidizing Fe and S while 
thriving under extreme conditions at a pH of 2–3 and temperatures of 65–80°C. These 
microorganisms can use heterotrophic, chemolithoautotrophic, and mixotrophic ways of 
generating energy utilizing various substrates, such as complex organic molecules, CO2 
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fixation, and oxidation of various metal sulfides (Huber et al., 1989; 
Clark et al., 1993; Peeples and Kelly, 1995; Schönheit and Schäfer, 
1995; Amend and Shock, 2001; Auernik et al., 2008; Auernik and 
Kelly, 2008, 2010a, 2010b; Maezato et al., 2012; Mukherjee et al., 2012; 
Kölbl et al., 2017; Wheaton et al., 2019; Blazevic et al., 2019; Milojevic 
et al., 2021).

The archaeon Metallosphaera sedula is known for its potential to 
mobilize metal sulfides and oxides and a broad range of mineral 
biotransforming capabilities, which span from Fe and S minerals, such 
as pyrite FeS2 (Clark et al., 1993; Schönheit and Schäfer, 1995; Amend 
and Shock, 2001) and chalcopyrite CuFeS2 (Maezato et al., 2012), to 
calcium tungstate minerals such as scheelite (Blazevic et al., 2019), 
uranium (Mukherjee et  al., 2012), molybdenum, and vanadium 
(Wheaton et al., 2019). M. sedula was isolated from a sulfataric field 
in Italy by Huber et al. (1989), and its fully sequenced genome has 
been intensively studied, with a focus on its bioleaching capabilities 
(Auernik et al., 2008; Auernik and Kelly, 2008). Moreover, Kölbl et al. 
(2017) focused on the utilization of extraterrestrial material by 
M. sedula grown on Martian regolith simulants, paving the way for the 
cultivation of M. sedula on the genuine Martian meteorite NWA 7034 
by Milojevic et al. (2020).

Bioleaching involves the oxidation of metals and metalloids, 
accompanied by the release of metal compounds from the mineral 

matrix (Figure 1); for example, Fe(II) is oxidized to Fe(III). Remarkable 
is the cellular resistance of acidophilic microorganisms (e.g., M. sedula) 
to heavy metals such as As, Cu, Zn, Cd, and Ni, as reviewed by Dopson 
et  al. (2003). The multimolecular machinery of iron-transforming 
Archaea is usually represented by clusters of redox-active enzymes 
associated with respiratory Fe/S oxidation. For instance, for Fe-oxidizing 
members of the archaeal order Sulfolobales, the existence of the ferrous 
iron oxidation (fox) gene cluster has been reported (Counts et al., 2022), 
the products of which include the primary electron acceptor from metal 
ions and terminal oxidase complex. The surface attachment of mineral-
transforming microorganisms and biofilm formation on mineral 
surfaces are crucial strategies that enhance microbial bioleaching 
performance and facilitate mineral solubilization, with increasing 
interest in industrial applications (Rohwerder et al., 2003; Olson et al., 
2003). Biofilm formation in Sulfolobales involving attachment, 
maturation, and dispersal has been described, whereas the bioalteration 
of mineral materials with extracellular matrices composed of 
carbohydrates has been observed (Koerdt et al., 2010, 2012; Lewis et al., 
2023). The adsorption of microorganisms onto mineral surfaces occurs 
locally in low-pH microenvironments containing extracellular 
polymers (Xia et  al., 2021). The role of extracellular polymeric 
substances, mainly neutral sugars and lipids, in attachment to mineral 
surfaces such as pyrite has been further investigated by Kinzler et al. 

FIGURE 1

Microbial harvest of energy through the oxidation of Fe2+ and reduced inorganic sulfur compounds from mineral matrix, either indirectly from ions 
released in the medium through abiotic acidic leaching (under a pH of 2.0) or directly from the mineral surface. Created with BioRender.com.
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(2003), focusing on the bacteria Acidithibacillus ferrooxidans, which 
mediates attachment to the sulfide surface and concentration of Fe due 
to complexation promoting sulfide oxidation. This was also consistent 
with the studies by Bromfield et al. (2011), who investigated the mineral 
adsorption of the extreme thermoacidophilic archaeon M. hakonensis 
onto mineral sulfides, underlining the importance of surface charge 
rather than hydrophobic interactions.

The detailed biochemical processes involved in the metabolism 
of M. sedula underlying the oxidation of iron and sulfur 
compounds in the order of Sulfolobales have been described by 
transcriptome analyses of M. sedula grown on various mineral 
substrates, enabling the comprehensive identification of its 
electron transport chains (Auernik et al., 2008; Auernik and Kelly, 
2008, 2010a, 2010b). This includes the distinct role of isoprenoid 
quinones, which are part of the membranes of all living organisms 
(Hiraishi, 1999). They are composed of a hydrophilic head group 
and an apolar isoprenoid side chain. Therefore, they exhibit 
amphiphilic properties, which allows them to insert into lipid 
bilayers. They mainly function as electron and proton carriers in 
photosynthetic and respiratory electron transport chains, with 
additional roles as antioxidants (Hiraishi, 1999; Nowicka and 
Kruk, 2010). Quinone oxidoreductases deliver electrons to 
terminal oxidase complexes that maintain intracellular pH while 
generating a proton motive force (thiosulfate:quinone 
oxidoreductase, e.g., DoxD) through reduced caldariella- or 
sulfolobus-type quinones (Figure 2) (Auernik and Kelly, 2008). 
Furthermore, the role of signaling molecules involved in quorum 
sensing has been intensively investigated, as this cell–cell 
communication strategy enables cross-species microorganisms to 
synchronize their gene expression and growth (Ng et al., 2011; 

Hiblot et  al., 2012; Kaur et  al., 2018). To date, the best-
characterized signaling molecules in Archaea are N-acyl 
homoserine lactones (AHLs), which potentially promote biofilm 
formation and, therefore, play an important role in microbe-
mineral interactions (Charlesworth et  al., 2020; Prescott and 
Decho, 2020). Additionally, quorum-sensing molecules have been 
proposed as biocatalysts to increase microbial turnover rates 
during biomining operations (Ruiz et  al., 2008; Bellenberg 
et al., 2014).

Although the efficient separation of microbial organic molecules 
from mineral materials is challenging (Direito et al., 2012; Swenson 
et  al., 2015; Swenson and Northen, 2019; Bell et  al., 2022), the 
metabolomics of microbial-mineral interactions is a promising and 
powerful tool for microbial screening of environmental samples for a 
number of biotechnological and potential astrobiological applications 
(Giebel et  al., 2010; Das and Dash, 2014; Röling et  al., 2015; 
Abrahamsson and Kanik, 2022; Sharma et  al., 2022). However, 
separation of biologically active molecules from mineral matrices 
remains problematic because of the strong adsorption of organic 
substances by iron-rich minerals (Direito et al., 2012; Röling et al., 2015; 
Swenson et al., 2015; Swenson and Northen, 2019; Abrahamsson and 
Kanik, 2022; Bell et al., 2022). In this study, we report the successful 
extraction of metabolites from the chemolithotrophic organism 
M. sedula grown on a mineral source, by adapting a modified lipid 
extraction protocol and implementing mass spectrometry-based 
metabolomic analysis. This mass spectrometry-based technique can 
be  further applied to detect thiophene-bearing quinones in 
environmental and laboratory samples, to resolve metabolic pathway-
specific molecules, and to provide insight into the metabolome used in 
microbe-mineral interactions in M. sedula.

FIGURE 2

Molecular structure of sulfolobusquinone (SQ) and molecular formulas of its different oxidation states (SQ4:0, SQ4:1, and SQ4:4). The reaction pathway of 
decylubiquinone to decylubiquinol though catalysis by thiosulfate:quinone oxidoreductase (DoxD) is described in the KEGG database.
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2 Materials and methods

2.1 Microbial cultivation

Metallosphaera sedula DSM 5348 was cultivated aerobically in 
DSMZ 88 medium in the presence of pyrite, as described 
previously (Kölbl et al., 2017; Blazevic et al., 2019; Milojevic et al., 
2021), over a period of 140 h in 1 L glassblower modified Schott-
bottle bioreactors (Duran DWK Life Sciences GmbH, Wertheim/
Main, Germany), unless otherwise noted. The stock culture was 
stored at −80°C in a mixture of 50% glycerol and DSMZ 88 
medium (50, 50, v:v). The DSMZ 88 medium is composed of 
9.84 mM (NH4)2SO4, 2.06 mM KH2PO4, 1.01 mM MgSO4 × 7H2O, 
0.48 mM CaCl2 × 2H2O, and 0.07 mM FeCl3 × 6H2O. This was 
also used as cell resuspension medium. Further, Allen trace 
element solution was added consisting of 0.91 mM MnCl2 × 4H2O, 
1.18 mM Na2B4O7 × 10H2O, 0.08 mM ZnSO4 × 7H2O, 0.03 mM 
CuCl2 × 2H2O, 0.01 mM Na2MoO4 × 2H2O, 0.02 mM 
VOSO4 × 2H2O, and 3.56 μM CoSO4 × 7H2O. Tryptone (0.1%) was 
added to the DSMZ 88 medium, as previously described (Kölbl 
et al., 2017). The pH was adjusted to 2.0, with 5 M H2SO4. The 
pyrite was manually ground using a hand grinder to particles with 
diameters of 63–100 μm, controlled by 63 μm and 100 μm mesh 
sieves with a 75:25% distribution of 63 to 100 μm, and baked 
overnight at 180°C. Pyrite (10 g/L) was added to 800 mL of 
culture. A 1 L bioreactor was then assembled as described 
previously (Kölbl et al., 2017; Blazevic et al., 2019; Milojevic et al., 
2021) and constantly heated to 73°C with steady stirring. A flow 
of CO2 at a total rate of 0.9 L/min (normalized to 1 atm and 0°C) 
was ensured for the interconnected triplicate bioreactor setup, 
resulting in a flow rate of 0.3 L/min for each bioreactor. Three 
biological replicates (A, B, and C) were incubated and harvested 
before reaching the stationary phase. For inoculation, a frozen 
(−80°C) glycerol stock of M. sedula, previously grown and 
acclimated to pyrite, was used. To monitor microbial growth, the 
cultures were sampled continuously during the growth phase and 
the cells were counted under a microscope (Olympus BX51 
equipped with a Pixelink M20C-CYL camera) using a Neubauer 
Chamber (Carl Roth GmbH & Co. KG, Karlsruhe, Germany) and 
harvested upon reaching stationary phase. Harvesting was 
performed by centrifugation in sterile 50 mL Falcon tubes at 
3220 × g for 40 min. The cell pellets and supernatants were 
collected separately, snap-frozen in liquid nitrogen, and stored at 
−20°C until further extraction.

2.2 Lyophilization and hydrolysis

The stored cell/pyrite pellets were thawed and resuspended in cell 
resuspension medium and transferred into a 50 mL glass vial. The 
samples were then refrozen and lyophilized overnight. To increase 
the detection capabilities and promote the separation of cells and 
minerals, the samples were hydrolyzed before extraction using 1 M 
HCl in a mixture of methanol (1:1, v/v), and vortexed and 
ultrasonicated for 10 min. The mixture was then heated to 70°C for 
3 h and dried under a stream of N2 at 60°C. This will be referred to as 
hydrolyzed cells/pyrite.

2.3 Biomass extraction: cell breakage and 
liquid–liquid extraction

To increase the yield of metabolites, a protocol originally 
developed by Bligh and Dyer (1959) for total lipid extraction and 
modified by Evans et al. (2022) was used to separate organic molecules 
from the mineral phases. This protocol was applied to dried 
hydrolyzed cells/pyrite. To burst the microbial cells, separate the cell 
debris from the minerals and release metabolites into the solution, a 
volume of 5 mL B&DI solution consisting of methanol, 
dichloromethane, and 0.1 M potassium phosphate buffer, pH 8.0 
(2:1:0.8, v/v/v) was added to 1 g pyrite-equivalent of hydrolyzed cells/
pyrite samples. The samples were vortexed, sonicated for 10 min and 
centrifuged for 10 min at 3220 × g in a 50 mL glass vial. The 
supernatant was decanted into a fresh glass vial and evaporated under 
a stream of N2 at 60°C. This step was repeated once with B&DI and 
twice with B&DII consisting of methanol, dichloromethane, and 
0.1 M trichloroacetic acid solution (2:1:0.8, v/v/v). This will 
be subsequently referred to as B&D extract. To enrich the lipophilic 
compounds, liquid–liquid extraction was conducted on the B&D 
extract in 50 mL glass vials. For this, 5 mL ultrapure water and 10 mL 
dichloromethane were added, followed by vortexing and 
centrifugation for 5 min at 3220 × g. The organic phase at the bottom 
of the vial was extracted into a fresh glass vial, and the 50 mL glass 
vials with the aqueous phase were set aside. This liquid–liquid 
extraction step was repeated four times and the organic fractions were 
pooled and evaporated under a stream of N2 at 60°C. The organic 
fraction of the extract was then transferred using 4 mL 
dichloromethane into a fresh vial, evaporated under a stream of N2 at 
60°C and resolubilized with 200 μL of methanol and dichloromethane 
(9:1, v/v). To be able to separately analyze hydrophilic compounds, the 
aqueous phase in the 50 mL glass vials was further processed. To 
exclude lipophilic compounds from the aqueous phase, 10 mL of 
dichloromethane were added, followed by sonication for 10 min and 
centrifugation for 10 min at 3220 × g. Then, the aqueous fraction was 
collected, transferred with 4 mL of ultrapure water into a fresh vial, 
evaporated under a stream of N2 at 60°C and resolubilized with 200 μL 
of ultrapure water and methanol (9:1, v/v).

2.4 MALDI-TOF mass spectrometry

The exometabolites in M. sedula were identified by comparative 
Matrix Assisted Laser Desorption Ionization – Time of Flight mass 
spectrometry (MALDI-TOF MS) analysis of a 4.5 L culture of 
M. sedula grown on pyrite. Analysis was conducted of the cell pellet, 
the corresponding culture supernatant, and the organic extract. 
MALDI-TOF MS spectra were acquired on an ultrafleXtreme mass 
spectrometer (Bruker Daltonics GmbH, Bremen, Germany). Samples 
were mixed in a 1:1 ratio in a solution consisting either of 4-hydroxy-
α-cyano-cinnamic acid (HCCA) or 2,5-dihydroxybenzoic acid (DHB) 
at 1 mg/mL in acetonitrile, ultrapure water, and trifluoroacetic acid 
(50:47.5:2.5, v/v/v) containing 1 mM NaCl. The matrix-sample 
solutions were spotted onto an AnchorChip target and air-dried. 
Spectra were acquired in reflectron positive ion mode (3,000 laser 
shots) in the 100–4,500 m/z range. Calibration of the instrument was 
performed externally using a neighboring spot with peaks of the 
matrix and pepmix calibration standard II (Bruker Daltonik GmbH, 
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Bremen, Germany), with the addition of oxidized insulin B and 
adrenocorticotropic hormones (clip 1–39). MALDI-TOF MS spectra 
were processed using the FlexAnalysis v3.4 software (Bruker). After 
mass spectral comparison, statistical analysis revealed shared masses 
and masses present only in the cell pellet, the culture supernatant, and 
the organic extract.

2.5 UHPLC-UHR-Q/TOF mass 
spectrometry

Analyses were performed using an UltiMate 3000 RSLC system 
(Dionex, Germering, Germany) connected to a maXis ultra-high 
resolution quadrupole-TOF mass spectrometer (UHR-Q/TOF MS) 
(Bruker Daltonics, Bremen, Germany) equipped with an electrospray 
ion source. Metabolites were separated on an Acquity UPLC BEH C18 
1.7 μm 2.1 × 100 mm column (Waters, Saint-Quentin-en-Yvelines, 
France). For the analysis of the organic phase of the extract, the 
column was heated at 60°C and the following solvents were used at a 
flow rate of 500 μL/min: H2O with 0.1% formic acid as solvent A and 
a mixture of methanol and isopropanol (50:50, v/v) with 0.1% formic 
acid as solvent B. Gradient elution was set to 0–2.5 min, 3% B; 
2.5–4 min, 6% B; 4–13 min, 85% B; 13.5–19.1 min, 100% B; and 
19.1–23 min, 3% B. A volume of 2 μL of the organic extract was 
injected. To analyze the aqueous phase of the extract, the column was 
heated at 40°C, and the following solvents were used at a flow rate of 
500 μL/min: H2O with 0.1% formic acid as solvent A and acetonitrile 
with 0.08% formic acid as solvent B. Gradient elution was set to 
0–10 min, 3% B; 10–13 min, 45% B; 13–15 min, 100% B; and 
15–18 min, 3% B. A volume of 0.5 μL of the aqueous extract was 
injected. Mass spectra were acquired in positive ion mode at a 
frequency of 1 Hz in the 50–1,650 m/z range. The ESI source 
parameters were as follows: nebulizing gas, 2 bar; drying gas, 200°C 
at a flow rate of 9 L/min; capillary voltage, 4,500 V.

2.6 Data analysis and advanced data 
processing using MetaboScape®

Data processing was performed using DataAnalysis 4.4 software 
(Bruker Daltonics, Bremen, Germany). Lock mass calibration was 
performed at m/z 622.0296 [hexakis(2,2-difluoroethoxy)phosphazine; 
CAS #:186817–57-2], and the peaks (m/z) were identified based on 
mass accuracy, isotope patterns, and retention time. The metabolite 
analysis was based on the translation of the KEGG pathways of 
M. sedula into target molecules. The purified total lipid extract from 
Elling et al. (2016) was previously used to identify S-bearing quinones 

in Sulfolobales, and a database containing the theoretical m/z of 
different oxidation forms of sulfulobusquinones (SQ), 
caldariellaquinones (CQ), and benzodithiophenequinones (BDTQ) was 
kindly provided by Felix J. Elling (Leibniz-Laboratory for Radiometric 
Dating and Isotope Research, Christian-Albrecht University of Kiel, 
Germany). To verify the feasibility of the method for quinone detection, 
we applied the quinone detection protocol described by Elling et al. 
(2016), which was initially reproduced for S. acidocaldarius and 
subsequently adapted it to M. sedula. The peaks were then integrated, 
and the area under the curve (AUC) of the corresponding annotated 
molecules was compared in biological triplicates, with each biological 
replicate measured in technical triplicates alongside an additional blank. 
Further advanced data analysis was conducted using MetaboScape 
2024b® (Bruker Daltonics, Bremen, Germany) with its embedded 
T-ReX® feature finder algorithm, which encompasses retention-time 
alignment, mass calibration, and peak picking. For feature finding, 
we set an intensity threshold of 10,000 counts, a minimum peak length 
of six spectra, and enabled the recursive feature-finding tool to achieve 
high and reliable coverage. For ion deconvolution, [M + H]+ was set as 
the primary ion and [M + NH4]+ and [M + Na]+ were set as potential 
seed ions. Data filtering ensured that only the features present in at least 
two samples were recognized and extracted. To automatically annotate 
our target compounds, we defined and uploaded a target list of sulfur-
bearing quinones and performed annotation with a mass tolerance of 
2 ppm and a maximum mSigma value (isotopic pattern fit) of 40.

3 Results and discussion

3.1 Microbial cultivation of Metallosphaera 
sedula on pyrite

The M. sedula cultures were inoculated in a suspension of pyrite 
in pH 2.0 growth medium supplemented with air and CO2 in triplicate 
bioreactors (A, B, C) as described in the methods section. M. sedula 
cultures were harvested before reaching stationary phase 
(Supplementary Figure S1).

The cell densities from inoculation to harvest were equivalent in 
all four bioreactors (Table 1).

3.2 Metabolomic profiling of 
Metallosphaera sedula grown on pyrite

To separate the organic molecules from the mineral pyrite 
material, the Bligh and Dyer protocol (Bligh and Dyer, 1959) modified 
by Evans et al. (2022) was applied. Evans et al. concluded that the yield 

TABLE 1 Cell densities [cells/mL] of n = 3 biological replicates (A, B, and C) of Metallosphaera sedula grown on pyrite (10 g/L) at inoculation time point 
(t = 0 h) and harvest time points (t = 140 h; t = 312 h).

Replicate Cell density [cells/mL]

t = 0 h t = 140 h t = 312 h

Initial culture 7.89 × 106 ± 3.88 × 106 3.37 × 107 ± 2.43 × 106

A 4.71 × 106 ± 2.55 × 105 1.14 × 107 ± 2.78 × 105

B 5.33 × 106 ± 3.80 × 103 1.08 × 107 ± 2.56 × 104

C 5.15 × 106 ± 2.91 × 104 9.78 × 106 ± 1.07 × 105
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of archaeal lipid extraction was higher with trichloroacetic acid 
solution than with sodium phosphate buffer. Since potassium 
phosphate buffer has the potential to chelate soluble metal ions better 
than sodium phosphate buffer, we  further improved the modified 
Bligh and Dyer protocol by using a potassium phosphate buffer 
solution (KH2PO4). In order to cover a wider range of metabolites, 
we also decided to alternate acidic and alkaline extraction steps. To 
enrich the lipophilic compounds, a liquid–liquid extraction step was 
added to the protocol and the analysis of hydrophilic compounds was 
made possible by a clean-up step of the aqueous fraction. This 
additional step was particularly necessary for amino acids.

The protocol for the identification of metabolites, from microbial 
cultivation to compound identification, is presented in the flowchart 
in Figure 3. The efficiency of compound identification was increased 
by combining a reference database with MetaboScape®, an advanced 
data analysis software. This protocol also has the potential for 
extracting metabolites from other members of the order of Sulfolobales 
in the presence of mineral substrates. Indeed, the Bligh and Dyer 
protocol was developed to separate organic material from mineral 
materials, and has been used for the extraction of organics from 
deep-sea sediments to microbial mat systems. In the present study, the 
quantities of solvents used for Bligh and Dyer extraction were selected 
based on 1 g of pyrite equivalent of sample material. However, the 
ability of the protocol to extract compounds may be limited by the 
solubility of different target molecules. This could be circumvented by 
adapting the solvents chosen for liquid–liquid extraction.

3.2.1 Distinguishing between metabolites and 
exometabolites via profiling using MALDI-TOF 
mass spectrometry

Comparative analysis of the culture supernatant, cell pellet, and 
organic extract by MALDI-TOF MS can help differentiate between 

metabolites in the cell and those released into the culture medium, i.e., 
between metabolites and exometabolites. MALDI-TOF MS analysis is 
relatively fast to implement and was used as a preliminary step to 
evaluate the presence of compounds in these fractions. To obtain 
initial metabolomics data on mineral-adapted M. sedula, the 
microorganism was grown in a 4.5 L bioreactor over a timespan of 
312 h. The culture was harvested after reaching the stationary phase 
under the previously described cultivation and extraction conditions. 
Comparative analysis using MALDI-TOF MS of culture supernatant, 
cell pellet, and organic extract revealed 116 measured m/z across all 
biological samples (Supplementary Table S1). 20 compounds were 
found only in the culture supernatant, 16 in the cell pellet analysis, 
19 in the culture supernatant and cell pellet analysis, and 61 were 
found only in the organic extract. A metabolite screening allowed for 
the annotation of 13 compounds (Table 2). These annotations were 
confirmed by UHPLC-UHR-Q/TOF MS analysis. However, the 
compound lists obtained by MALDI-TOF MS in this initial 
experiment represent a restricted dataset due to limited sensitivity and 
dynamic range, which are attributed to competition with the HCCA 
matrix and the absence of prior HPLC separation. To explore the 
sample more in depth and gain a more comprehensive and coherent 
view of the M. sedula metabolome, an LC-ESI-based analysis was 
conducted using the same extraction protocol.

3.2.2 UHPLC-UHR-Q/TOF mass spectrometry
Data annotation and treatment for compound identification for 

metabolomic profiling was conducted using the DataAnalysis 
software. For the identification of thiophene-bearing quinone, the 
advanced data analysis software MetaboScape® was used for molecular 
assignment. Metabolite analysis by UHPLC-UHR-Q/TOF MS of 
organic and aqueous fractions of the extracts revealed 48 metabolites 
(Supplementary Table S2). Based on the results obtained, the 

FIGURE 3

Protocol for the identification of Metallosphaera sedula metabolites from cells cultivated in a pyrite suspension medium. Improvements in the protocol 
are highlighted in color.

https://doi.org/10.3389/fmicb.2024.1473270
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Gfellner et al. 10.3389/fmicb.2024.1473270

Frontiers in Microbiology 07 frontiersin.org

metabolites identified through ESI-based analysis were grouped into 
structural and functional categories (Figure 4).

Structurally (Figure 4A), the highest number of metabolites was 
found in the amino acid group, with a total number of 19, followed by 
11 carbohydrates, 2 keto acids, 2 lactones, 1 monocarboxylic acid, 1 
pterin, 1 dipeptide, 1 aldehyde, 1 modified amino acid, and 9 
quinones. However, as the medium contains 0.1% tryptone containing 
18 amino acids (Ala, Arg, Asp., Cys, Glu, Gln, His, Leu/Ile, Lys, Met, 
Phe, Pro, Ser, Thr, Trp, Tyr, and Val), of the identified amino acids in 
this study, only Asn and Pyl of can be unambiguously ascribed to the 
contribution of M. sedula.

The metabolites were also grouped into functional categories 
(Figure 4B; Table 3). Their biological functions span from energetic 
metabolism, anabolism/catabolism, to biofilm formation, cell–cell 
interactions, and metal complexation.

The modified lipid extraction protocol applied in our study 
allowed us to identify a wide variety of metabolites and proved to 
be suitable for separating organics from the mineral material. The 
dataset  also suggested the biological processes underlying these 
metabolites (Table 3).

Among the metabolites involved in carbon metabolism, the 
associated metabolites D-glyceraldehyde-3-phosphate, 2-dehydro-3-
deoxy-6-phospho-D-gluconate, phosphoenolpyruvate, 
D-glucosamine/galactosamine, D-glucuronic/galacturonic acid, 
ribose, 2-deoxy-D-ribose, and 2-deoxy-D-glucose are generally 
involved in core carbon metabolism and carbohydrate degradation 
(Fisher, 2001; Bräsen et al., 2014). In contrast, 1,3-bisphosphoglycerate 
is involved in gluconeogenesis (Siebers and Schönheit, 2005). Since no 
glucose was added during cultivation, the only identifiable source for 
glucose-related metabolism might be remnants of glycerol. To store 
M. sedula cultures, we used a mixture of 50% glycerol and DSMZ 88 
medium. When inoculated, the residual glycerol could potentially 
be used by M. sedula. Glycerol degradation has been described in 
halophilic Archaea (Williams et al., 2017) and further proposed in 
Sulfolobus acidocaldarius by Schmerling et al. (2024). Additionally, 
D-glyceraldehyde-3-phosphate is released in the final step of 
tryptophan biosynthesis (Tang et al., 2000) and serves as the initial 
precursor of thiamine biosynthesis (Zaparty et al., 2010).

Archaea in the order Sulfolobales are known for using a modified 
Entner-Doudoroff (ED) pathway for glucose metabolism. Specifically, 
utilizing D-gluconate/galactonate, 2-keto-3-deoxygluconate and 
2-keto-3-deoxy-6-phosphogluconate, as previously reported for 
S. solfataricus, S. acidocaldarius and Metallosphaera spp. (Lamble et al., 
2003; Nunn et al., 2010; Kim and Lee, 2006; Wang et al., 2020). In 

hyperthermophilic Archaea, non-, branched-, and semi-
phosphorylative ED modifications have been identified (De Rosa 
et al., 1984; Budgen and Danson, 1986; Selig et al., 1997; Siebers and 
Schönheit, 2005; Reher and Schönheit, 2006; Sutter et al., 2016). While 
2-keto-3-deoxygluconate is used as an intermediate in all three ED 
pathways, 2-keto-3-deoxy-6-phosphogluconate is involved only in 
branched and semi-phosphorylative ED (Siebers and Schönheit, 2005; 
Sutter et al., 2016). However, S. solfataricus from the order Sulfolobales 
utilizes a branched ED pathway (Ahmed et al., 2005). This is congruent 
with our findings for M. sedula, which shares the same order 
(Sulfolobales) and highlights the usage of unusual sugar degradation 
pathways in Archaea.

Among sulfur metabolism-related compounds, decylubiquinol is 
produced from decylubiquinone by enzymes expressed from the 
sulfur reduction gene cluster (DoxD) (Kletzin et al., 2004; Müller 
et al., 2004; Auernik and Kelly, 2008), whereas MoCo II is associated 
with sulfite:acceptor oxidoreductase (SAOR) in Metallosphaera spp. 
(Liu et al., 2014, 2021).

In terms of microbial interactions, cell surface interactions require 
direct contact resulting in biofilm formation (Lewis et al., 2023). This 
is mediated by carbohydrates, including hexose, N-acetyl-D-
glucosamine/galactosamine, and N-acetylmuramic acid (Koerdt et al., 
2010, 2012). Cell–cell interactions, such as quorum sensing, do not 
require direct cell contact, but relay on messenger molecules 
(Charlesworth et al., 2020; Prescott and Decho, 2020). We detected 
N-(3-oxohexanoyl)-L-homoserine lactone, and its indicative lactone 
ring, as evidence of acyl-homoserine lactone (AHL) quorum sensing, 
which were characterized in S. solfataricus and S. islandicus (Ng et al., 
2011; Hiblot et al., 2012). Few examples of quorum sensing have been 
reported only in halophilic and methanogenic Archaea so far 
(Tommonaro et al., 2012; Zhang et al., 2012).

Of all the identified metabolites, a subgroup can be  seen to 
support the adaptation of M. sedula to extreme environments. Two of 
the detected amino acids, histidine and methionine, have been shown 
to be  involved in tolerance and resistance to copper toxicity in 
M. sedula (Auernik and Kelly, 2008). Leucylvaline can support the 
growth of S. islandicus, promoting its adaptation to extreme and 
fluctuating environmental conditions in volcanic hot spring habitats 
(Weitzel et al., 2020). Furthermore, S-adenosylmethionine, a cofactor 
of methyl transferases, was detected in M. sedula in this study. This 
cofactor was also found in S. solfataricus (Cacciapuoti et al., 1996) and 
S. acidocaldarius (Zeng et  al., 2018). In extremophiles, 
S-adenosylmethionine may assist in protein methylation, leading to a 
higher resistance to aggregation and denaturation at physiological pH 

TABLE 2 Comparative analysis of intra- and extracellular metabolites by MALDI-TOF MS.

Biological sample Measured compounds Annotated compounds Compound annotation

Culture supernatant 20 1 Leucylvaline

Cell pellet 16 0

Culture supernatant and cell pellet 19 0

Organic extract 61 12

Gln, Lys, Trp, Pyl, ribose, 2-deoxy-D-ribose, 

2-deoxy-D-glucose, hexose, D-glucosamine/

galactosamine, phosphoenolpyruvate, 

2-dehydro-3-deoxy-6-phospho-D-

gluconate, 2-keto-3-deoxygluconate, 

decylubiquinol
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compared to the unmethylated form, and increasing the stability of 
proteins in high-temperature environments, as shown for 
S. solfataricus (Febbraio et al., 2004).

8-amino-7-oxononanoic acid was downregulated in acid stress 
tolerance experiments with the bioleaching microorganism 
Acidithiobacillus caldus. It was proposed that A. caldus utilizes acid 
resistance mechanisms via the formation of extracellular polymeric 
substances and biofilm formation (Feng et al., 2021). The detected 
N-glycan building blocks, N-acetyl-D-glucosamine/galactosamine 
and N-acetylmuramic acid, play different roles in Sulfolobales, as they 
interact with the environment while maintaining cell shape and 
supporting cell protection under extreme environmental conditions 
(Jarrell et al., 2014; Palmieri et al., 2013; Van Wolferen et al., 2020).

Different members of the Sulfolobales order have different 
compositions in saturated quinones in response to their redox 
environment. Consequently, the quinone distribution of a given 
member of the Sulfolobales order can be  used to reconstruct 
environmental redox conditions (Brassell et al., 1986; Hiraishi, 1999; 

Elling et al., 2016; Becker et al., 2018). Therefore, we focused on the 
composition of the respiratory chain electron carriers in M. sedula and 
the degree of saturation of quinones as an indicative 
microbial fingerprint.

3.2.3 Focus on thiophene-bearing quinones
The respiratory chain electron carriers were investigated in more 

detail in terms of their oxidation states (Table 4). To this end, a mass 
list containing all possible oxidation states of caldariellaquinones, 
sulfolobusquinones, and benzodithiophenequinones and their 
corresponding m/z values was created, and molecular assignment 
was performed using the advanced data analysis software 
MetaboScape®. The main features for molecular assignment were as 
follows: assign the corresponding m/z values within the dataset (over 
an intensity threshold of 10,000 counts, minimum peak length of six 
spectra, and distinct isotopic pattern fit) to the molecules defined in 
the quinone mass list only when they are present in two 
separate samples.

FIGURE 4

The structural (A) and functional (B) categories of metabolites in Metallosphaera sedula triplicates are represented by the number of detected 
metabolites.

https://doi.org/10.3389/fmicb.2024.1473270
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Gfellner et al. 10.3389/fmicb.2024.1473270

Frontiers in Microbiology 09 frontiersin.org

Thiophene-bearing quinones of M. sedula (Table 4) were analyzed 
and identified in the form of oxidized caldariellaquinones (CQ4:1 and 
CQ5:1), sulfolobusquinones (SQ4:0, SQ4:1, SQ5:0, and SQ5:1), and 
benzodithiophenequinones (BDTQ5:0). Caldariellaquinones were first 
described by De Rosa et al. (1977) and adapted by organisms thriving 
in extreme environments (pH 1.4–2.6; 75–89°C) with a corresponding 
durable membrane structure found in Sulfolobus and Acidianus spp. 
(De Rosa and Gambacorta, 1988). Subsequently, caldariellaquinones 
have been reported in S. solfataricus, and later in M. sedula (De Rosa 
et al., 1983a, 1983b; Lanzotti et al., 1986; Huber et al., 1989), while 
benzodithiophenequinones have been identified in S. solfataricus 

TABLE 3 Grouping of metabolites identified in the present study into 
functional categories.

Metabolite Compound 
class

Functional 
category

Arg, Asn, Asp., Cys, Glu, Gln, 

His, Ile/Leu, Lys, Met, Phe, 

Pro, Ser, Thr, Trp, Tyr, Val, Pyl

Amino acid
Protein-building 

blocks

His, Met Amino acid

Tolerance and 

resistance to copper 

toxicity

leucylvaline, 8-amino-7-

oxononanoic acid, N-acetyl-

D-glucosamine/

galactosamine*, 

N-acetylmuramic acid, 

S-adenosylmethionine

Dipeptide, amino acid, 

carbohydrate, modified 

amino acid

Adaptation to 

extreme 

environmental 

conditions

D-glyceraldehyde-3-

phosphate, 2-dehydro-3-

deoxy-6-phospho-D-

gluconate, 

phosphoenolpyruvate, 

1,3-bisphosphoglycerate, 

D-glucosamine/

galactosamine, D-glucuronic/

galacturonic acid, ribose, 

2-deoxy-D-ribose, 2-deoxy-

D-glucose

Aldehyde, 

monocarboxylic acid, 

carbohydrate

Carbohydrate 

metabolism

D-gluconate/galactonate, 

2-keto-3-deoxygluconate, 

2-keto-3-deoxy-6-

phosphogluconate

Keto acid

Carbohydrate 

metabolism

(ed-specific)

D-glyceraldehyde-3-

phosphate
Aldehyde

Tryptophan and 

thiamine biosynthesis

N-(3-oxohexanoyl)-L-

homoserine lactone, lactone
Lactone Cell–cell interactions

hexose, N-acetyl-D-

glucosamine/galactosamine*, 

N-acetylmuramic acid

Carbohydrate Biofilm formation

MoCo II, decylubiquinone, 

decylubiquinol
Pterin, quinone Enzyme cofactor

CQ4:1, CQ5:1, SQ4:0, SQ4:1, SQ5:0, 

SQ5:1, BDTQ5:0

Quinone
Respiratory chain 

electron carriers

*Identified as N-acetyl-hexosamine.
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(Collins and Langworthy, 1983; Trincone et al., 1986, 1992; Lanzotti 
et al., 1986). Variations among the produced CQ, SQ, and BDTG 
molecules are correlated with the presence of oxygen during growth 
(Trincone et  al., 1989; Nicolaus et  al., 1992). For the order of 
Sulfolobales, Elling et  al. (2016) showed a distribution of CQ6:0 
(86.1%), CQ6:1 (12.2%) for S. acidocaldarius, CQ6:0 (85.8%), CQ6:1 
(13.7%) for S. solfataricus, and SQ6:0 (42.9%), CQ6:0 (36.4%), and CQ6:1 
(14.6%) for S. islandicus as major quinone components, with traces of 
BDTQ6:0 (0.4%) only found in S. islandicus. An average 
semiquantitative distribution among the biological triplicates based 
on integrated peak area showed percentages of SQ4:0 (2.7), SQ4:1 (66.7), 
SQ5:0 (8.8), SQ5:1 (5.5), CQ4:1 (2.6), CQ5:1 (6.9), and BDTQ5:0 (6.8). Our 
findings present a shift from CQ to SQ, with SQ4:1 being the most 
abundant, as the preferred quinone with traces of BDTQ. For all three 
quinones, the detection limit was <2 ppm. These quinones differ in the 
primary ions detected, i.e., H+ for SQ and BDTQ, and Na+ for 
CQ. Comparing the identified CQs with the SQs, the retention time 
was reversed: SQ5:1 > SQ4:1 but CQ5:1 < CQ4:1. However, the relative 
proportions of quinones differ between Sulfolobales species. Therefore, 
adaptations to environmental conditions may be reflected in SQs, 
CQs, and BDTQs distributions (Elling et al., 2016). Profiling quinones 
may enable monitoring of shifts in microbial communities from oxic 
to anoxic conditions and allow archaeal diversity to be characterized, 
complementing membrane lipid- and gene-based approaches (Brassell 
et al., 1986; Hiraishi, 1999; Elling et al., 2016; Becker et al., 2018). 
Furthermore, thiophene-bearing quinones have been proposed to 
have potential as biomarker for astrobiological life detection owing to 
their durability and stability over geological timescales (Eigenbrode 
et al., 2018; Heinz and Schulze-Makuch, 2020; Geisberger et al., 2021). 
The mass spectrometry-based analysis conducted in our study 
confirm that it is possible to detect them in M. sedula grown on 
mineral materials.

3.3 Perspectives on environmental 
metabolomics

In this study, we provided a protocol for the analysis of metabolites 
from one species of Archaea grown on mineral materials in a 
laboratory setting. Metabolomics-based technologies have been 
shown to be useful to monitor biological responses in environmental 
studies (for examples, see Sardans et al., 2011; Chandran et al., 2020). 
To set the stage for environmental field studies of chemolithotrophic 
extremophiles where multiple species and minerals are present, one 
could perform experiments as an intermediate step, such as 
monitoring different species, or varying mineral substrates.

Moreover, acidophilic, chemolithotrophic, iron- and sulfur-
oxidizing microorganisms are major players in biomining processes 
and can be used to recover various metals from copper-, uranium-, 
and gold-bearing minerals and mineral concentrates (Rawlings, 2002, 
2005). As the metal recovery rate of biomining is directly linked to the 
microbial communities involved, multi-omics approaches could 
be applied to explore microbial diversity, metabolic characteristics, 
and resistance mechanisms in extreme environments. This way, the 
corresponding genes, enzymes, metabolites, and active metabolic 
pathways can be identified (Li and Wen, 2021). With our protocol, it 
was possible to identify metabolites and draw hypotheses about the 
metabolic pathways they are involved in, which could at some point 

lead to similar characterization for microorganisms with the potential 
for biomining operations.

4 Conclusion

To overcome the challenges associated with the extraction of 
microbial organic molecules from mineral materials, an improved 
extraction protocol has been devised and applied. By implementing a 
metabolomic approach, an overview of the metabolome of the iron- 
and sulfur-oxidizing archaeon M. sedula was proposed. 
We successfully identified key metabolites of M. sedula and ascribed 
them to their metabolic pathways. We detected molecules indicative 
of cell surface interactions involved in biofilm formation and acyl-
homoserine lactone (AHL) quorum sensing signaling molecules 
involved in cell–cell communication. Moreover, we  successfully 
analyzed and identified different saturated thiophene-bearing 
quinones in M. sedula. These metabolites are stable, resistant, and 
preservable biomarker under extreme conditions and can be preserved 
and extracted in many extreme environmental scenarios. The 
efficiency of this protocol may be limited by the differences in the 
solubility of the target molecules. This could be  circumvented by 
adapting the solvents chosen for liquid–liquid extraction. The present 
study further demonstrates the possibility of extracting metabolites 
from metallophilic Archaea, paving the way for metabolomics or even 
multi-omics investigations of microbe-mineral interactions in a 
number of biotechnological, environmental, and 
astrobiological applications.
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