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The human gut metacommunity 
as a conceptual aid in the 
development of precision 
medicine
Gerald W. Tannock *

Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand

Human gut microbiomes (microbiotas) are highly individualistic in taxonomic 
composition but nevertheless are functionally similar. Thus, collectively, they 
comprise a “metacommunity.” In ecological terminology, the assembly of human 
gut microbiomes is influenced by four processes: selection, speciation, drift, 
and dispersal. As a result of fortuitous events associated with these processes, 
individual microbiomes are taxonomically “tailor-made” for each host. However, 
functionally they are “off-the-shelf” because of similar functional outputs resulting 
from metabolic redundancy developed in host-microbe symbiosis. Because of this, 
future microbiological and molecular studies of microbiomes should emphasize 
the metabolic interplay that drives the human gut metacommunity and that results 
in these similar functional outputs. This knowledge will support the development 
of remedies for specific functional dysbioses and hence provide practical examples 
of precision medicine.
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Introduction

The colon of humans is colonized by a microbial community, commonly known as the gut 
microbiome (microbiota), that is composed mostly of bacterial species (Franzosa et al., 2015; 
Parizadeh and Arrieta, 2023). The community has been studied in detail from the 1970s using 
feces as a proxy for colon samples, with particular emphasis on taxonomic composition (“who 
is there?”) for the last 25 years. This became possible because of the availability and 
development of high throughput sequencing of bulk DNA extracted from feces, and 
subsequent sequence analysis (Franzosa et al., 2015; Parks et al., 2017; Asnicar et al., 2024; 
Parizadeh and Arrieta, 2023). In general, the community contains about twenty trillion 
bacterial cells in which members of the Bacillota (Firmicutes) and Bacteroidota (Bacteroidetes) 
form about 85% of the microbiome. Three bacterial families, the Lachnospiraceae, 
Ruminococcaceae, and Bacteroidaceae are well represented (White et al., 2014; Sender et al., 
2016; Rampelli et al., 2020). Much of the research interest in the gut microbiome has focussed 
on defining the taxonomic composition of the “normal” or “healthy” microbiome but this is 
an impossible goal due to the huge variance in microbiome compositional diversity between 
individual humans at genus, species, and strain levels (Turnbaugh et al., 2009; Ursell et al., 
2012; Shanahan et al., 2021). This article proposes that viewing the gut microbiome as a 
metacommunity which has functional consistency will aid the development of precision 
(personalized; individual) medicinal interventions to restore health.
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What is a metacommunity?

Communities are interactive assemblages of species that are 
characteristic of a specific habitat or ecosystem. The formation of 
communities is influenced by four processes: environmental selection 
(deterministic fitness differences among species), ecological drift 
(stochastic changes in species abundance), local diversification 
(creation of new species), and dispersal (spatial movement of species) 
(Vellend, 2010). These processes have been studied in relation to the 
human gut microbiome and observations that are pertinent to this 
article follow.

 1. Selection of bacterial species that have biochemical fitness 
determinants appropriate for catabolism of dietary components 
and host secretions is apparent among the members of the gut 
microbiome. Key indicators of selection are genetic features 
such as Polysaccharide Utilization Loci (PULs) that encode 
binding proteins, hydrolytic enzymes (carbohydrate-active 
enzymes), and transport proteins associated with the bacterial 
cell surface. Products of PULs sequester and degrade plant-
derived glycans that are common in human food (for example, 
resistant starch, hemicelluloses such as complex xylans, and 
pectins) (El Kaoutari et al., 2013; Grondin et al., 2017). At least 
some of these specialized bacteria are keystone species that 
initiate the catabolism of complex carbohydrates that 
subsequently fuel the metabolism of consortia (guilds) (Ze 
et al., 2012).

 2. Temporal drift in climax communities of individuals has been 
studied and, in general, the abundances of species is relatively 
constant over time (Faith et al., 2013). However, the influences 
of allochthonous factors such as dietary fiber, medications and 
environment are apparent (David et al., 2014; Tannock, 2021a; 
Nagata et al., 2022; Gacesa et al., 2022). The microbiomes of 
infants and children follow characteristic colonization patterns 
that are mostly influenced by trophic factors and are linked to 
dispersal of species (see below). The direct and indirect impact 
of endogenous factors such as predation by bacteriophages on 
species abundance has been measured in gnotobiotic mouse 
experiments and may have a modulating effect on some 
bacterial populations (Hsu et al., 2019). The ecological impact 
of bacteriocins and other antimicrobial substances encoded by 
biosynthetic gene clusters (BGC) is unknown (Tannock, 2022).

 3. Speciation can best be  understood by considering the 
widespread presence of bacterial strains (subsets of species) in 
the gut. Mutation of genes occurs commonly; de novo 
mutations are estimated at 2 × 109 to 6 × 1012 single nucleotide 
polymorphisms per microbiota per day. Gene loss and gene 
gain (by horizontal gene transfer) in bacterial species reveals a 
genetically mutable community in real time (Nielsen et al., 
2014; Zhao et  al., 2019). Consequently, strains of the same 
species differ in genetic characteristics where “core” genes 
common to all strains plus “dispensable” genes (variable 
presence) together comprising the pangenome, can 
be recognized (Medini et al., 2005; Truong et al., 2017).

 4. Dispersal refers to the movement (transmission) of species that 
establish or augment communities in other sites. In terms of 
the human gut microbiome, the gut of each new-born infant 
offers a pristine environment for colonization by bacterial 

species. The maternal fecal microbiome is a major source of 
bacterial strains during the first few months of life on the 
assemblage of the “new” community. Although vertical 
transmission is very important in this dispersal, horizontal 
transmission from paternal, family and environmental sources 
also occurs (Song et  al., 2013; Gaulke and Sharpton, 2018; 
Yassour et al., 2018; Tannock, 2021b; Gacesa et al., 2022; Valles-
Colomer et al., 2023; Dubois et al., 2024). A community of low 
diversity emerges to begin with that, while infants are suckled 
at the breast, is dominated by species that can catabolize human 
milk components including human milk oligosaccharides 
(Mills et  al., 2023). After weaning, this markedly trophic 
colonization is replaced by a more neutral (stochastic) model 
that is nevertheless driven by niche differentiation whereby 
bacterial species that catabolize dietary fiber and host 
secretions form the nucleus of a community that, especially in 
terms of emergent properties, eventually resembles that of 
adults in general (Leong et al., 2018; Lawley et al., 2019).

As a result of these processes, each person’s gut microbiome is like 
that of an island within an archipelago with a microbial assemblage 
that is individualistic with regards to taxonomic composition (Costello 
et al., 2012). These personal climax communities can be viewed as 
subsets of a “metacommunity” that are linked by the potential or 
actual dispersal of interacting species (Figure 1). Indeed, the dispersal 
of members of human microbiomes is not limited to early life. In work 
targeting 7,646 fecal samples from multinational sources, Valles-
Colomer et al. (2023) provided strain-level metagenomic evidence of 
microbiome dispersal between adults who shared environments 
(strain sharing rate about 12%). Greater proportions of shared strains 
were detected in oral microbiomes than in the case of the gut, but the 
data nevertheless support the view that the human gut microbiome is 
a metacommunity whose subsets are linked by potential dispersal and 
acquisition throughout life.

Despite variation in taxonomic composition, metacommunity 
islands have common functional attributes derived from symbiotic 
relationships between microbiome and host that have developed 
during co-evolution (Tannock, 2024a). This is particularly apparent 
through study of the interaction of species in food webs. Community 
food webs in the gut are interlocking and interdependent food chains 
that originate in the catabolism of complex dietary components (plant 
glycans) and host secretions (bile acids, mucins) and develop through 
cross feeding of simple carbohydrates, amino acids, vitamins, and 
organic acids (e.g., formate, fumarate, succinate, lactate, succinate) 
between species (Lindstad et al., 2021; Culp and Goodman, 2023). 
These trophic interactions are consistent with the concept of the 
provision of “public good services” by some species for collective 
benefit of the community (Morris et al., 2012).

Food webs, like pathways in cellular processes, are nonlinear 
networks that are controlled by feedback loops. “Interspecies hydrogen 
transfer” is a good example of a feedback loop in the gut. Hydrogen is 
produced during fermentations, but the environmental concentration 
is kept low in the gut ecosystem by hydrogen consumers using 
acetogenesis, dissimilatory sulfate reduction, hydrogenotrophic 
respiration, or methanogenesis. Fermentative bacteria can live in the 
colon at the limits of what is thermodynamically possible because 
NADH oxidation can be coupled to proton reduction under these low 
hydrogen concentrations (Stams and Plugge, 2009).
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Some metabolic functions within networks can be achieved by 
different biochemical pathways, hence different species may carry out 
the same function (metabolic redundancy, such as in butyrate 
production) (Pryde et al., 2002; Tian et al., 2020). Unrelated humans 
share 82% of bacterial metabolic pathways detected in fecal DNA but 
only 43% of bacterial species (Visconti et al., 2019). This helps to 
explain the taxonomic individualism, but similar metabolic outputs, 
of human gut microbiomes.

Measuring the “health” of the 
metacommunity

Most members of human gut microbiomes are obligate anaerobes 
that die within a short time under aerobic conditions, and many are 
autotrophs that require cross-feeding of nutrients from other 
community members (Tramontano et al., 2018; Nayfach et al., 2019). 
The logistical and technical difficulties of conducting large scale, 
culture-based analysis under these circumstances led to the adoption 
of metagenomic, phylogenetic comparisons of fecal microbiomes. Some 
studies using this technology indicated that the relative abundances of 
certain bacterial groups in fecal microbiomes indicated health or 
disease (Manor et al., 2020). Whether these differences were causative 
of disease or collateral damage due to disease could not be established 
by these observational studies. Relatively few human participants were 
sampled and there are numerous confounding factors that render it 
difficult to reproduce the results from one study to another (Sze and 
Schloss, 2016). More recent studies, using machine learning procedures, 
use data from larger groups of people and focus on bacterial strain 
differences (Manor et al., 2020). However, repeatability of these studies 
is also untested, and they sometimes seem to be inventories of microbial 
diversity rather than critical testing of hypotheses (Prosser, 2022).

An alternative school of thought in relation to defining a healthy 
microbiome has recently been published together with an overall 
framework for future developmental research (Tannock, 2024b). In brief, 
the proposal states that bioassays should be developed to measure the 
functioning of microbiomes. This would be analogous to the use of “lab 
tests” of peripheral blood, widely used in medical diagnostics. A range 
of metacommunity “normal values” would first be established to which 
values from individual microbiomes would be  compared. Potential 
bioassays to assess the health of the symbiosis between gut microbiome 
and human host include measuring undegraded plant glycans in fecal 
samples, fecal SCFA profiles, fecal bile acid profiles (for example, 
proportion of secondary bile acids), fecal mucin profiles, fecal agonists 
of G protein-coupled receptors (for example, short chain fatty acids and 
N-acyl amides), plasma/serum metabolomes, qPCR quantitation of 
bacterial genetic loci known to underpin catabolic features of symbiosis 
(for example, genes encoding carbohydrate-active enzymes [CAZymes]), 
and immune factors present in feces (for example, amounts of secretory 
IgA and calprotectin). It is proposed that these kinds of assays, informed 
by knowledge of community function, are likely to be more useful than 
taxonomic comparisons in differentiating healthy microbiotas from 
unhealthy because functional outputs of microbiomes are similar across 
the metacommunity of healthy humans.

Current research gaps in 
understanding the gut 
metacommunity

As mentioned previously, changes to gut community ecology may 
contribute to the increased prevalence of metabolic conditions (for 
example, obesity, cardiovascular disease, type 2 diabetes) in humans 
living in, or adopting, industrialized lifestyles. Altered functioning of 

FIGURE 1

The gut microbiome of humans represented as a metacommunity. Each human is inhabited by an ecological community that is different from that of 
other humans, but the communities are nevertheless linked by dispersal and modified by drift, speciation, and selection. They have similar emergent 
properties due to metabolic redundancy among the otherwise disparate bacterial constituents.
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the microbiome and hence altered host-microbe equilibrium 
(“dysbiosis”) might be  involved. If that is correct, remedial action 
might be possible.

Restoration in westerners of “missing microbes” cultured from 
people following non-industrialized lifestyles has been suggested but 
would probably not succeed because the diet of recipients is unlike 
that of the donors, so niches for them in the gut are lacking (De 
Filippo et al., 2010). It would take some strong arguments to persuade 
people in industrialized countries to make transitions to ancestral 
diets and lifestyle (Burger et al., 2012). Modulation of gut microbiome 
function of humans by less dramatic dietary intervention is realistic 
(Tannock, 2021a), but there needs to be much better evaluation of 
habitual diets of humans participating in microbiome trials (Renall 
et al., 2023). Ethnicity of human participants also needs to be recorded 
because dietary preferences and lifestyles may be influenced (Gaulke 
and Sharpton, 2018; Xu et al., 2020). Control human cohorts in gut 
microbiota studies are frequently described as “healthy” but 
anthropometric tests that show this to be valid, rather than relying on 
personal perceptions, should be used to confirm health status (Renall 
et al., 2023).

Gut transit time should be measured in every study of the gut 
microbiome because it is variable between humans and is influenced 
by the amount of dietary fiber that is consumed. Community function 
is influenced by transit time because slower passage of digesta through 
the colon allows time for catabolism of most dietary carbohydrates in 
the proximal colon. Bacterial metabolism in the distal colon then 
turns to the use of amino acids as substrates with the generation of 
branched SCFAs (isobutyrate, isovalerate). Thus, the metabolic profile 
of the community can vary according to temporal loading of nutrients 
in colonic regions (Roager et al., 2016; Vandeputte et al., 2016; Asnicar 
et al., 2021).

The gut metacommunity of humans continues to evolve. This is 
revealed by comparison of fecal microbiomes in samples collected 
from people who are nomadic hunter-gatherers in Africa, agrarian 
populations living in countries where industrialization is minimal, in 
developed countries that are highly industrialized, and people who are 
in transition (migrants) between non-industrialized and industrialized 
regions or countries (De Filippo et  al., 2010; Vangay et  al., 2018; 
Schnorr et al., 2014; Shanahan et al., 2022; Tamburini et al., 2022; 
Blanco-Míguez et  al., 2023; Carter et  al., 2023). In general, 
industrialization selects for gut communities of lower diversity due to 
consumption of diets containing more refined grains, and less coarse 
dietary fiber (De Filippo et al., 2010). More studies on the microbiomes 
of non-western societies are required because they may reveal further 
molecular specializations of gut bacteria that are critical to catabolism 
of plant glycans. These studies will also define the “normal values” of 
ecosystem function for Asian and other societies.

Curing dysbiosis means that restoration of the gut ecosystem must 
occur. To do this, we need to know what the ecosystem was like, 
especially how it functioned, when it was healthy (Wainwright et al., 
2018). For example, we  might gain an appreciation of ecosystem 
function by focussing on nutritional features, such as cross-feeding, 
that are essential for promoting community diversity (Germerodt 
et al., 2016). There is a need to continue to investigate the ecological 
importance of spatial heterogeneity in the colon, especially the 
possibility that there are multiple habitats associated with complex 
plant glycan molecules (Pereira and Berry, 2017; Tannock and 
Taylor, 2017).

As summarized in Figure 2, the use of culture-based experiments 
with “synthetic” microbial communities may be  advantageous in 
future research because they could model specific functions occurring 
in the gut ecosystem that can in turn be modulated by interventions 
(Widder et  al., 2016; Brüls et  al., 2021). These model, in vitro 
communities could have simplified bacterial diversity yet perform the 
complex functions observed in vivo and could be investigated by gene 
transcription and biochemistry to generate regulatory information 
(“how does it work?”) especially in relation to temporal nutrient 
switching, which may be an important feature of bacterial residency 
in the colon (Centanni et al., 2020a). Enrichment cultures, from which 
models could be derived using medium containing a specific plant 
glycan and a fecal inoculum, could be useful because metabolically 
cohesive, bacterial consortia, about which we  know little, would 
be enriched and the rules that drive their formation would be revealed 
(Pascual-García et  al., 2020). Work with co-cultures, preferably 
performed under lotic conditions such as in chemostats (steady-state 
conditions), provide opportunities for replication of experiments and 
hence improve reproducibility and statistical confidence, and potential 
for mathematical modeling (Kettle et al., 2015; Zomorrodi and Segrè, 
2016; Centanni et al., 2019; Centanni et al., 2020b; Liu et al., 2020; 
Mabwi et  al., 2020; Sims and Tannock, 2020; Shetty et  al., 2022; 
Gianetto-Hill et  al., 2023). Mutation of specific genes can test 
ecological fitness of bacteria showing the importance of specific 
bacterial attributes in underpinning symbiont life in the gut (Sims 
et al., 2011; Wilson et al., 2012; Tannock et al., 2012; Wilson et al., 
2014). Overall, studying molecular details of the metacommunity 
should reveal intriguing details about how it came to be the way it is 
today, how its “health” can be better measured, and how it might 
be remediated for medical purposes.

Potential future developments to 
restore microbiome function using 
precision medicine

Personal gut microbiomes, collectively, form a conceptual 
metacommunity that has functional criteria consistent with “health” 
of the microbial community. The taxonomic composition of personal 
microbiomes is “tailor-made” by fortuitous events associated with 
selection, drift, speciation, diversification, and dispersal. However, 
ecological functions are similar across the metacommunity due to 
selection of metabolic redundancies, so functionality is “off-the-shelf ” 
regardless of taxonomic composition. This means that restorative 
measures to achieve health can avoid the difficulties associated with 
altering the taxonomic composition of the microbiome (which is 
vastly different between individual humans) and can focus instead on 
correction of specific functional differences. However, an 
understanding of how the metacommunity “works” is required to 
develop practical solutions.

The idea that health care can be tailored according to the patient’s 
genotype, environment and lifestyle rather than the expected 
responses of an “average patient” underpins the concept of “precision” 
(“personalised,” “individualised”) medicine (Kuntz and Gilbert, 2017; 
Petrosino, 2018; McCormick and Chang, 2021). Applied to the gut 
microbiome, the aim would be to remediate dysbiosis revealed by 
bioassays of microbiome functions using personalized treatments, 
rather than traditional probiotic and/or prebiotic approaches based on 
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merchandising “wellness.” Precision medical approaches are feasible 
because responses to dietary supplementation with plant glycans (for 
example, response to doses of arabinoxylan or resistant starch) are 
variable among humans (Martínez et al., 2010; Nguyen et al., 2020; 
Holmes et al., 2022; Lancaster et al., 2022) thus providing possibilities 
of personalized nutrition. The scope of this kind of work has expanded 
recently because of better analytical methods to determine and modify 
glycan chemistry (Amicucci et al., 2019; Michalak et al., 2020; Tuncil 
et al., 2020; Deehan et al., 2020; Cantu-Jungles et al., 2021; Castillo 
et  al., 2022; Couture et  al., 2024), coupled with ever expanding 
knowledge of the biochemical diversity of plant cultivars, as well as an 
interest in using processed plant wastes to prepare novel foods for 
human consumption (Delannoy-Bruno et al., 2021).

Admittedly, a dysbiotic gut community might lack the microbial 
mechanisms that drive normal functions (for example, catabolism of 
resistant starch) (Walker et al., 2011). There could, therefore, be a need 
to prepare commercial, multi-component bacterial consortia with 
prescribed functional attributes and to transfer the artificial 
community to specific humans. This might be accomplished by a dose 
of a “defined function consortium” administered orally or by enema. 
This is analogous to restoring a disturbed colon community by means 
of “faecal microbiota transplant” (FMT) which is useful in treating 
some cases of Clostridioides difficile infection and may also be useful 
in ameliorating disrupted transfer of gut bacteria to children that have 
been delivered by cesarean section. However, the biology of FMT is 
ill-defined and not free of medical risk so inoculation with laboratory 
assembled consortia would be a sensible development (Gilbert and 
Lynch, 2019; Burke and Lamont, 2013; Smillie et al., 2018). Much 
work is required to not only develop pertinent consortia to achieve 
this goal, but also to prepare preparations that retain viability for use 
as inoculants, as well as details of dose and dosing schedule. Although 

the microbiome may be more malleable temporally than previously 
thought (Valles-Colomer et al., 2023), colonization resistance may be a 
limiting factor.

Considerations of the restoration of dysbiotic microbiomes 
based on knowledge of the human gut metacommunity has 
implications in another area of precision medicine, that of responses 
to cancer therapy. Receptor-ligand interactions (for example, PD-1, 
PD-L1) are associated with the ability of T-cells to differentiate 
between healthy human cells and potential pathogens. Unfortunately, 
cancer cells can co-opt this “immune checkpoint” system to avoid 
the destructive attentions of T-cells. Immunoglobulin administration 
is used to enhance therapy of several types of cancer by interfering 
with this immune checkpoint blockade (ICB). Destruction of cancer 
cells by T-cells is enhanced, although healthy cells are also affected. 
Curiously, not all patients respond equally to ICB treatment. Prior 
treatment with antibiotics reduces efficacy, indicating an influence 
of the gut microbiome. Research results using germfree and 
gnotobiotic mice suggest that some members of the microbiome 
promote response to ICB but this work is difficult to reconcile with 
human patients because the murine gut microbiome is dominated 
by different taxa and is differently distributed in the gut compared 
to humans (Cammarota et al., 2020; Fernandes et al., 2022; Park 
et al., 2023). Nevertheless, precision modulation of the human gut 
microbiome of cancer patients to enhance ICB could be  useful 
spin-off technology from development of functional adjustments to 
restore healthy microbiomes.

Clearly, the starting point for future research is the development 
of bioassays (such as those outlined above) and others (such as 
catabolism of resistant starch and hemicelluloses) (Walker et  al., 
2011), by which health standards can be set in relation to the human 
gut metacommunity. Functional dysbiosis will then be recognizable 

FIGURE 2

Research with cultured, defined or non-defined bacterial communities fed plant glycans and characterized phylogenetically, genetically, 
transcriptionally, and metabolically are suggested as starting points to reveal the consortia that drive the energetics of the community in relation to 
specific growth substrates. These experiments could identify keystone species and explain the individualism of gut microbiomes which are 
nevertheless similar in emergent properties because of metabolic redundancy. Potentially useful information about bacterial growth substrates for use 
in ecosystem restoration could be gained.
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in personal microbiomes of patients, and restorative procedures could 
be developed. “Precision functional restoration” will be the goal of this 
exciting research focussing on the human-microbiome symbiosis.
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