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Asparagus cochinchinensis is a medicinal plant in China, which has gained 
attention owing its protective effect in human health. However, there are 
seldom studies to systematically reveal the rhizosphere bacterial community of 
A. cochinchinensis. In this study, we employed metagenomics and culturomics 
to analyze the bacterial community composition and diversity in continuous 
rhizosphere soil of A. cochinchinensis. Meanwhile, we assessed the effect of soil 
physicochemical properties on the bacterial community. Results showed that 
the most abundant TAXA is a taxon belonging to the family Streptomycetaceae, 
the genus Mycobacterium and the species Oligotropha carboxidovorans. The 
bacterial communities across various areas were similar. Significant differences 
of exchangeable magnesium and available phosphorus level were observed 
between three groups. Furthermore, bacterial community structure correlated 
closely with soil physicochemical properties. Additionally, a total of 103 strains 
were isolated and identified, representing 28 species. Based on this study, the 
rhizosphere bacterial community of A. cochinchinensis might influence its growth 
and development. The rhizosphere strains were isolated and their function request 
further investigation. This study firstly revealed the bacterial community in the 
A. cochinchinensis rhizosphere soil, providing valuable references for its quality 
improvement in practical cultivation process.
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Introduction

Asparagus cochinchinensis is a renowned medicinal plant belonging to Liliaceae family. Its 
health benefits have elucidated wide attention in recent years, with application in treating coughs, 
promoting skin whiten, and anti-aging effects (Lee et al., 2017; Wang et al., 2022). Research by  
Zhang L. et  al. (2021) highlighted the potential of exosome-like nanovesicles from 
A. cochinchinensis for antitumor therapy. Furthermore, A. cochinchinensis is utilized in the 
fermentation of wine (Kim M. et al., 2017; Kim N. G. et al., 2017). Therefore, the market demand 
of A. cochinchinensis shows an increasing trend in recent years. A. cochinchinensis was mainly 
distributed across east and south Asia including China, Vietnam, Japan, and Korea. Now, China 

OPEN ACCESS

EDITED BY

Durgesh K. Jaiswal,  
Graphic Era University, India

REVIEWED BY

Yong-Xin Liu,  
Agricultural Genomics Institute at Shenzhen 
(CAAS), China
Sudipta Sankar Bora,  
Assam Agricultural University, India

*CORRESPONDENCE

Chi Song  
 songchi@cdutcm.edu.cn

†These authors have contributed equally to 
this work

RECEIVED 21 July 2024
ACCEPTED 20 November 2024
PUBLISHED 04 December 2024

CITATION

Yu J, Yang S, Zhang X, Liu X, Tang X, Wang L, 
Chen J, Luo H, Liu C and Song C (2024) 
Integrating metagenomics and culturomics to 
uncover the soil bacterial community in 
Asparagus cochinchinensis cultivation.
Front. Microbiol. 15:1467864.
doi: 10.3389/fmicb.2024.1467864

COPYRIGHT

© 2024 Yu, Yang, Zhang, Liu, Tang, Wang, 
Chen, Luo, Liu and Song. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 04 December 2024
DOI 10.3389/fmicb.2024.1467864

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2024.1467864&domain=pdf&date_stamp=2024-12-04
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1467864/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1467864/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1467864/full
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1467864/full
mailto:songchi@cdutcm.edu.cn
https://doi.org/10.3389/fmicb.2024.1467864
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2024.1467864


Yu et al. 10.3389/fmicb.2024.1467864

Frontiers in Microbiology 02 frontiersin.org

has been one of the main producing countries and exporters worldwide. 
The first record of A. cochinchinensis in China could date back to more 
than 2000 years ago in the Han Dynasty in Shennong’s Classic of 
Materia Medica (Tianmendong in Chinese). Notably, it is listed in the 
Pharmacopoeia of the People’s Republic of China (2020 edition, 
Chinese Pharmacopeia Commission, 2020, pp. 56–57). As a result of 
the suitable environment, Neijiang city (in Sichuan province with 
latitude 29°1 “to 30°2” north and longitude 104°16 “to 105°26” east) has 
become one of the main production cities of A. cochinchinensis in 
China. It is essential to develop efficient strategy to ensure the quality 
improvement of A. cochinchinensis.

Increasing number studies underscore the pivotal role of soil 
microorganisms in the growth and development of medicinal plants 
(Yu et al., 2024). For instance, Feng et al. (2021) studied the effect of 
Bacillus on the phthalides accumulation in Angelica sinensis (Oliv.), and 
observed that the Bacillus strains, which were isolated from rhizosphere 
soils, directly stimulated plant growth and the biosynthesis of 
butylidenephthalide. Wei et  al. (2020) reported that microbial 
inoculants combined utilization of microbial inoculant and with 
garbage enzyme effectively reduced cadmium (Cd) uptake in Salvia 
miltiorrhiza by 37.90%, compared with the control group. Moreover, 
they might also facilitate the microbial remediation of soil contaminated 
with Cd. Csorba et  al. (2022) investigated the interaction between 
Alkanna tinctoria and soil microorganisms and found positive 
correlations between alkannin levels and the relative abundances of 
Labrys, Allorhizobium, Neorhizobium, Pararhizobium, Rhizobium, and 
Penicillium. The advancement of metagenomics and culturomics has 
facilitated comprehensive exploration of the rhizosphere microbiota 
and its interaction with medicinal plants. Lian et  al. (2023) 
simultaneously used metagenomics and culturomics technology to 
reveal the structure of rhizosphere microorganisms in Sinai desert 
farming systems and indicated that ecosystem functions of rhizosphere 
microorganisms from different sampling areas were similar although 
the microbial community structure and diversity were different. 
However, systematic studies on the interaction between the rhizosphere 
bacterial community and A. cochinchinensis are notably scarce.

In this study, we  applied metagenomics and culturomics 
technology to comprehensively characterize the rhizosphere bacterial 
community of A. cochinchinensis. Concurrently, we  analyzed the 
physicochemical properties of the rhizosphere soil from 
A. cochinchinensis. Our findings firstly revealed the rhizosphere 
bacterial community composition and isolated the rhizosphere 
bacterial strains from the A. cochinchinensis rhizosphere soil samples. 
Meanwhile, the effect of physicochemical properties on the rhizosphere 
bacterial community was evaluated, which provided references for the 
application of synthetic community for A. cochinchinensis.

Materials and methods

Sample collection

The soil samples were collected from the Neijiang City, Sichuan 
Province, China. Nine rhizosphere soil samples were collected from 
Yangjia Town (n = 3, YR), Shuangcai Town (n = 3, CR), and Guobei 
Town (n = 3, SR), and we also collected three non-rhizosphere soil 
samples from Yangjia Town (n = 3, YNR). The detailed collection 
information was listed in Table  1. The rhizosphere areas have a 

subtropical climate with an average annual temperature ranging from 
15 to 28°C. The relative humidity annually averages around 80% and 
the annual rainfall is about 1,000 mm. The sampling procedure was as 
follows: approximately 2–3 cm of surface soil was initially removed to 
filter out plant detritus. Subsequently, rhizosphere soil located within 
0.2 cm of the root was filtered through a 100-mesh screen and placed 
into sterilized bags. The samples were promptly submerged in liquid 
nitrogen immediately and stored at −80°C.

Determination of the physicochemical 
properties of the Asparagus 
cochinchinensis rhizosphere soil

The analysis of pH, total nitrogen, total phosphorus, total 
potassium, organic carbon, available phosphorus, available 
potassium, exchangeable calcium, and exchangeable magnesium in 
the continuous rhizosphere soil samples was conducted as follows. 
Approximately 10 g of dried soil samples were placed into a 50 mL 
tube with 25 mL of distilled water and mixed for 1  min. After 
allowing it to settle for 30 min, pH was measured using a pH meter 
(PB-10, Sartorius, German). Approximately, 0.6 g of dried soil 
samples were analyzed using a Seal Auto Analyzer 3 Continuous 
Flow Analyzer (Germany) for total nitrogen, nitrate nitrogen, and 
ammonium nitrogen content. Total phosphorus and available 
phosphorus were quantified using an ultraviolet spectrophotometer 
(UV-2450, Shimadzu, Japan), while total potassium and available 
potassium levels were determined using a flame photometer 
(Shanghai, China). Exchangeable calcium and magnesium content 
were measured using an atomic absorption spectrophotometer 
(Hitachi Z-2000, Japan). The experimental procedures followed the 
methods outlined by Lu (2000).

DNA extraction, metagenomic sequencing 
and bioinformatic analysis

Approximately 1.0 g of frozen soil sample was transferred into a 
sterilized 15 mL centrifuge tube containing 1.5 g of glass grinding 
beads. Bacteria DNA products were extracted as the instruction of the 
EZNA® Soil DNA Kit (D5625, Omega Bio-Tek., Inc.) manufacturer. 
Purity and concentration of the extracted DNA were assessed using 2% 
agarose gel electrophoresis and Nanodrop (ND ONE, Genes Ltd.). A 
library was prepared using the NEB Next® UltraTM DNA Library Prep 
Kit for Illumina (NEB, United States). Qualified DNA samples were 
randomly fragmented into 350 bp fragments using a Covaris (Covaris 
S2 System, Massachusetts, United  States) ultrasonic fragmentation 
instrument. A complete library was constructed as follows: terminus 
repair, polyA tailing, sequence linking, purification, and PCR 
amplification. Finally, the AMPure XP system was used to purify the 
PCR products, and an Agilent 2100 was used to determine the insert 
size of the library. The real-time PCR was used for quantitative analysis 
of the library concentration. The indexed coding samples were clustered 
on the cBot Cluster Generation System using the Illumina PE Cluster 
Kit (Illumina, United  States) according to the manufacturer’s 
instructions. Purified DNA samples were stored at −20°C. Subsequently, 
DNA sequencing was performed on the Illumina NovaSeq  6000 
platform. The raw data was deposited to the National Center for 
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Biotechnology Information Sequence Read Archive database with 
accession numbers SAMN41811701- SAMN41811712.

The quality control and bioinformatics analysis were conducted as 
follows. The low-quality data was filtered using fastp and Samtools 
software. Clean sequences were assembled into contigs using MEGAHIT 
software (v. 1.2.9, −k-list 21, 29, 39, 59, 79, 99, 119, 141 –min-contig-len 
500, v1.2.9, Li et al., 2015). The Prodigal package within Prokka (v. 
1.14.6) software were employed to predict ORF genes (Seemann, 2014). 
Predicted proteins encoded by these genes were functionally annotated 
by blasting against the UniProt, KEGG, and GO database to infer their 
biological functions (Camacho et al., 2009; Finn et al., 2011). Clean reads 
were directly determined with Kraken2 (v. 2.1.2) gene sets to identify 
bacterial species (Wood et al., 2019). To compare the gene abundance 
differences among different groups, the number of genes were originally 
standardized. The TPM (Transcripts Per Million) algorithm is used to 
standardize gene abundance. The DEseq2 was used to analyze the 
differentially expressed genes between various groups. The criteria for 
between various groups DEGs were |log2 (FoldChange)| > 1.5 and 
FDR < 0.01. Relative abundances of these species were calculated using 
Bracken (Lu et al., 2017). Alpha diversity indices (Chao 1, Shannon, 
Simpson, and richness) were computed to evaluate bacterial community 
diversity and richness using USEARCH (v. 10.0.240, Edgar, 2010, 2013). 
Rarefaction curves were calculated using USEARCH (v. 10.0.240) and 
bacterial community composition diagrams were generated using R 
software v.3.3.1 (Jami et al., 2013). The beta diversity was analyzed using 
the prcomp function in R software (v.3.3.1, Jami et  al., 2013) and 
visualized using the ggplot2 package. To explore the interaction between 
soil bacterial communities and physicochemical properties, 
we conducted mantel test (R software) to perform association analysis.

High-throughput isolation and 
identification of bacteria from the 
Asparagus cochinchinensis rhizosphere soil

Fresh soil samples from A. cochinchinensis were utilized to isolate 
and cultivate bacterial strains. Based on the previous reports by Zhang 
et al. (2018), we used multiple mediums (Tryptic soy broth medium, 

02-34, Aobox Biotechnology, Beijing, China; Luria-Bertani medium; 
Nutrient Broth medium) for bacteria isolation and cultivation. The soil 
sample was transferred into a sterilized centrifuge tube with 9 mL of 
DEPC-treated water (cat. BL510B, LABGIC, Beijing, China) and 
subjected to oscillation cultivation at room temperature for 30 min with 
30 rpm/min. Approximately 200 μL of culture supernatants were then 
diluted with 25 mL of 10 mM magnesium chloride solution and left at 
room temperature for 15 min to release bacteria. The diluted solution was 
cultivated into 96-well cell culture plates, with the concentration of 
diluted solution selected to ensure approximately 30% of the wells 
exhibited bacterial growth. Cultivation plates were subsequently 
incubated at room temperature for 14 days. After incubation, DNA 
products from bacterial strains were extracted using the TIANamp 
Bacteria DNA Kit (DP302, TIANGEN BIOTECH Co., Ltd., Beijing). 
Bacterial strains were identified by amplifying the 16S rRNA gene using 
designed primers 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 
1492R (5′-TACGGCTACCTTGTTACGACTT-3′, White et al., 1990). 
Identified high-quality strains were stored in 40% (vol/vol) glycerol at 
−80°C after three rounds of continuous streaking.

Results

Physicochemical properties of the 
Asparagus cochinchinensis rhizosphere soil

The results showed that the average organic carbon content in the 
YR group (7.18 g/kg) was higher than that in the SR (5.84 g/kg) and CR 
group (5.03 g/kg, Figure 1A). Significant difference in carbon content was 
observed between the YR and CR groups (p = 0.0093). The exchangeable 
calcium content was higher in the CR group (4.01 g/kg) than that in the 
SR (3.27 g/kg) and CR group (3.21 g/kg, Figure 1B). The exchangeable 
magnesium level in the YR group (0.21 g/kg) was significantly lower than 
that in the SR group (0.43 g/kg, p = 0.0049) and CR group (0.38 g/kg, 
p = 0.0014, Figure 1C). The CR group (20.00 mg/kg) had higher available 
phosphorus contents than the SR group (3.44 mg/kg, p = 0.0034) and CR 
group (181.00 mg/kg, Figure 1D). The available potassium content in the 
CR group was higher than that in the SR (122.67 mg/kg) and YR group 

TABLE 1 Information for the Asparagus cochinchinensis rhizosphere soil samples in this study.

Sample 
number

Group Sampling 
date

Sampling area Altitude 
(meters)

Temperature 
(°C)

Relative 
humidity

SAMN 
number

CR1 CR 2023-6-12 China: Neijiang (29.749611 N 105.109195 E) 372.6 m 15–28 81% SAMN41811701

CR2 CR 2023-6-12 China: Neijiang (29.749611 N 105.109195 E) 372.6 m 15–28 81% SAMN41811702

CR3 CR 2023-6-12 China: Neijiang (29.749611 N 105.109195 E) 372.6 m 15–28 81% SAMN41811703

SR1 SR 2023-6-12 China: Neijiang (29.525142 N 105.163067 E) 318.5 m 15–28 81% SAMN41811704

SR2 SR 2023-6-12 China: Neijiang (29.525142 N 105.163067 E) 318.5 m 15–28 81% SAMN41811705

SR3 SR 2023-6-12 China: Neijiang (29.525142 N 105.163067 E) 318.5 m 15–28 81% SAMN41811706

YNR1 YNR 2023-6-12 China: Neijiang (29.766105 N 105.353238 E) 393.3 m 15–28 81% SAMN41811707

YNR2 YNR 2023-6-12 China: Neijiang (29.766105 N 105.353238 E) 393.3 m 15–28 81% SAMN41811708

YNR3 YNR 2023-6-12 China: Neijiang (29.766105 N 105.353238 E) 393.3 m 15–28 81% SAMN41811709

YR1 YR 2023-6-12 China: Neijiang (29.766105 N 105.353238 E) 393.3 m 15–28 81% SAMN41811710

YR2 YR 2023-6-12 China: Neijiang (29.766105 N 105.353238 E) 393.3 m 15–28 81% SAMN41811711

YR3 YR 2023-6-12 China: Neijiang (29.766105 N, 105.353238 E) 393.3 m 15–28 81% SAMN41811712
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(159.67 mg/kg, Figure 1E). The total phosphorus content was highest in 
the SR group (0.84 g/kg), followed by the CR group (0.75 g/kg) and YR 
group (0.67 g/kg, Figure 1F). The total potassium result showed that the 
YR group (25.49 g/kg) had the highest level, followed by the CR group 
(23.02 g/kg) and SR group (17.39 g/kg, Figure  1G). The pH results 
indicated that all CR and YR samples in this study were alkaline, and SR 
samples were acidic (Figure 1H). The total nitrogen content in the YR 
group (0.87 g/kg) was higher than that in the SR group (0.83 g/kg) and 
CR group (0.64 g/kg, Figure 1I).

Rhizosphere bacterial community in 
Asparagus cochinchinensis rhizosphere soil 
through metagenomics technology

Bacterial community composition in Asparagus 
cochinchinensis rhizosphere soil

The bacterial community in 12 A. cochinchinensis rhizosphere soil 
samples was sequenced using high-throughput sequencing technology. 
A total of 586,290,474 clean reads were obtained from 12 rhizosphere 
soil samples. Each sample yielded 103,629 assembled contigs. The raw 
sequences were deposited in the National Center for Biotechnology 
Information Sequence Read Archive database with accession numbers. 
Gene assemble results indicated that the contig numbers in each sample 
ranged from 65,454 to 221,127, all with GC content exceeding 60%. 
Alpha diversity index (Shannon, Chao1, Richness, and Simpson index) 
statistical analysis showed that significant differences of Shannon and 
Simpson indices were observed between various groups based on 
Anova (Table 2). Taxonomic annotation results showed that a total of 
75 phyla, 166 classes, 410 orders, 706 families, 1,565 genera, and 4,424 
species were identified in this study. At the phylum level, Proteobacteria, 
Actinobacteria, and Pseudomonadota were the most abundant with the 
relative abundances of 0–71.5%, 0–40.8%, and 0–68.7% (Figure 2A). 
Actinobacteria (0–59.3%), Corynebacteriales (0–19.5%), Actinomycetes 
(0–43.6%), and Streptomycetaceae (0–12.2%) were dominant at the 
class, order, and family level, respectively (Figures  2B–D). 
Mycobacterium (0–34.6%) was the most abundant at the genus level 
(Figure 2E). At the species level, Oligotropha carboxidovorans (0–34.6%), 
Burkholderia cenocepacia (0–2.2%), Amycolatopsis mediterranei 
(0–8.8%), Achromobacter xylosoxidans (0–3.8%), Afipia carboxidovorans 
(0–11.6%), Sphingomonas wittichii (0–3.1%), Ensifer adhaerens 
(0–0.9%), Sinorhizobium fredii (0–2.8%), Mesorhizobium japonicum 
(0–2.0%), Variovorax paradoxus (0–0.2%), Variovorax paradoxus 
(0–0.2%), Pseudomonas aeruginosa (0–1.1%), Rhodanobacter 
denitrificans (0–0.3%), and Stenotrophomonas maltophilia (0–3.6%) 
were dominant among all species (Supplementary Table S1, Figure 2F). 
These findings provided a comprehensive overview of the bacterial 
composition in A. cochinchinensis rhizosphere soils.

Comparison of bacterial community in 
different groups based on Asparagus 
cochinchinensis rhizosphere soil

The rarefaction curve reflected that the sequencing data for each 
sample was sufficient to estimate the bacterial community (Figure 3A). 
Meanwhile, PCA and PCoA analysis further confirmed similarity of 
bacterial community composition across various areas (Figures 3B,D). 

Additionally, we compared differences of bacterial community between 
rhizosphere and non-rhizosphere soil groups. The average Chao 1 and 
Shannon indices in YNR group were higher than those in YR group 
(Table 2). The differences of bacterial composition were observed. At the 
genus level, the relative abundance of Escherichia in YR group was higher 
than those in YNR group. At the species level, YR group showed higher 
relative abundances of Mycolicibacterium fortuitum, Lactobacillus 
paracasei, Agrobacterium rhizogenes, Rhizobium tropici, Pseudomonas lini, 
Acinetobacter johnsonii, Pseudomonas mosselii, and Pseudomonas 
umsongensis (Supplementary Table S1). Gene expression difference 
analysis showed that there were 1,338 genes that expressed differently in 
YR and YNR group. One hundred and eighteen genes were up-regulated 
in YR group, and 1,220 genes were up-regulated in YNR group 
(Figure 3C). Differential gene enrichment analysis using KEGG Pathway 
showed that the genes of bacterial community function in YR group was 
mainly for plant-pathogen interaction, biotin metabolism, prodigiosin 
biosynthesis, meiosis-yeast, and pathogenic Escherichia coli infection. The 
function prediction result using Gene Ontology showed the bacterial 
community function in YR group was mainly for RNA–directed DNA 
polymerase activity, RNA–DNA hybrid ribonuclease activity, and cGMP 
binding (Figures 3E,F).

Gene function annotation using various 
databases

The function of the bacterial community in A. cochinchinensis 
plantation soil was predicted using the KEGG and GO database. 
According to enrichment annotation, the bacterial community 
primarily contributes to global and overview maps, translation 
processes, and the metabolism of cofactors and vitamins. Gene 
enrichment annotation revealed that at the biological level, the 
bacterial community is involved in translation, phosphorelay signal 
transduction systems, and transmembrane transport. At the cellular 
level, integral components of membranes, cytoplasm, and plasma 
membrane played crucial roles. At the molecular level, ATP binding, 
metal ion binding, and DNA binding were the main function. Based 
on the COG database, the bacterial community function was predicted 
to be engaged in amino acid transport and metabolism, as well as 
energy production and conversion (Figures 4A,B).

Association analysis between 
physicochemical properties factors and soil 
bacterial community composition

To explore the interaction between soil bacterial communities and 
physicochemical properties, we conducted mantel test (R software) to 
perform association analysis. The results revealed significant positive 
correlations (p < 0.01) between bacterial communities and pH, as well 
as available potassium activities. Additionally, Pearson’s correlation 
analysis indicated positive relationships among various 
physicochemical properties. Specifically, total nitrogen correlated 
positively with organic carbon and available phosphorus indices. pH 
levels showed positive associations with exchangeable calcium, 
available potassium, and total potassium indices. Furthermore, total 
phosphorus levels were positively correlated with exchangeable 
magnesium levels (Figure 4C). We employed Redundancy Analysis 
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(RDA) to explore relationships between the relative abundance of 
top 10 bacterial genera and soil physicochemical factors. The results 
showed that the relative abundance of Pseudomonas exhibited a strong 
positive correlation with cumulative total potassium and available 
potassium. The relative abundance of Streptomyces was notably 
associated with cumulative pH levels, while the relative abundance of 
Rhodanobacter correlated with cumulative available phosphorus. 
Additionally, the relative abundance of Burkholderia showed a 
significant relationship with cumulative exchangeable magnesium 
levels (Figures 4D,E).

Isolation and identification of bacterial 
strains from the Asparagus cochinchinensis 
rhizosphere soil

In this study, we  used TSB, LB, and NB medium to isolate and 
identify the bacterial strains from the A. cochinchinensis rhizosphere soil. 
The strains were further identified through amplifying 16S rDNA region 
using the 27F/1492R primer. A total of 103 strains were isolated and 
identified, encompassing 30 species including Agromyces binzhouensis, 
Arthrobacter pascens, Bordetella petrii, Aeromicrobium kwangyangensis, 

FIGURE 1

Physicochemical properties of the A. cochinchinensis rhizosphere soil. (A) Average organic carbon contents in the YR, SR, and CR group. (B) Average 
exchangeable calcium contents in the YR, SR, and CR group. (C) Average exchangeable magnesium contents in the YR, SR, and CR group. (D) Average 
available phosphorus contents in the YR, SR, and CR group. (E) Average available potassium contents in the YR, SR, and CR group. (F) Total phosphorus 
contents in the YR, SR, and CR group. (G) Total potassium contents in the YR, SR, and CR group. (H) pH in the YR, SR, and CR group. (I) Total nitrogen 
contents in the YR, SR, and CR group. * Represents p < 0.05, ** Represents p < 0.01.
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Rhodanobacter lindaniclasticus, Pseudarthrobacter oxydans, Marmoricola 
scoriae, Lysobacter brunescens, Arthrobacter pokkalii, Rhodanobacteraceae 
bacterium, Caulobacter zeae, Flavobacterium johnsoniae, Roseateles 
chitosanitabidusm, Caulobacter radicis, Pseudomonas lini, Flavobacterium 
ajazii, Pseudomonas resinovorans, Pseudoxanthomonas mexicana, 
Pseudomonas prosekii, Paenibacillus purispatii, Pseudomonas oleovorans, 
Flavobacterium anhuiense, Caulobacter flavus, Bacillus coreaensis, Shinella 
kummerowiae, Flavobacterium glycines, Flavobacterium tructae, 
Arthrobacter humicola, Pseudarthrobacter siccitolerans, and 
Pseudarthrobacter bacteria (Figure 5; Supplementary Figure S1). All these 
strains were stored in institute of Herbgenomics, Chengdu University of 
Traditional Chinese Medicine for further experimentation.

Discussion

Recent studies have extensively investigated the interaction 
between medicinal plants and soil bacterial communities. It has been 
reported that soil bacterial community might influence the 
metabolism of natural products in medicinal plants. However, the 
detailed mechanisms of these interactions require further exploration. 
Su et al. (2023) investigated the contribution of soil condition and 
microbiome in the accumulation of monoterpenes in the fruit of 
Citrus reticulata “Chachi” and they indicated that the rhizosphere 
microbiome enhanced terpene synthesis and increased the 
monoterpene level by affecting the host immune system. Zhang 
W. et  al. (2024) conducted amplicon sequencing and metabolic 
profiling to analyze the relationship between soil microbiome and 
bisbenzylisoquinoline alkaloids in Phellodendron amurense. Results 
showed that there were seven bisbenzylisoquinoline alkaloids 
positively correlated with Nectriaceae and Sphingobacteriaceae. 
Similarly, Liu et al. (2022) reported direct regulation of glycyrrhizin 
and glycyrrhizic acid accumulation in licorice plants by the 
rhizosphere microbiome. Secondly, the soil microbiome might assist 
host medicinal plant in growth and resistance to biotic and abiotic 
stress. Astragalus mongolicus Bunge is a well-known medicinal plant 
and its cultivation requires amounts of nutrients. Shi et al. (2023) 
isolated and identified 86 strains form the root and rhizosphere soil 

samples of A. mongolicus and demonstrated that Bacillus sp. J1, 
Arthrobacter sp. J2, and Bacillus sp. G4 promoted the accumulation of 
nitrogen, phosphorus, and potassium content in A. mongolicus. Li 
et al. (2024) evaluated the effect of Paenibacillus polymyxa 7250 in 
combination with the symbiotic bacteria on ginseng. Results showed 
that this treatment improved ginseng yield and disease resistance 
through increasing Rhodanobacter, Pseudolabrys, and Gemmatimonas. 
Under low nitrogen conditions, Jiang et al. (2024) reported that the 
beneficial plant growth-promoting rhizobacteria improved the 
nitrogen utilization efficiency and regulated the synthesis of target 
furanocoumarins of Angelica dahurica var. formosana. In this study, 
we revealed the bacterial community of A. cochinchinensis rhizosphere 
soil through Illumina NovaSeq 6000 platform. Based on our results, 
Mycobacterium, Pseudomonas, Microbacterium, Agromyces, and 
Bradyrhizobium were the main genera in the soil samples. KEGG 
function prediction results showed that these genera were related to 
the immune system and environmental adaption. Several of these 
genera have been reported as beneficial microorganisms for plants 
(Cao et al., 2023; De Maria et al., 2011; Gao et al., 2024; Tsavkelova 
et al., 2024). Thus, to deepen our understanding of the interaction 
between these beneficial microorganisms, pathogens, and 
A. cochinchinensis, we isolated these strains from the A. cochinchinensis 
rhizosphere soil samples for further investigation. Based on the 
previous studies, 11 of these strains have been reported as functional 
rhizosphere bacterial strains. Benmrid et al. (2024) investigated the 
beneficial effect of multiple rhizobacteria on the wheat growth under 
drought conditions, and results showed that the incubation with 
A. pascens increased dry weight of shoot and root of wheat plants. 
Additionally, A. pascens had the ability to assisting host plants to resist 
soil salinity stress and enhance physicochemical properties (Guan 
et al., 2023; Ullah and Bano, 2015). A. kwangyangensis, A. humicola, 
C. flavus, P. oxydans, F. anhuiense, and P. lini were reported as 
biocontrol strains to promote the growth of multiple plants (Elshafie 
and Camele, 2022; Giannelli et al., 2024; Kim M. et al., 2017; Kim 
N. G. et al., 2017; Jeong et al., 2019; Muñoz Torres et al., 2021; Tian 
et al., 2024). Meanwhile, A. pokkalii, P. lini, C. flavus and B. coreaensis 
had the potential to resisting biotic and abiotic stresses (Anand et al., 
2023; Barbaccia et al., 2022; Krishnan et al., 2016; Zhou et al., 2021).

In this study, we  used a high-throughput isolation and 
identification method to enrich the bacterial strains from the 
A. cochinchinensis rhizosphere soil. This method was initially 
constructed based on the reports by Zhang J. et al. (2021) we further 
optimized and adjusted this method based on the characteristics of 
A. cochinchinensis rhizosphere soil. Previous applications of this 
method have successfully been adapted for diverse multiple conditions 
such as deep vadose zone and plant roots (Zhang L. et al., 2024; Zhang 
W. et al., 2024; Jin et al., 2022). However, the disadvantages of this 
method should be optimized in the further studies. On one hand, 
single medium was difficult to comprehensively isolate bacterial 
strains in the soil sample, therefore, we  employed three media to 
isolate and identify strains in this work. We considered to use more 
media in further studies. On the other, we mainly focused on the 
aerobic bacteria, while the isolation and identification of anaerobic 
bacteria requires to be considered in the further study. In conclusion, 
continuous optimization of this method continuously to explore the 
mechanisms is crucial for advancing our understanding of soil 
microorganisms and their impact on the growth and development of 
medicinal plants.

TABLE 2 Alpha diversity indices in each sample in this study.

Sample 
number

Shannon Chao1 Richness Simpson

CR1 4.55 1,259 1,259 0.072

CR2 4.35 1,148 1,148 0.087

CR3 4.01 1,068 1,068 0.090

SR1 4.78 1,929 1,929 0.043

SR2 4.61 1,444 1,444 0.044

SR3 4.78 1,727 1,727 0.041

YNR1 4.96 1,433 1,433 0.050

YNR2 4.95 1,426 1,426 0.051

YNR3 5.14 2,100 2,100 0.048

YR1 4.04 733 733 0.117

YR2 4.07 739 739 0.111

YR3 4.81 1,648 1,648 0.069
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FIGURE 2

Bacterial community composition in the A. cochinchinensis rhizosphere soil at the (A) Phylum level. (B) Class level. (C) Order level. (D) Family level. 
(E) Genus level. (F) Species level.
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FIGURE 3

Comparison of the differences of bacterial community between various rhizosphere areas. (A) Rarefaction curve reveals the sequencing depth in each 
sample. (B) Principal Component Analysis of soil bacterial community among different groups. (C) Differentially expressed genes between various 
groups. (D) Principal co-ordinates analysis of soil bacterial community among different groups. (E) Gene function prediction of differentially expressed 
genes based on the Gene Ontology database. (F) Gene function prediction of differentially expressed genes based on the Kyoto Encyclopedia of 
Genes and Genomes database.
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FIGURE 4

Function prediction of bacterial community and association analysis of physicochemical properties and soil bacterial community. (A) Function 
prediction of soil bacterial community based on the Gene Ontology database. (B) Function prediction of soil bacterial community based on the Kyoto 
Encyclopedia of Genes and Genomes database. (C) Association analysis between various physicochemical properties. (D) Mantel test for the analysis of 
relevance of pH and soil bacterial community. (E) Redundancy Analysis (RDA) of relationships between the relative abundance of top 10 bacterial 
genera and soil physicochemical factors in the YR, SR, and CR group.
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FIGURE 5

Phylogenetic tree based on 16S rRNA of bacterial strains isolated from A. cochinchinensis rhizosphere soil.

The combined utilization of metagenomics and culturomics 
technologies revealed the rhizosphere bacterial community of 
A. cochinchinensis. In recent years, more and more reports have 
applied both technologies simultaneously to study the 
microbiome in various aspects including gut microbiome, 
environmental microbiome, and food microbiome (Lee et  al., 
2022; Li et al., 2023; Vacca et al., 2024). Compared with using 
metagenomics or culturomics technology alone, the combined 
application overcomes certain disadvantages. Firstly, the 
metagenomics sequencing data may provide references for the 
selection of mediums of culturomics. Almost all microorganisms 
(culture-dependent and culture-independent) might be identified 
through the metagenomics sequencing technology, researchers 
can select the relevant mediums to isolate and identify the 
specific strain for further studies. In this study, the selection of 
mediums was also based on the metagenomic results, which 
Mycobacterium, Pseudomonas, Microbacterium, Agromyces, and 
Bradyrhizobium were the main genera in this study. Moreover, the 
interaction network analysis and community function prediction 

result based on metagenome is an important indicator for the 
construction of synthetic microbial community in culturomics. 
Li et  al. (2021) analyzed the rhizosphere and root bacterial 
community in Astragalus mongholicus and constructed a disease-
resistant bacterial community based on the metagenome result 
through the culturomics platform. Results demonstrated that the 
synthetic bacterial community suppressed the root rot disease of 
A. mongholicus infected by Fusarium oxysporum and promoted 
the growth of A. mongholicus. Secondly, due to bias in 
metagenomic sequencing data, culturomics has the ability of 
correcting this bias. Culturomics can not only be used to isolate 
and identify microorganisms, but it also has the potential to 
discovering new taxa and reduce unassigned operational 
taxonomy units based on metagenomic analysis (Lagier et al., 
2018). Additionally, the strains isolated through the culturomics 
platform can be  studied through multiple detection methods 
(e.g., genomics, transcriptomics, proteomics, and metabolomics 
technology). Therefore, the combined utilization of 
metagenomics and culturomics technologies in microbiome 
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studies has been widely recognized. The application of these two 
technologies provides both genome data and strain resources 
simultaneously. In future, the combined utilization of both 
technologies will provide more comprehensive and systematical 
insights for microbiome studies.
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