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Introduction: Long-term domestication in high-altitude environments has led 
to unique changes in the gut microbiota of Tibetan Pigs. This study aims to 
investigate specific alterations in the intestinal flora of Tibetan Pigs compared 
to Yorkshire pigs.

Methods: We employed 16S rRNA and metagenomic sequencing technologies 
for comprehensive analysis of the gut microbiota. The data collected allowed us 
to assess microbial community structures and functional capabilities.

Results: Our analysis revealed that Tibetan Pigs raised under a “free-range + 
supplementary feeding” model exhibited increased abundance of microbial 
communities associated with short-chain fatty acid synthesis and the 
digestion of cellulose and hemicellulose. Notably, the characteristic bacterium 
Rhodococcus, commonly found in high-altitude environments, was enriched in 
the gut microbiota of Tibetan Pigs, facilitating the efficient utilization of natural 
compounds and degradation of toxic substances. Additionally, the increased 
abundance of probiotics in these pigs enhances their immunity, which may 
involve mechanisms such as disrupting the structure of pathogenic bacteria and 
detoxifying harmful metabolites.

Discussion: These findings underscore the advantages of Tibetan Pigs over 
common commercial breeds, highlighting their unique gut microbiota adaptations. 
Furthermore, they open new avenues for screening potential probiotics and 
developing genetic breeding strategies for improved livestock varieties.

Conclusion: Understanding the distinct gut microbiota of Tibetan Pigs provides 
valuable insights into their health benefits and resilience, contributing to future 
research on breed improvement and microbiome applications in agriculture.
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1 Introduction

The Tibet pig is a unique indigenous fatty-type breed in China, 
primarily found in the Tibet Autonomous Region, Sichuan Province, 
Yunnan Province, and Gansu Province. It is characterized by strong 
fat deposition capability, disease resistance, stress tolerance (Shang 
et al., 2022), adaptation to low-oxygen conditions (Ma et al., 2019; 
Yang et al., 2022), and resilience to roughage. The Yorkshire pig is a 
classic lean meat breed and ranks among the most widely raised pig 
breeds worldwide. It is celebrated for its rapid weight gain, efficient 
feed conversion, and notable yield of lean meat. In contrast to the 
large-scale intensive farming methods used for Yorkshire pigs, Tibetan 
pigs are typically raised using a blend of high-altitude grazing and 
confinement. This allows them to consume more high-fiber foods 
during feeding. The distinct living environment and husbandry 
practices contribute to Tibetan pigs’ enhanced disease resistance while 
also showcasing excellent fat deposition characteristics (Niu 
et al., 2022).

As a vital part of the gut microbiota, intestinal bacteria profoundly 
influence the host’s health and physiological functions. Primarily, they 
impact the host’s metabolism. In the human body, dietary fibers such 
as lignin, non-starch polysaccharides, resistant starch (RS), and 
oligosaccharides resist digestion by host enzymes, thereby impeding 
normal absorption and utilization (Anderson et al., 2009). However, 
gut microbiota possess a variety of enzymes that metabolize these 
diverse carbohydrates, breaking them down into short-chain fatty 
acids and small amounts of organic acids for absorption and utilization 
by the human body (Louis and Flint, 2009). Undigested proteins can 
also be degraded by extracellular bacterial proteases and peptidases 
into peptides, amino acids, and other metabolites. This process plays 
a crucial role in regulating the gut–brain axis and maintaining the 
host’s nitrogen balance (Adak and Khan, 2019). Furthermore, the gut 
microbiota regulates the immune system by interacting with immune 
cells in extraintestinal organs through various mechanisms. Gut 
microbiota directly influences immune cell function and activity by 
adhering to cell surfaces or being engulfed by phagocytic cells (Iimura 
et  al., 2005). They can also activate immune cells by binding to 
receptors on the surfaces of intestinal epithelial cells and macrophages, 
thereby triggering immune responses and pro-inflammatory signals. 
This interaction further regulates the activity of immune cells (Ivanov 
et al., 2008). At the same time, the gut microbiota communicates with 
immune cells by producing metabolites such as short-chain fatty acids 
and other microbial molecules. These metabolites directly regulate the 
activity and function of immune cells, impacting their proliferation, 
differentiation, and production of effector molecules (Hubbard et al., 
2015; Morrison and Preston, 2016). The gut microbiota is intricately 
linked to the onset of diseases. For instance, a decrease in bacteria 
belonging to the phylum Bacteroidetes and an increase in Firmicutes 
and Proteobacteria can result in excessive fat accumulation, thereby 
contributing to obesity (Torres-Fuentes et al., 2017; Duan et al., 2021). 
In addition, certain metabolites produced by the gut microbiota have 
been demonstrated to induce colorectal cancer and renal dysfunction 
(Iatcu et al., 2021; Bai et al., 2022).

Through adaptation to high-altitude environments, the gut 
microbiota of Tibetan pigs have undergone distinctive alterations. 
Research indicates that Tibetan pigs, compared to those raised at low 
altitudes, show a significantly higher abundance of Fibrobacteres in 
the gut, along with increased levels of carbohydrate utilization genes 
and α-diversity indices (Zeng et  al., 2020). Building on previous 

studies, this research aimed to delve deeper into the distinct changes 
in composition and functional dynamics of the gut microbiota in 
Tibetan pigs.

2 Materials and methods

2.1 Sample and trait data collection

Fecal samples were collected from Tibetan pigs in Xiangcheng 
County, Ganzi Tibetan Autonomous Prefecture, Sichuan Province, 
and Yorkshire pigs in Fushun County, Zigong City, Sichuan Province. 
A total of six Tibetan pigs and six Yorkshire pigs were slaughtered for 
sampling. The Tibetan pigs were sourced from local farmers, while the 
Yorkshire pigs were selected from a breeding farm, ensuring that all 
animals were sexually mature and met the slaughter weight standards. 
Prior to slaughter, all pigs had free access to water and feed but were 
fasted for 24 h while still allowed to drink water. Fecal samples were 
collected within 10 min post-slaughter and immediately placed on dry 
ice before being transferred to a − 80°C freezer for storage.

2.2 16S rRNA and metagenomic 
sequencing of fecal microbiota DNA

The collected fecal samples were sent to Beijing NovogeneAIT 
Genomics Technology Co., Ltd. for total DNA extraction, DNA 
quality assessment, and library preparation for sequencing. Each fecal 
sample underwent sequencing of the 16S rRNA gene V3-V4 region 
and metagenomic sequencing. The Illumina NovaSeq platform 
(PE250) was used for 16S rRNA sequencing, while the Illumina 
platform was used for metagenomic sequencing (PE150).

2.3 Bioinformatic analysis of fecal 16S rRNA 
sequencing data

The 16S rRNA data were analyzed using Qiime2 (v2022.8.3) 
software and its integrated plugins. Initially, the qiime tools import 
plugin was used to import single-end 16S rRNA sequencing data. 
Subsequently, the qiime dada2 denoise-paired plugin and qiime 
feature-table filter-features plugin were used to denoise and filter 
the raw data. The filtered data were then used to construct a 
phylogenetic tree using the qiime phylogeny align-to-tree-mafft-
fasttree plugin. For α-diversity and β-diversity analyses, the qiime 
diversity core-metrics plugin was utilized. Species annotation was 
performed using the qiime feature-classifier plugin. Finally, 
functional prediction of OTU abundance tables was carried out 
using PICRUSt2 (v2.5.2).

2.4 Bioinformatic analysis of fecal 
metagenomic sequencing data

Raw data obtained from the Illumina sequencing platform were 
processed using Trimmomatic (v0.39) software to obtain clean data. 
Subsequently, Bowtie2 software was used to align the clean data with 
the pig reference genome sequence (Sus11.1) to filter out reads 
possibly originating from the host (Karlsson et al., 2012, 2013; Scher 
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et  al., 2013). The clean data obtained from quality control were 
assembled into scaftigs using Megahit (v1.2.9) software (−-presets 
meta-large) for individual samples, removing host sequences, and 
filtering out fragments less than 500 bp in length (Li et al., 2014; Zeller 
et al., 2014; Sunagawa et al., 2015). These assemblies were used for 
subsequent gene prediction. MetaGeneMark (v3.42) software was 
used to predict open reading frames (ORFs) from the assembly results 
of each sample, filtering out results shorter than 100 bp. Subsequently, 
CD-HIT (v4.8.1) software was used to construct non-redundant gene 
sets (parameters: -c 0.95, −G 0, -aS 0.9, −g 1, −d 0). Finally, Bowtie2 
(v2.5.1) was used to map clean data to the non-redundant gene sets to 
obtain reads count per gene in each sample, filtering out genes with 
reads count ≤2. The remaining unigenes were used for subsequent 
analyses (Oh et  al., 2014; Qin et  al., 2014). DIAMOND (v2.1.8) 
software was used to align unigenes with sequences extracted from the 
NCBI NR (Version: 2023.03) database, encompassing bacteria, fungi, 
archaea, and viruses, to obtain taxonomic annotation information. 
Unigenes were also compared with the KEGG database for functional 
annotation information. In cases where a unigene had multiple 
annotation results, alignments with an E-value ≤ Min E-value * 10 
were selected for further analysis. In the LEfSe analysis for identifying 
differential bacterial communities, a threshold of |LDA score| > 2 and 
p-value <0.05 was chosen to broadly identify significant differences in 
bacterial populations (Qi-Xiang et al., 2022; Yu et al., 2022).

3 Results

3.1 Overview of trait statistics and data 
quality

After completing data preprocessing steps, including quality 
control, noise reduction, and alignment, over 90% of the metagenomic 
data remained available for subsequent analysis, averaging 99.71%. 
For the 16S rRNA data, following quality control and denoising, 
effective data retention rates ranged from 84.08 to 90.15% across all 
samples, with a mean of 87.76% (Supplementary Table S1). 
Furthermore, according to measurements of body weight and 
dimensions, adult Tibetan pigs demonstrate significantly lower body 
weight and smaller physique compared to Yorkshire pigs, highlighting 
a considerable contrast between these two breeds (Table 1).

3.2 Significant differences in gut 
microbiota diversity between Tibetan pigs 
and Yorkshire pigs

Based on 16S rRNA sequencing data, we  analyzed the species 
diversity between two populations. The α-diversity results revealed that 
the Chao1 index, Shannon index, Simpson index, and observed OTUs 
of gut microbiota in Tibetan pigs were significantly higher than those 
in Yorkshire pigs (Figures 1A–D). β-diversity analysis using Bray–Curtis 
and Jaccard distances indicated distinct clustering of Tibetan pigs and 
Yorkshire pigs in the PCoA plot within the 99% confidence interval 
(Figures 1E,F). The diversity analysis of the 16S rRNA data demonstrated 
significant differences in species diversity and structural composition of 
intestinal flora between Tibetan pigs and Yorkshire pigs, with Tibetan 
pigs showing significantly higher species diversity in their intestinal flora.

3.3 Comparative analysis of gut microbiota 
structure and function between Tibetan 
pigs and Yorkshire pigs

Based on 16S rRNA data, species annotation and functional 
prediction analyses of OTUs obtained from Tibetan pigs and Yorkshire 
pigs were conducted. The species annotation results revealed that at 
the phylum level, Firmicutes (70.41% vs. 51.28%), Bacteroidota 
(18.68% vs. 29.09%), and Spirochaetota (3.75% vs. 17.67%) were the 
three predominant gut microbiota in Tibetan pigs and Yorkshire pigs 
(Figure 2A). At the genus level, the top three genera in Tibetan pigs 
and Yorkshire pigs were Christensenellaceae_R-7_group (10.22% vs. 
13.11%), Treponema (3.75% vs. 17.66%), and Lactobacillus (8.32% vs. 
2.34%) (Figure 2C). After LEfSe analysis (p < 0.05, |LDA| > 2), a total of 
8 differential phyla (Figure 2B) and 53 differential genera (Figure 2D) 
were identified between the two populations. Tibetan pigs exhibited 
an increased abundance of Firmicutes and a decreased abundance of 
Bacteroidota and Spirochaetota at the phylum level. At the genus level, 
further analysis revealed significant reductions in Prevotellaceae, 
which plays a role in intestinal flora homeostasis (Zhou et al., 2021; 
Sánchez-Pérez et al., 2022), in Tibetan pigs. Conversely, genera such as 
Dorea, Eubacterium, Butyricicoccus, and Lachnospiraceae, known as 
potential intestinal probiotics, were significantly enriched in Tibetan 
pigs (Geirnaert et al., 2014; Mukherjee et al., 2020; Vacca et al., 2020; 
Xu et al., 2021). In addition, Rhodococcus (Kim et al., 2018; Alvarez 
et al., 2021), a genus characteristic of high-altitude environments, was 
also found to be significantly more abundant in Tibetan pigs.

In the results of functional prediction using the KEGG database at 
level 1 and level 2 pathways, significant differences between Tibetan pigs 
and Yorkshire pigs were predominantly observed in metabolic pathways, 
including carbohydrate, lipid, and amino acid metabolism (Figure 3A). 
Furthermore, principal component analysis (PCA) indicated that the 
functional distinctions between Tibetan pigs and Yorkshire pigs were 
not pronounced, likely due to substantial intra-group variations among 
Tibetan pigs (Figure 3B). Based on differential analysis of EC-level 
pathways in the KEGG database, a total of 26 pathways showed 
significant differences (Figure 3C). The three pathways with the most 
pronounced distinctions were fliB: lysine-N-methylase pathway, purN: 
phosphoribosylglycinamide formyltransferase 1 pathway, and rfbA,rffH: 
glucose-1-phosphate thymidylyltransferase pathway (Figures 3D–F). 

TABLE 1 Statistical analysis and t-test results of weight and body size in 
Tibetan and Yorkshire pigs.

Traits Breed P-
value

Tibetan 
pig

Yorkshire 
pig

Weight (kg) 37.5 ± 1.44 102.33 ± 7.94 <0.0001

Body length (cm) 73.0 ± 1.26 108.67 ± 5.32 0.0022

Head length (cm) 20.58 ± 1.02 24.83 ± 1.33 <0.0001

Chest circumference (cm) 65.17 ± 1.94 99.67 ± 2.79 <0.0001

Chest width (cm) 16.5 ± 1.61 27.75 ± 1.41 0.0022

Chest depth (cm) 25.17 ± 1.72 34.83 ± 2.14 <0.0001

Abdominal circumference (cm) 75.83 ± 4.96 103.67 ± 2.18 <0.0001

Hip circumference (cm) 67.5 ± 6.19 117 ± 7.51 <0.0001

Shank circumference (cm) 11.58 ± 0.8 17.25 ± 0.76 0.0022
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Among them, fliB, influencing Salmonella colonization in the host’s 
intestinal tract (Horstmann et al., 2020), and purN, associated with 
Staphylococcus aureus antibiotic resistance (Peng et  al., 2022), were 
found to be enriched in Tibetan pigs. In contrast, rfbA/rffH, involved 
in antibacterial compound synthesis (Sepúlveda-Correa et al., 2021), 
exhibited enrichment in Yorkshire pigs.

In summary, despite Tibetan pigs displaying a higher abundance 
of probiotics in their intestines, which aids in maintaining intestinal 
stability, functional prediction results indicate that these alterations in 
the gut microflora might not effectively combat environmental 
bacterial invasions.

3.4 Exploring gut microbiome differences 
between Tibetan pigs and Yorkshire pigs 
based on metagenomic analysis

Based on metagenomic sequencing data, unigenes were 
constructed through quality control, assembly, and redundancy 
removal for subsequent analysis. A total of 175 annotated phyla were 
identified from the unigene. The dominant phyla in the gut 
microbiota of Tibetan pigs and Yorkshire pigs were Firmicutes 
(70.02% vs. 58.70%), Bacteroidetes (16.30% vs. 20.72%), and 
Proteobacteria (3.23% vs. 10.79%). Analysis of similarity (ANOSIM) 
and PCA further underscored significant differences in gut 
microbiota composition between Tibetan pigs and Yorkshire pigs 
(Figures 4A–C). LEfSe analysis revealed notable distinctions in the 
gut microbiota profiles of the two breeds (Figures 4D). Tibetan pigs 

exhibited significantly higher abundances of 9 phyla including 
Actinobacteria and Fibrobacteres, while Yorkshire pigs showed 
significantly higher abundances of 12 phyla including Spirochaetes 
and Bacteroidetes.

At the genus level, Clostridium (18.61% vs. 16.22%) was found to 
be predominant in both Tibetan pigs and Yorkshire pigs, followed by 
Prevotella (7.80% vs. 8.32%) and Ruminococcus (7.66% vs. 3.10%). 
ANOSIM and PCA confirmed significant differences in gut microbiota 
composition between Tibet pig and Yorkshire pig populations at the 
genus level (Figures  4E–G). LEfSe analysis highlighted specific 
differences in genus abundance between the Tibet pig and Yorkshire pig 
(Figure 4H). Tibetan pigs exhibited a significantly higher abundance of 
172 genera including Bacteroides, Spirochaeta, and Pseudoflavonifractor. 
In contrast, Yorkshire pigs showed a significantly higher abundance of 
30 genera including Prevotella, Phascolarctobacterium, and Megamonas 
than Tibetan pigs.

Overall, these findings highlight substantial differences in gut 
microbiota composition between Tibetan pigs and Yorkshire pigs, 
emphasizing the role of the breed in shaping microbial communities 
within the gut.

3.5 Consistency in functional predictions 
between metagenomics and 16S rRNA 
analysis

Similar to predictions based on 16S rRNA analysis, Tibetan pigs and 
Yorkshire pigs show notable differences in level 1 and level 2 pathways 

FIGURE 1

α- and-β diversity analysis results of 16S rRNA data between Tibetan Pigs and Yorkshire pigs: (A–D) α-diversity statistics of 16S rRNA data between 
Tibetan pigs and Yorkshire pigs, including Chao1 index, Shannon index, Simpson index, and number of observed OTUs and (E and F) β diversity PCoA 
results of 16S rRNA data between Tibetan Pigs and Yorkshire pigs, represented by PCoA plots based on Bray–Curtis distance and Jaccard distance.
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according to metagenomic analysis (Figures 5A,B). However, in contrast 
to the 16S rRNA predictions, the functional disparities identified 
through metagenomic analysis primarily center around pathways 
related to disease, such as cardiovascular disease, Drug resistance: 
antimicrobial pathways, the second is the metabolism pathway. It is 
noteworthy that the metabolic-related pathways predicted by 
metagenomic functional analysis align closely with the predictions from 
16S rRNA analysis. These pathways include carbohydrate metabolism, 
energy metabolism, global and overview maps, and pathways related to 
glycan biosynthesis and metabolism. Further analysis of EC-level 
pathways revealed 15 pathways that differed significantly between 
Tibetan pigs and Yorkshire pigs (Figure  5C). The three pathways 
showing the most pronounced differences were the RimJ: alanine 
N-acetyltransferase pathway, MnmA,TrmU: tRNA-uridine 
2-sulfurtransferase pathway, and dapA: 4-hydroxy-
tetrahydrodipicolinate synthase pathway (Figures  5D–F). All three 
pathways were notably enriched in Tibetan pigs. Specifically, rimJ 
inhibits transcription in response to environmental stimuli in E. coli 
(White-Ziegler et  al., 2002), mnmA and trmU are essential for 
synthesizing the broad-spectrum antiviral nucleoside analog 
2-thiouridine (Kambampati and Lauhon, 2003), while dapA regulates 
bacterial adhesion (Soo et al., 2005). Similar to the functional predictions 
derived from 16S rRNA analysis, the metagenomic functional 
predictions also indicate that the gut microbiota of Tibetan pigs play a 
significant role in maintaining intestinal stability. However, they may 

exhibit deficiencies in functions related to resisting bacterial invasion 
and colonization.

4 Discussion

As a unique local breed in China, Tibetan pigs exhibit excellent 
tolerance to coarse feed, along with superior capability for fat deposition 
compared to Yorkshire pigs, and stronger resilience to adversity. The 
gut microbiota composition in Tibetan pigs differs significantly from 
that in Yorkshire pigs, reflecting their distinct α and β diversity patterns. 
Tibetan pigs exhibit significantly higher α diversity, which aligns with 
previous research indicating the impact of their feeding practices on 
microbiota diversity and immune enhancement (Zeng et al., 2020). The 
16S rRNA species annotation results indicated that Tibetan pigs exhibit 
an increased abundance of Firmicutes and a decreased abundance of 
Bacteroidetes and Spirochaetes. Studies on Min pigs (Zhao et al., 2022) 
suggested that decreased Firmicutes and Bacteroidetes, along with 
Spirochaetes, are characteristic of intestinal flora in pigs with colon 
cancer. These microbial changes are closely associated with 
inflammatory responses in the pig intestine. In Tibetan pigs, these 
alterations potentially contribute to maintaining intestinal stability and 
reducing inflammation occurrence. The characteristic genus 
Rhodococcus (Kim et al., 2018; Alvarez et al., 2021) is notably enriched 
in Tibetan pigs inhabiting high-altitude environments. These bacteria 

FIGURE 2

Based on 16S rRNA data species annotation results: (A,B) species annotation and LEfSe analysis results of phylum level; (C,D) species annotation and 
LEfSe analysis results of genus level.
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possess the ability to decompose and transform various natural 
compounds through diverse metabolic pathways. Moreover, they 
exhibit tolerance to toxic substrates and solvents, aiding Tibetan pigs in 
adapting to the challenging conditions of high altitudes. However, the 
functional prediction results indicate significant changes. In addition 
to an increase in pathways affecting Salmonella toxicity in Tibetan pigs, 
there is a decrease in pathways associated with Staphylococcus aureus 
resistance and antibacterial compound synthesis. Overall, these 
differential pathway results suggest that Tibetan pigs may be more 
susceptible to Salmonella, with diminished capacity to synthesize 
antibacterial substances. Considering the robust resistance of Tibetan 
pigs, it is hypothesized that their complex intestinal flora plays a crucial 
role in detoxification. This flora likely maintains homeostasis in the 
intestinal environment by either disrupting the integrity of the bacterial 
structure or degrading toxic compounds. Changes in the abundance of 
highly metabolically and degradative-capable bacteria, such as 
Rhodococcus, further support these speculations.

Previous studies have demonstrated that supplementing roughage 
in the diet enhances the populations of fiber-degrading bacteria and 
increases the production of short-chain fatty acids in Tibetan pigs. 
This dietary intervention plays a crucial role in strengthening their 
immune defenses (Gao et al., 2022). Metagenomic sequencing data 
analysis highlights significant differences in microbial genus between 
the two pig populations. Notably, the abundance of Oscillospira in 
Tibetan pigs is markedly higher, known for its role in maintaining 
immune stability across various growth stages (Zafar and Saier Jr, 

2021). Other genera such as Pseudoflavonifractor, Parabacteroides, 
and Butyrivibrio, also identified with increased abundance in Tibetan 
pigs, contribute to short-chain fatty acid production essential for gut 
health and metabolic functions. Among these genera, 
Pseudoflavonifractor contributes to the production of short-chain fatty 
acids to maintain intestinal homeostasis (Borda-Molina et al., 2016). 
Parabacteroides, in addition to its physiological characteristics in 
carbohydrate metabolism and secretion of short-chain fatty acids (Cui 
et al., 2022), also plays a role in alleviating obesity and metabolic 
disorders (Wang et al., 2019). Butyrivibrio is one of the most common 
bacteria in the rumen microbiota of ruminants but is also found in 
the gastrogut microbiota of mammals (Rodríguez Hernáez et  al., 
2018). Its primary function involves the degradation of plant 
polysaccharides and the fermentation of released monosaccharides to 
produce short-chain fatty acids (Palevich et al., 2019; Zhu et al., 2022). 
The high abundance of Rhodococcus (Kim et al., 2018; Li et al., 2018) 
in Tibetan pigs suggests that they possess enhanced metabolic 
detoxification abilities, which help maintain intestinal homeostasis. 
On the other hand, Campylobacter, known as a pathogen causing 
intestinal diseases such as enteritis and diarrhea, shows a significantly 
reduced presence in Tibetan pigs, indicating a lower risk of diarrhea 
in this population (Moore et al., 2005). In the functional prediction 
results of the metagenome, consistent findings were observed 
compared to the 16S rRNA functional predictions. There was an 
increase in pathways associated with bacterial invasion and 
colonization within the Tibet pig population, while certain pathways 

FIGURE 3

Functional prediction based on 16S rRNA data: (A) KEGG pathway heatmaps at level 1 and level 2; (B) PCA results of functional pathway prediction for 
Tibetan pigs and Yorkshire pigs; (C) differential pathways between Tibetan pigs and Yorkshire pigs; and (D–F) grouped bar chart of top 3 differential 
pathways between Tibetan pigs and large white pigs.
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FIGURE 4

Species annotation at the phylum and genus levels and differential microbial community analysis between Tibetan pigs and Yorkshire pigs: The stacked species 
distribution diagram at phylum (A–D) and genus (E–H) levels, ANOSIM results, PCA results, and LEfSe analysis results for Tibetan pigs and Yorkshire pigs.

FIGURE 5

Functional prediction based on metagenome data: (A) KEGG pathway heatmaps at level 1 and level 2; (B) PCA results of functional pathway prediction 
for Tibetan pigs and Yorkshire pigs; (C) differential pathways between Tibetan pigs and Yorkshire pigs; and (D–F) grouped bar chart of top 3 differential 
pathways between Tibetan pigs and large white pigs.
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linked to antibacterial or antiviral synthesis showed decreased 
abundance. In summary, the exceptional disease resistance of Tibetan 
pigs is attributed to their robust immunity. However, prolonged 
exposure to the natural environment while being fed may 
predominantly affect their ability to combat pathogens and metabolize 
harmful substances. Nevertheless, specific changes or effects require 
further investigation.

5 Conclusion

This study explored the differences in gut microbiota between 
Tibetan pigs and Yorkshire pigs using multi-omics approaches. It 
was found that under the “free-range + supplementary feeding” 
model, Tibetan pigs exhibited enhanced capabilities in short-chain 
fatty acid synthesis, as well as digestion of cellulose and 
hemicellulose. Moreover, unique gut genera such as Rhodococcus 
prevalent in high-altitude environments, contributed to Tibetan Pigs 
degrade a variety of natural compounds or metabolize toxic 
substances. In addition, the higher abundance of probiotics in the 
intestinal tract of Tibetan pigs likely plays a crucial role in 
maintaining intestinal homeostasis. These probiotics contribute to 
this balance through their potent bactericidal abilities and their 
capacity to metabolize toxic substances.
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