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Background: Multidrug-resistant Klebsiella pneumoniae (MDR-KP) poses a 
significant global health threat due to its involvement in severe infections and 
high mortality rates. The emergence of MDR strains necessitates the exploration 
of alternative therapeutic strategies.

Methods: K. pneumoniae isolates were obtained from human and animal sources. 
Antibacterial susceptibility testing was performed, followed by the evaluation 
of essential oil activity through inhibition zone, MIC, and MBC determinations. 
Checkerboard assays were conducted to assess synergistic effects with amikacin. 
Gene expression analysis and transmission electron microscopy were employed to 
elucidate the mechanisms of action. Molecular docking studies were performed to 
identify potential binding targets of bioactive compounds.

Results: Klebsiella pneumoniae was isolated from 25 of the100 samples examined, 
representing a prevalence rate of 25%. All isolates were found to be multidrug-
resistant. Tea tree and thyme essential oils exhibited potent antibacterial activity 
and synergistic effects with amikacin. Notably, these combinations significantly 
downregulated the expression of key capsule virulence genes (wcaG, rmpA, 
magA, uge, and wabG), suggesting a novel mechanism for enhancing amikacin 
efficacy. Transmission electron microscopy revealed disrupted cell integrity 
in MDR-KP cells treated with the combinations. Molecular docking analysis 
identified Terpinen-4-ol, Farnesol, 1,4-Dihydroxy-p-menth-2-ene, and 
7-Oxabicyclo [4.1.0] heptane as potential bioactive compounds responsible for 
the observed effects.

Conclusion: By effectively combating MDR-KP, this research holds promise for 
reducing antibiotic resistance, improving treatment outcomes, and ultimately 
enhancing potential care.
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Introduction

An opportunistic bacterium known as Klebsiella pneumoniae infects 
hospitalized or immunocompromised patients (Gorrie et  al., 2017). 
Similarly, in animals, such as bovine, K. pneumoniae is a major causative 
agent of mastitis, leading to economic losses and public health concerns 
(Opoku-Temeng et  al., 2019; Yang et  al., 2019; El-Demerdash et  al., 
2023b). This rod-shaped, encapsulated, non-motile member of the 
Enterobacteriaceae family is gram-negative (Nasr et al., 2016).

In medical settings, multidrug-resistant Klebsiella pneumoniae 
(MDR-KP) is a significant contributor to the high rates of morbidity 
and death in patients with severe infections (Lee et  al., 2016). 
Infections caused by MDR-KP strains are increasingly common 
worldwide (Abdelaziz et al., 2013). This issue may have originated in 
underdeveloped nations due to the overuse of antibiotics, incorrect 
prescriptions, unnecessary testing, and medication abuse (Nordmann 
et al., 2009; Shalaby et al., 2021; Megahed et al., 2023).

The global emergence of MDR-KP, often causing hospital-
acquired infections, necessitates new therapeutic strategies (Davies 
and Davies, 2010; Essawi et  al., 2020; Abd El-Emam et  al., 2023; 
Hashem et  al., 2024). The spread of strains producing extended-
spectrum beta-lactamases (ESBLs) and carbapenems underscores the 
urgent need for alternative treatments (Hawkey et al., 2018; Ebrahem 
et al., 2023). Essential oils (EOs), volatile compounds extracted from 
plants, have emerged as promising antimicrobial agents due to their 
diverse mechanisms of action, including disruption of cell membranes, 
inhibition of protein synthesis, and interference with DNA replication 
(Birhan et al., 2011; Rybicki et al., 2012; Dhama et al., 2015).

Numerous investigations have demonstrated that specific 
phytochemicals, like those found in EOs, and antibiotics, when used 
together, produce synergistic effects. These combinations can inhibit 
folate biosynthesis, DNA/protein synthesis, and disrupt cell permeability 
and cell wall (Dhami, 2013). Additionally, EOs can further weaken 
bacteria by preventing them from synthesizing essential macromolecules 
like DNA, RNA, proteins, and polysaccharides (Konaté et al., 2012). This 
multi-pronged attack offered by the combined approach proves to 
be highly beneficial in combating multidrug-resistant (MDR) bacteria. By 
targeting multiple bacterial processes simultaneously, EOs and antibiotics 
can effectively overcome resistance mechanisms employed by MDR 
pathogens, leading to more efficient treatment (Abd El-Kalek and 
Mohamed, 2012).

Previous research has explored the antibacterial properties of EOs 
against Klebsiella pneumoniae (Mohamed et al., 2018; Diniz et al., 
2023). However, no previous studies have examined the ability of 
essential oils to specifically target the capsule of K. pneumoniae, a 
crucial virulence factor associated with immune evasion.

The capsule that surrounds the surface of K. pneumoniae serves as the 
primary virulence factor associated with its viscous phenotype. It typically 
provides a defensive rather than offensive resistance to bactericidal 
activities (Zhu et al., 2021). K. pneumoniae utilizes capsules to prevent 
bacteria from binding, thus evading phagocytosis, complement, 
antimicrobial peptides, and specific antibodies. However, instances of 
active suppression and attack on immune cells through capsules are rarely 
reported (Paczosa and Mecsas, 2016). The chromosomal capsular 
polysaccharide synthesis (cps) region encodes the genes responsible for 
capsule production. The cps cluster comprises 27 genes, including rmpA, 
wcaG, magA, uge, and wabG (Ernst et al., 2020).

Therefore, this study addresses this gap by investigating the efficacy 
of EOs in downregulating capsule gene expression in MDR-KP. We employ 

a novel approach, utilizing specifically designed primers to quantify the 
downregulation of capsule genes in MDR-KP strains treated with essential 
oils. This study also incorporates microbiological assays and in silico 
analysis to provide a comprehensive understanding of the potential 
mechanisms involved. This approach offers a novel strategy to enhance 
antibiotic efficacy by targeting both bacterial survival and its ability to 
evade immune defenses.

Materials and methods

Essential oils

Ten different 100% pure essential oils were procured from the 
Medicinal and Aromatic Oils Unit at the National Research Center, 
Doki, Egypt: thyme, garlic, ginger, nigella, marjoram, moringa, tea 
tree, linseed, lemon, and sage.

Ethical approval and sampling

This study adhered to the Declaration of Helsinki principles with 
informed consent obtained from all human participants. A total of 100 
samples were collected between January and April 2024, comprising 50 
bovine mastitic milk and 50 human samples including blood, urine, and 
swabs. The animal study protocol was approved by the Faculty of 
Veterinary Medicine, Zagazig University (ZU-IACUC/2/F/285/2023), 
and the human study protocol was approved by the Faculty of Medicine, 
Zagazig University (ZU-IRB/409/2024). Both protocols adhered to 
ARRIVE guidelines (PLoS Biol 8(6), e1000412, 2010).

Isolation, identification and molecular 
confirmation of Klebsiella pneumoniae 
isolates

Klebsiella species isolates were obtained using the methods 
described by Garcia (2010). Bacterial cultures were grown on 
MacConkey agar and Eosin Methylene Blue then incubated at 37°C 
for 24 h. Molecular confirmation of K. pneumoniae was performed 
using a PCR assay targeting the 16S rRNA gene. DNA extraction was 
carried out using the QIAamp DNA Mini kit (Qiagen, Germany) 
followed by PCR amplification using specific primers (Table S2). A 
positive control (ATCC 13883) and a negative control (PCR mixture 
without DNA template) were included.

Antimicrobial susceptibility testing of the 
bacterial isolates

Disk diffusion assay
In vitro determination of susceptibility pattern of K. pneumoniae 

isolates to various antimicrobials was conducted adopting the disk 
diffusion method (Bauer et al., 1966) using Mueller Hinton agar and 
standard antimicrobial disks including: amikacin (30 μg), norfloxacin 
(5 μg), tetracycline (10 μg), cefotaxime (5 μg), ceftriaxone (5 μg), 
ceftazidime (30 μg), chloramphenicol (30 μg), aztreonam (30 μg), 
sulfamethoxazole-trimethoprim (25 μg), cephalexin (30 μg), erythromycin 
(5 μg), and meropenem (10 μg). Plates were incubated at 37°C for 24 h, 
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and inhibition zone diameters were measured. The results were 
interpreted according to the Clinical & Laboratory Standards Institute 
(CLSI, 2020) guidelines.

Agar well diffusion assay of herbal oils
The agar well diffusion assay was employed to assess the 

antibacterial activity of 10 distinct essential oils against isolated 
Klebsiella isolates. Briefly, bacteria were grown in nutrient broth, 
adjusted to a concentration of 1.5 × 108 CFU/mL, and swabbed onto 
Muller-Hinton agar plates. After creating 7 mm-diameter wells in the 
agar, 100 μL of each essential oil, solubilized in 5% DMSO, was added. 
To account for the potential influence of DMSO on bacterial growth, 
control wells containing 5% DMSO alone were included. The plates 
were incubated at 37°C for 24 h. The diameter of inhibition zones 
surrounding the wells was measured. Inhibition zones less than 12 mm 
were considered indicative of no antibacterial activity based on 
previous studies of Durairaj et al. (2009) and El-Azzouny et al. (2018). 
Three replicates were performed for each sample, and the results 
were averaged.

Minimum inhibitory concentration and minimum 
bactericidal concentration determination

The experiment utilized 96 well plates (TPP, Switzerland) for the 
broth microdilution assay. The wells were injected with 1 × 105 CFU of 
bacteria in a final volume of 0.2 mL after the effective extracts and chosen 
drugs were diluted twofold in Luria broth (LB) broth® (Acumedia, 
Michigan, United States). Incubation took place for 24 h at 37°C. Following 
the guidelines of the Clinical and Laboratory Standards Institute (CLSI, 
2020), MIC testing was conducted, with a concentration range of 0.062 to 
1,024 μg/mL for each antimicrobial agent.

Subinhibitory concentration (SIC) refers to an antimicrobial 
agent’s concentration that is too low to completely inhibit microbial 
growth and replication, while the minimum inhibitory concentration 
(MIC) value is the lowest antimicrobial concentration that inhibits 
microbial growth. The minimum bactericidal concentration value 
(MBC) value was determined according to Khosravi and Malekan 
(2004) by subculturing colonies from wells exhibiting no visible 
growth onto fresh agar plates and incubating to assess 
bacterial viability.

Evaluation of synergistic effect
The checkerboard broth microdilution method was used to 

determine the synergy between antibiotics and plant extracts. 
Fractional inhibitory concentration (FIC) index was calculated to 
quantify the interaction. FIC value for each antimicrobial agent was 
calculated according to the formula described by van Vuuren and 
Viljoen (2011) and El-Demerdash et al. (2023d). The interactions were 
classified as being synergistic for ΣFIC values of ≤0.5, additive (≥0.5–
1.0), indifferent (≥1.0 and ≤4.0) or antagonistic (ΣFIC > 4.0).

Gas chromatography–mass spectrometry 
analysis

At the Central Laboratories Network of the National Research 
Centre in Cairo, Egypt, a mass spectrometer detector (5977A) and gas 
chromatograph (7890B) were equipped with an Agilent Technologies 

GC–MS system. Essential oils were analyzed directly and diluted with 
hexane at a ratio of 1:19 (v/v). The GC was outfitted with a DB-WAX 
column measuring 30 m × 250 μm in internal diameter and 0.25 μm 
in film thickness. The temperature program for the analysis began at 
40°C for 2 min, then increased to 250°C at a rate of 7°C/min. It was 
held at 250°C for 8 min while injecting 1 μL of hydrogen without 
splitting using a carrier gas flow rate of 3.0 mL/min. The injector and 
detector were maintained at 250°C. Mass spectra were generated by 
electron ionization (EI) at 70 eV with a spectral range of m/z 40–550 
and solvent delay 3.5 min. By comparing the fragmentation of the 
spectrum with data from the Wiley and NIST Mass Spectral Library, 
many constituents could be identified.

In silico docking analysis

To investigate potential binding interactions, in silico docking 
studies were conducted using the extracted bioactive compounds and 
the crystal structures of FosAKP, K. pneumoniae K1 capsule, and 
OmpK36 (PDB IDs: 6C3U, 7W1E, 5o79). Crystal water molecules 
were eliminated, and hydrogen atoms were added to the protein 
structures prior to energy minimization using the MMFF94 force 
field. The 2D structures of the compounds were created using 
ChemBioDraw Ultra 14.0 and then energy minimized using the 
MMFF94 force field. Docking simulations were performed using 
LigandScout 2.0 (based on Autodock Vina), and the most favorable 
binding poses were chosen for analysis. The 3D and 2D binding 
modes were visualized using Biovia Discovery Studio Visualizer, and 
the results are summarized in Supplementary Table S1 (Al-Halbosy 
et al., 2023).

Transmission electron microscopy assay

Bacterial samples were prepared for transmission electron 
microscopy (TEM) analysis following the methodology described by 
Amin et  al. (2020). Briefly, Klebsiella pneumoniae cultures (both 
treated and control) were grown in nutrient broth for 24 h before 
centrifugation at 4,000 rpm for 10 min. The resulting pellet was 
washed with distilled water, fixed in 3% glutaraldehyde, and post-
fixed in potassium permanganate for 5 min. Dehydration was 
achieved through a graded ethanol series (10–90%), culminating in 
absolute ethanol for 30 min. Samples were embedded in epoxy resin 
using an acetone gradient and ultrathin sections were cut and 
mounted on copper grids. Staining with uranyl acetate and lead 
citrate was followed by examination using a JEOL-JEM 1010 
transmission electron microscope at 80 kV, located at the Regional 
Center for Mycology and Biotechnology (RCMB), Al-Azhar 
University, Egypt.

Capsule gene detection and expression 
analysis

This section details the methods used for conventional PCR 
detection of capsule genes and their quantitative expression analysis 
using real-time PCR.
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Conventional PCR for capsule gene detection
Supplementary Table S2 lists the primer sequences for target 

genes, along with expected amplicon sizes and annealing temperatures. 
A 25 μL reaction mixture was prepared containing 12.5 μL of 
DreamTaq Green PCR Master Mix (2X) from Thermo Scientific, 1 μL 
of each primer (20 pmol), 5.5 μL of nuclease-free water, and 5 μL of 
DNA template. The PCR was carried out using a 2,720 thermal cycler 
(Applied Biosystems) following the manufacturer’s instructions.

The PCR products were separated by electrophoresis on a 1% 
agarose gel (Applichem, Germany) in 1x TBE buffer at room 
temperature with a 5 V/cm gradient. For analysis, 10 μL of PCR 
products were loaded into each well. Fragment sizes were determined 
using Gelpilot 100 bp Plus DNA ladder (Qiagen) and the Generuler 
100 bp ladder (Thermo Scientific).

Quantitative analysis of capsule gene expression
RNA was extracted from bacterial cultures using the QIAamp 

RNeasy Mini Kit (Qiagen). RNA concentration for each sample was 
measured using a NanoDrop Eight Spectrophotometer (Thermo 
Scientific). 16S rRNA was used as the internal control (housekeeping 
gene). Primer sequences are listed in Table 1. New primers targeting the 
magA and wabG genes were designed using Primer3 and FastPCR 
software. These primers were optimized for specificity and sensitivity 
using “touchdown PCR” and were validated through experimental testing.

A 20 μL reaction mixture containing 10 μL of 2x HERA SYBR® 
Green RT-qPCR Master Mix (Willowfort, UK), 1 μL of RT Enzyme Mix 
(20X), 0.5 μL of each primer (20 pmol), 3 μL of nuclease-free water, and 
5 μL of RNA template was prepared. The reaction was carried out using 
a StepOne™ real-time PCR system (Applied Biosystems) following the 
manufacturer’s protocol. The program included an initial denaturation 
step at 94°C for 15 min, followed by 40 cycles of denaturation (94°C for 
15 s), annealing (60°C for 30 s), and extension (72°C for 30 s). A final 
extension step at 72°C for 10 min concluded the reaction.

The StepOne™ software calculated CT values and generated 
amplification curves. The ΔΔCt method (Yuan et al., 2006) was used to 
compare the CT of each sample with the positive control group using 
the formula (2−ΔΔCt) to assess the variation in gene expression among the 
RNA samples. All molecular work was performed in the Biotechnology 
Unit, Animal Health Research Institute, Zagazig Branch, Egypt.

Statistical analysis

Microsoft Excel (Microsoft Corporation, Redmond, WA, 
United  States) was utilized to manipulate the data. Following the 
methodology of Razali and Wah (2011), a Shapiro–Wilk test was 
conducted to confirm normality. The One-way ANOVA (PROC 
ANOVA; Stokes et al., 2012) was employed to analyze the significant 
impacts of the treatments, with a significance level set at α = 0.05. The 
means ± SE of the results were then reported. In cases where a 
significant effect was observed. Tukey’s test was used to perform 
pairwise comparisons between means. A p-value threshold of less than 
0.05 was established for determining statistical significance between 
means. The GraphPad Prism software 9.0 (GraphPad, United States) 
was used to create the figures.

Results

Prevalence rate

Bacteriological examination revealed that 25 out of 100 samples 
were positive for Klebsiella spp. resulting in an overall prevalence rate 
of 25%. All of the isolates were identified as Klebsiella pneumoniae 
through biochemical and genotypical assays. The prevalence of 
K. pneumoniae in human sources was significantly higher than in 
mastitic milk, being approximately twice as high (OR = 2.143, 95% 
CL = 1.635–2.748, Figure 1).

Antibiogram pattern of Klebsiella 
pneumoniae isolates

The antibiotic resistance rate for each source and the whole sets of 
isolates are represented in (Supplementary Figures S1, S2). The 
antimicrobial resistance pattern showed absolute resistance to 
cefotaxime followed by ceftriaxone and cephalexin (92%). More than 
half of the isolates exhibited resistance the rest tested antibiotics except 
amikacin. Notably, all 25 isolates were multidrug-resistant (MDR) i.e., 
resistant to three or more groups of antibiotics.

TABLE 1 The utilized primers and their sequences of target genes for Syper green RT-PCR.

Genes Primers (5′-3′) Amplicon size References

16S rRNA F: ATT TGA AGA GGT TGC AAA CGA T

R: TTC ACT CTG AAG TTT TCT TGT GTT C

130 bp Turton et al. (2010)

magA F: TGGCTTTATTGTTGCTGTGACA

R: ACACTTCTCGTATTTGCGGC

230 bp This study

wabG F: AAGAGACCTTTGCCGCCTTA

R: CCTTATCTTTGCCGACCACC

159 bp This study

wcaG F: GGTTGGKTCAGCAATCGTA

R: ACTATTCCGCCAACTTTTGC

169 bp Turton et al. (2010)

rmpA F: AGAGTATTGGTTGACTGCAGGATTT

R: AAACATCAAGCCATATCCATTGG

106 bp Hartman et al. (2009)

uge F: CTC TCA ACG GTC CAG TCG GC

R: CCT GTA TGC CGC CAC CAA GA

288 bp Nimnoi and Pongsilp (2022)
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Regarding K. pneumoniae isolates from human sources, absolute 
resistance to cefotaxime and erythromycin was detected while the 
erythromycin resistance percentage for those from animal source 
(mastitic milk) was 55.5%.

In contrast, K. pneumoniae isolates from animal sources showed 
a low resistance rate to meropenem and chloramphenicol (27 and 
55%, respectively), however, their percentages were high in isolates 
recovered from human sources (80 and 62%, respectively).

In total, Klebsiella isolates from human sources displayed a 
significant pattern of resistance, with almost all isolates showing high 
frequencies of resistance to more than seven drugs.

Essential oil activity

The results of the study showed that tea tree oil (TTO) exhibited 
the strongest antimicrobial properties followed by thyme among the 
10 oils tested. Both oils showed inhibition zones ranging from 14 to 
32 mm against the tested Klebsiella isolates. On other hand, moringa 
and linseed oils did not show any antibacterial activity against the 
tested pathogens (Figure 2A).

Pearson’s correlation
Pearson’s correlation coefficient (r) was performed to examine the 

relationship between the inhibition zones (mm) of essential oils and 
the prevalence of MDR K. pneumoniae. The results, presented in 
Figure 2B, showed a positive correlation between the inhibition zone 
values of tea tree oil and both thyme and margoram essential oils 
(r = 0.95 and 0.62, respectively; p < 0.05). Similarly, a highly positive 
correlation was observed between thyme and margoram (r = 0.61; 
p < 0.05). Conversely; a negative correlation coefficient was found 
between the other combinations of essential oils.

Principal component analysis
PCA was performed to identify associations between essential 

oil inhibition zones and the prevalence of MDR K. pneumoniae. The 
Varimax rotation method was used, and loadings greater than 0.50 
or 0.60 were considered significant. Four principal components were 

extracted, explaining 87.98% of the total variance. The first 
component (17.77% variance) correlated with inhibition zones of tea 
tree, thyme, and marjoram oils. The second component (12.61% 
variance) was associated with sage and garlic oils, while the third 
component (9.51% variance) primarily represented ginger oil. The 
fourth component (8.50% variance) was associated with lemon oil 
(Table 2; Figure 2C).

Minimum inhibitory concentration and synergy 
with amikacin

Tea tree oil displayed the most potent antibacterial activity against 
K. pneumoniae isolates, with MICs ranging from 2 to 32 μg/mL 
(Table  3; Supplementary Figure S3). Thyme oil also exhibited 
inhibitory effects (MICs: 0.5–256 μg/mL). Amikacin, a conventional 
antibiotic, showed good activity with MICs of 2–4 μg/mL.

Further investigations explored the synergistic potential of these 
essential oils with amikacin. Both tea tree and thyme oil combinations 
displayed synergistic effects against most isolates, with tea tree oil 
exhibiting a stronger synergy (FIC index: 0.1325–0.53) compared to 
thyme oil (FIC index: 0.15–0.53). Notably, the synergistic interaction 
was more pronounced for resistant isolates. Overall, these findings 
suggest that combining essential oils with amikacin could be  a 
promising strategy to combat K. pneumoniae infections (Tables 4, 5).

Characterization of compounds present in 
the oily extracts (thyme and tea tree oils) 
by using GC–MS

Supplementary Tables S3, S4 and Supplementary Figures S4, S5 
detail the characterization of compounds in the effective extracts. GC–
MS analysis of tea tree oil identified seven bioactive compounds, with 
Terpinene-4-ol exhibiting the highest peak area. Other identified 
compounds included P-cymene, Alpha-Terpineol, Beta-pinene, Beta-
myrcene, Limonene, and Farnesol. Similarly, thyme oil analysis 
revealed 10 chemical compounds, with Thymol being the principal 
bioactive component followed by p-cymene, Gamma terpinene, 
Linalool, and Eugenol.

FIGURE 1

Significant prevalence of K. pneumoniae among examined samples. (A) Total prevalence, (B) Detailed Clinical samples prevalence.
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TABLE 2 Varimax rotated principal component analysis (PCA) of 
inhibition zones (mm) of essential oils against MDR K. pneumoniae (bold 
loadings are statistically significant).

Essential oils PC1 PC2 PC3 PC4

Lemon 0.549 −0.232 0.257 −0.736

Ginger 0.371 −0.507 0.628 0.280

Sage −0.461 0.553 −0.227 0.257

Garlic 0.257 −0.748 −0.200 −0.003

Tea tree −0.915 −0.166 0.250 0.091

Margoram −0.748 −0.307 −0.187 −0.251

Nigella sativa −0.459 −0.509 −0.469 −0.037

Thyme −0.865 −0.223 0.374 −0.043

Eigenvalue 1.42 1.01 0.761 0.68

Proportion of variance 17.77% 12.61% 9.51% 8.50%

Cumulative proportion of 

variance

57.36% 69.97% 79.48% 87.98%

Docking data

Molecular docking analysis was performed to investigate the 
potential binding interactions of identified bioactive compounds with 
target proteins in K. pneumoniae (OmpK36, K1 capsule, and FosAKP). 
The results revealed favorable binding energies for several compounds 
with each target protein. For example, Terpinen-4-ol exhibited strong 
binding affinity for all three targets (OmpK36: −6.25 kcal/mol; K1 

capsule: −5.81 kcal/mol; FosAKP: −5.94 kcal/mol). Similarly, other 
identified compounds like 1,4-dihydroxy-p-menth-2-ene, 
7-Oxabicyclo [4.1.0] heptane, and trans-Z-.α.-Bisabolene epoxide also 
demonstrated promising binding interactions (Figures 3–5).

Transmission electron microscopy

Transmission electron micrographs revealed distinct morphological 
changes in K. pneumoniae cells following treatment with essential oils 
and amikacin. Untreated cells (Figure 6A) exhibited a normal rod-shaped 
morphology with a characteristically rough (rugose) and rigid cell 
surface. In contrast, cells treated with the combination of thyme oil and 
amikacin (Figure  6B) displayed significant alterations, including a 
crumpled and shrunken cell surface with irregular shapes. Notably, some 
cells exhibited outward openings and cleavages in the cell wall. Treatment 
with tea tree oil and amikacin (Figure 6C) resulted in even more severe 
damage, characterized by complete disruption of the cell envelope and 
leakage of cytoplasmic contents. These lysed cells appeared devoid of 
internal structures and possessed collapsed and fragmented cell walls.

Detection of capsule genes by 
conventional PCR

The detection of capsule genes in Klebsiella isolates was confirmed 
by the PCR. Five different primers which produced 169-bp, 516-bp, 
1,282-bp, 534-bp, and 683-bp PCR products, enabled elucidating the 
presence of capsule genes in the genomes of Klebsiella isolates. This 

FIGURE 2

Antibacterial activity (A) Agar well diffusion assay shows the inhibition zones of K. pneumoniae (code No. KP11) caused by tested 10 oil extracts; TT, Tea 
tree; T, Thyme; MA, Margoram; LM, Lemon; NS, Nigella sativa; S, Sage; G, Garlic; GG, Ginger; M, Moringa; LN, Linseed. (B) Pearson’s correlation 
coefficient between inhibition zones (mm) of essential oils against MDR K. pneumoniae. (C) Principal component analysis (PCA) of inhibition zones 
(mm) of essential oils against MDR K. pneumoniae.
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was obvious when the Klebsiella isolates compared to a positive 
control (Lane +C) as in Supplementary Figure S6.

Transcriptional analysis of capsule 
expression genes of Klebsiella pneumoniae

The relative expression of five virulence genes (wcaG, rmpA, 
magA, uge, and wabG) which are required for capsule formation, 

were measured in Klebsiella isolates treated with tea tree oil plus 
amikacin and thyme oil plus amikacin as illustrated in Figure 7. 
The 16 s rRNA housekeeping gene was used for 
qRT-PCR normalization.

Using RT-PCR, the amounts of the tested virulence gene products 
before and after treatment with thyme oil combined with amikacin 
can be compared. The fold change in the magA gene before treatment 
was 1 and after treatment, it was downregulated and reached 0.341 in 
the tested isolates.

TABLE 3 SIC, MIC, and MBC of tea tree oil, thyme oil and amikacin against Klebsiella isolates.

Isolate no. Code no. Concentration of SIC, MIC, MBC (μg/ml)

Tea tree oil extract Thyme oil extract Amikacin

SIC MIC MBC SIC MIC MBC SIC MIC MBC

1 2K 8 16 32 64 128 256 1 2 4

2 3K 1 2 4 128 256 512 1 2 4

3 10K 8 16 32 32 64 128 2 4 8

4 14K 8 16 32 0.25 0.5 1.0 2 4 8

5 15K 16 32 64 0.25 0.5 1.0 1 2 4

6 16K 8 16 32 2 4 8 1 2 4

7 17K 4 8 16 16 32 64 2 4 8

8 19K 8 16 32 32 64 128 1 2 4

TABLE 4 MIC of tea tree oil and amikacin alone and in combination and FIC index against Klebsiella isolates by the checkerboard method.

Isolate 
no.

Code 
no.

MIC of 
tea 

tree oil

MIC of 
amikacin

MIC of tea 
tree oil in 

combination

MIC of 
amikacin in 

combination

FIC of 
tea tree 

oil

FIC of 
amikacin

Ʃ FIC Interpretation

1 2K 16 2 4 0.06 0.25 0.03 0.28 Synergistic

2 3K 2 2 0.5 0.015 0.25 0.0075 0.257 Synergistic

3 10K 16 4 4 0.125 0.25 0.03 0.28 Synergistic

4 14K 16 4 2 0.03 0.125 0.075 0.1325 Synergistic

5 15K 32 2 4 0.06 0.125 0.03 0.155 Synergistic

6 16K 16 2 0.5 0.5 0.03 0.5 0.53 Partially synergistic

7 17K 8 4 1 0.125 0.125 0.03 0.155 Synergistic

8 19K 16 2 4 0.06 0.25 0.03 0.28 Synergistic

TABLE 5 MIC of thyme oil and amikacin alone and in combination and FIC index against Klebsiella isolates by the checkerboard method.

Isolate 
no.

Code 
no.

MIC of 
thyme 

Oil

MIC of 
amikacin

MIC of thyme 
oil in 

combination

MIC of 
amikacin in 

combination

FIC of 
thyme 

oil

FIC of 
amikacin

Ʃ 
FIC

Interpretation

1 2K 128 2 64 0.06 0.5 0.03 0.53 Partially synergistic

2 3K 256 2 128 0.015 0.5 0.0075 0.507 Synergistic

3 10K 64 4 8 0.125 0.125 0.03 0.155 Synergistic

4 14K 0.5 4 0.125 0.03 0.25 0.0075 0.257 Synergistic

5 15K 0.5 2 0.06 0.06 0.12 0.03 0.15 Synergistic

6 16K 4 2 2 1 0.5 0.05 0.55 Partially synergistic

7 17K 32 4 8 0.125 0.25 0.03 0.28 Synergistic

8 19K 64 2 16 0.06 0.25 0.03 0.28 Synergistic
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FIGURE 4

3D orientation and surface mapping of active components against K. pneumoniae K1 target site. (A) 2,6-Dimethyl-3,5,7-octatriene-2, (B) Terpinen-4-
ol, (C) 7-Oxabicyclo, (D) Farnesol, (E) 1,4-dihydroxy-p-menth-2-ene, (F) trans-Z alpha. -Bisabolene epoxide.

The fold change in the wabG gene after treatment ranged from 
0.353 to 0.683. The same downregulation occurred in the wcaG gene 
with a fold change of 0.562. Additionally, the rmpA and uge genes were 
downregulated with fold change ranges of 0.275–0.732 and 0.244–
0.444, respectively.

Regarding the tea tree + amikacin-treated group, strong 
downregulation of the same virulence genes was detected. The magA 
gene exhibited fold change ranging from 0.15 to 0.34, the wabG gene 
had fold change ranges of 0.100–0.213, wcaG fold changes of 

0.194–0.356, rmpA fold changes of 0.233–0.301 and uge gene had fold 
change ranging from 0.1060 to 0.299.

Overall, the treatments significantly affected the studied 
genes; the expression of uge, wcaG, and wabG was significantly 
downregulated (p < 0.05) in the tea tree + amikacin groups 
compared to thyme + amikacin treated groups (Figures 7A,C,D). 
Meanwhile, non-significant differences (p > 0.05) were observed 
between the aforementioned two groups for the expression of 
rmpA and magA genes (Figures 7B,E).

FIGURE 3

3D orientation and surface mapping of active components against OmpK36 target site. (A) Terpinen-4-ol, (B) Farnesol, (C) (+) spathulenol, 
(D) 1,4-dihydroxy-p-menth-2-ene, (E) (−) spathulenol, (F) trans-Z-. alpha. -Bisabolene epoxide.
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Discussion

Today, K. pneumoniae is considered the most common cause of 
hospital-acquired pneumonia in most countries worldwide (Anes 
et al., 2017). The emergence of multidrug resistant bacteria (MDR) 
isolates of K. pneumoniae is a global issue (Ripabelli et al., 2018). 
Numerous studies have isolated MDR K. pneumoniae from various 
animals and humans (Yang et al., 2019; El-Demerdash et al., 2023b). 
However, the correlation between capsule formation and antibiotic 
resistance in K. pneumoniae is not fully understood. Therefore, this 
study was conducted to investigate the prevalence of MDR Klebsiella 
isolates in animals and human in Egypt, as well as to evaluate possible 
solutions to overcome this antibiotic resistance and their ability to 
form capsules by using different herbal extracts.

In this study, K. pneumoniae was recovered from 25 out of 100 
samples, yielding an overall prevalence of 25%. This finding is 
comparable to the prevalence range reported in previous studies on 
Klebsiella colonization in Western countries (5–35%) but notably 
higher than the reported rates in Europe and North America (5 and 
3%, respectively) (Chang et al., 2021; Salari et al., 2023).

However, direct comparisons between regions can be misleading 
due to variations in sample types, study populations, and 
methodological approaches. For instance, while the overall prevalence 
in Africa is reported as 45% (Salari et  al., 2023), significant 
heterogeneity exists within the continent. To provide a more accurate 
context, future studies should focus on specific regional comparisons, 
considering factors such as healthcare settings, antibiotic usage, and 
socioeconomic conditions.

FIGURE 5

3D orientation and surface mapping of active components against FosAKP target site. (A) Terpinen-4-ol (B) 7-oxabicyclo (C) Farnesol 
(D) 1,4-dihydroxy-p-menth-2-ene.

FIGURE 6

Transmission electron micrographs of K. pneumoniae cells; (A) Untreated K. pneumoniae cells; (B) K. pneumoniae cells treated with thyme oil and 
amikacin, and (C) K. pneumoniae cells treated with tea tree oil and amikacin.
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The abuse and misuse of antimicrobial medicines are leading to the 
emergence of resistance to these agents as a global crisis in the 
management of infections associated with K. pneumoniae (El-Demerdash 
et al., 2018; Ali et al., 2023; Ndlovu et al., 2023). This study highlights a 
concerning case of highly diversified antibiotic resistance. Data from the 
Chinese Antimicrobial Resistance Surveillance System (CARSS) indicates 
that K. pneumoniae is the second most common (20.2%) gram-negative 
infection among isolated bacteria.

The present study also investigated the low sensitivity of 
K. pneumoniae isolates to tetracycline. The low sensitivity of 
tetracycline is due to mutations in the chromosomes in the outer 
membrane of bacteria leading to a decrease in tetracycline penetration 
into the cell (Grossman, 2016).

Disk diffusion susceptibility testing revealed that all isolated 
K. pneumoniae strains (100%) were multidrug-resistant (MDR). This 
finding aligns with previous reports by (Del Prete et al., 2019; Ferreira 
et  al., 2019) who also observed a high prevalence of MDR 
K. pneumoniae. Notably, the disk diffusion method likely identified 
high resistance to key β-lactam antibiotics such as cefotaxime and 
ceftriaxone, which are commonly used for treating Klebsiella 
infections. This resistance contributes significantly to the 
designation of MDR.

According to other sources, the MDR pattern may be attributed 
to the excessive use of antibiotics in Egyptian veterinary and human 
medicine, as well as the horizontal or vertical transmission of plasmids 
carrying antimicrobial resistance genes among different bacterial 
pathogens or between animals and humans (Witte, 1998; El Damaty 
et al., 2023; El-Demerdash et al., 2023a, 2023c; Saad et al., 2024). On 
the other hand, the best susceptibility (52%) was observed for 
amikacin which is an aminoglycoside antibiotic that prevents bacteria 
from synthesizing proteins by binding to the 30S ribosomal subunit 
mRNA and causing reading mistakes. Amikacin is also highly resistant 
to modification by bacterial enzymes leading many bacteria to 
be sensitive to this antibiotic (Ramirez and Tolmasky, 2017).

In the search for alternative antimicrobial agents, several studies 
have shown the potential of essential oils in fighting MDR bacteria. 
Terpenes and terpenoids are common volatile low molecular weight 
chemicals found in complex hydrophobic liquids known as essential 
oils (EOs). They are extracted from plants through solvent extraction, 
mechanical expression, or distillation. Previous studies have 
demonstrated the antibacterial properties of essential oils and their 
constituents against gastrointestinal and other infections (Millezi 
et al., 2016; El-Demerdash et al., 2023d). Building on this evidence, 
the present study evaluated the effectiveness of 10 essential oils against 
25 Klebsiella isolates.

The antimicrobial activities of essential oils are attributed to their 
ability to penetrate microbial cells, causing structural and functional 
changes due to their hydrophobic nature. This disruption of the 
cytoplasmic membrane leads to cell lysis and the release of 
intracellular compounds (Lopez-Romero et al., 2015). Moreover, the 
diverse mechanisms of action and functional diversity of essential oils 
increase microbial sensitivity (Bakkali et al., 2008; Nazzaro et al., 
2013). Among the tested plant extracts, tea tree and thyme oils 
exhibited high antimicrobial activities. Therefore, this study 
recommends the use of tea tree and thyme oils as antimicrobial 
agents and chemical preservatives due to their relatively lower toxicity 
and side effects (Santurio et  al., 2014). Additionally, the multi-
component nature of plant extracts makes it more difficult for 
bacteria to develop resistance compared to commonly used 
antibiotics, which have a single target site (El-Azzouny et al., 2018).

Without a doubt, the antibacterial action of essential oils is 
determined by their chemical structure which can vary depending on 
factors such as weather, soil type, and geographic location (Dardona, 
2014; Dardona and Al-Hindi, 2019). Therefore, it is crucial to 
understand the chemical composition of essential oils in order to 
connect it to their antibacterial properties GC/MS was utilized to 
conduct chemical profiling of the oils extracted from tea trees 
and thyme.

FIGURE 7

The relative mRNA expression levels of genes related to capsule formation through tested K. pneumoniae isolates before and after treatments; (A) uge, 
(B) rmpA, (C) wcaG, (D) wabG, and (E) magA.

https://doi.org/10.3389/fmicb.2024.1467460
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


El-Demerdash et al. 10.3389/fmicb.2024.1467460

Frontiers in Microbiology 11 frontiersin.org

This study uniquely investigates the efficacy of tea tree oil against 
MDR-KP strains, a significant contribution as it opens new avenues 
for alternative therapeutic strategies to address the growing challenge 
of antibiotic resistance. GC-mass analysis revealed the presence of 
various bioactive compounds in the effective tea tree oil, potentially 
contributing to the observed efficacy through a synergistic mechanism. 
The most abundant component, terpinen-4-ol, previously linked to 
biofilm inhibition in S. aureus (Cordeiro et  al., 2020), along with 
limonene, another component with documented antibacterial activity 
(Slade et  al., 2009; Matsuo et  al., 2011), might contribute to the 
observed synergistic mechanism.

Similar to tea tree oil, thyme extract, analyzed using GC–MS, 
revealed a rich composition of bioactive compounds. Thymol, the 
primary component, is recognized for its broad spectrum of 
antimicrobial activity (Kowalczyk et  al., 2020; Khan et  al., 2021). 
Studies suggest that thymol disrupts bacterial membranes through 
interactions with membrane proteins and potentially by altering ATP 
levels (Tiwari et al., 2009). Additionally, thyme oil contains carvacrol, 
another well-documented antibacterial compound, known to inhibit 
flagella formation in bacteria (Burt et  al., 2007). These findings 
highlight the potential mechanisms by which thyme extract might 
exert its antibacterial effects against MDR-KP strains.

However, a major limitation of essential oils is the high dosage 
required to combat resistant microorganisms, hindering their 
therapeutic application (Hyldgaard et  al., 2012). This study 
investigated the potential of combining antibiotics with well-selected 
plant extracts, like tea tree and thyme oils, to address this challenge. 
Our findings demonstrate that this combination strategy offers several 
advantages: (i) overcoming resistance, (ii) reducing effective antibiotic 
dosages (leading to lower costs and minimized side effects), and (iii) 
broadening the spectrum of efficacy against MDR-KP strains 
(Hyldgaard et al., 2012; Purkait et al., 2020). Notably, the Fractional 
Inhibitory Concentration (FIC) index calculations revealed a strong 
synergistic effect between the antibiotics and herbal extracts, 
suggesting a combined action that is significantly more potent than 
their individual effects.

The observed synergy might be attributed to the ability of herbal 
extracts, particularly tea tree and thyme oil, to enhance the penetration 
of antibiotics, like amikacin, through the outer membrane of 
MDR-KP. In silico docking analysis further supported this hypothesis 
by revealing potential interactions between identified bioactive 
compounds within the extracts and key target proteins in 
K. pneumoniae. These targets included OmpK36, a porin crucial for 
outer membrane permeability, the K1 capsule polysaccharide essential 
for bacterial virulence, and FosAKP, an enzyme vital for 
lipopolysaccharide (LPS) biosynthesis.

Several compounds displayed promising binding affinities for 
OmpK36, suggesting they might disrupt its function. Terpinen-4-ol, 
with the strongest binding energy, interacted with hydrophobic 
residues and formed a hydrogen bond with Asp114 (Figure  3A). 
Similar interactions were observed with other compounds 
(Figures 3C,F). Disruption of OmpK36 could hinder nutrient uptake 
and antibiotic penetration by K. pneumoniae.

Docking analysis revealed favorable interactions between essential 
oil compounds and the K1 capsule biosynthesis machinery. Terpinen-
4-ol once again demonstrated notable binding affinity for the K1 
capsule target site (Figure 4B), suggesting potential interference with 
K1 capsule assembly. This could weaken the bacterial cell envelope 
and enhance antibiotic efficacy.

The essential oil compounds also showed binding potential 
for FosAKP.Terpinen-4-ol and 1,4-dihydroxy-p-menth-2-ene 
displayed favorable binding energies with interactions involving 
hydrophobic residues, hydrogen bonds, and metal ion 
interactions (Figures 5A,D). This suggests a potential mechanism 
for inhibiting LPS synthesis, another critical component of the 
bacterial outer membrane.

Overall, the docking analysis results provide compelling evidence 
for the potential mechanisms by which essential oil components might 
exert their antibacterial effects against K. pneumoniae. The observed 
interactions with key target proteins like OmpK36, K1 capsule 
components, and FosAKP suggest that these compounds might 
disrupt essential cellular processes, leading to membrane permeability 
alterations, reduced virulence, and ultimately, bacterial cell death. 
However, it is important to acknowledge that in silico results need to 
be validated through wet lab experiments to confirm the predicted 
binding modes and their functional consequences.

One of K. pneumoniae’s most significant virulence factors in terms 
of infection-causing capacity is capsular polysaccharide (CPS). 
Polymorphonuclear cells seen in CPS essentially form the pathogen’s 
outer coating and provide resistance to phagocytosis. By lowering the 
quantity of C3 on the bacteria and functioning as a barrier to prevent 
contact between macrophage receptors and their ligands on the 
bacterial surface, CPS reduces the connection between bacterial cells 
(Opoku-Temeng et al., 2019).

The transmission electron microscopy (TEM) results showed 
detailed cell damage of the Klebsiella isolate after treatment with a 
combination of essential oil and amikacin.

The TEM revealed that the size of capsules in treated cells, by both 
agents, was profoundly significantly reduced compared to that of 
control untreated cells. Overall, it has been documented that plant-
derived compounds may be a promising resource for developing novel 
therapeutic approaches targeting bacterial capsule production 
(Upadhyay et  al., 2014). Additionally, Dumlupinar et  al. (2020) 
reported that the multicomponent structures of essential oils 
particularly tea tree oil reduce the potential for biosynthesis of bacterial 
capsular polysaccharides among virulent K. pneumoniae isolates.

In the current study, the use of essential oils (tea tree oil and thyme 
oil) in combination with amikacin downregulated the expression of 
genes responsible for capsule synthesis in Klebsiella pneumoniae.

The most important genes involved in capsule formation are 
magA, rmpA, uge, wcaG and wabG. The magA gene (muco viscosity 
associated gene A) was originally identified through transposon 
mutagenesis screening (Costa, 2019). MagA was identified based on 
its role in mucoviscosity, resistance to serum killing and phagocytosis, 
and virulence in mice (Fang et al., 2004). Mucoviscosity is indirectly 
related to magA because of its essential role in capsule production. 
While mucoviscosity might be  mediated by capsule expression-
promoting regulators such as rmpA (Hsu et al., 2011).

The production of capsule polysaccharides is regulated by the 
rmpA gene which has been identified in three forms: rmpA2 on a 
plasmid, rmpA located chromosomally, and rmpA on a plasmid (Shon 
et al., 2013). Hypercapsule production controlled by rmpA, inhibits 
opsonophagocytosis and phagocytosis of K. pneumoniae by the host’s 
immune cells. This also suppresses opsonization and lysis caused by 
complement. Ikeda et  al. (2018) and Khan et  al. (2021) have 
demonstrated that rmpA regulation is linked to K. pneumoniae’s 
ability to evade immune responses, emphasizing the critical role of the 
rmpA gene in the progression of infection.
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Conversely, most isolates from urine include the uge gene (uridine 
diphosphate galacturonate-4epimerase). Studies have shown that 
K. pneumoniae strains lacking the uge gene are less pathogenic and 
unable to cause sepsis, pneumonia, or UTI. In experimental settings 
where urinary infections are induced, mutations in the uge gene have 
been found to decrease K. pneumoniae’s ability to colonize (Izquierdo 
et al., 2003; Ballén et al., 2021).

Similarly, Shu et  al. (2009) have demonstrated that the wcaG 
virulence gene (GU325787) located in the transferable regions of the 
chromosome is responsible for K. pneumoniae capsule biosynthesis. It 
is needed for the conversion of mannose to fucose, which may 
enhance the ability of bacteria to evade phagocytosis by macrophages.

Additionally, almost all clinical isolates possess the significant 
gene wabG. Most research indicates that 88–100% of K. pneumoniae 
isolates harbor wabG, while one study only found wabG in 5.3% of 
isolates (Izquierdo et  al., 2003). Furthermore, Jung et  al. (2013) 
observed that in intraperitoneal, pneumonic, and UTI rodent 
infection models, K. pneumoniae strains lacking this gene are 
attenuated and unable to produce the Lipopolysaccharide (LPS) outer 
core or maintain capsular antigen.

qRT-PCR analysis revealed a dampening effect of the essential oil 
combinations on the fold change of the previously mentioned capsule 
gene expression. Notably, the tea tree oil combination exhibited a 
significantly stronger influence compared to thyme. These results 
suggest that tea tree oil might act as a more potent anti-virulence and 
antibiotic-resistance modifying agent when compared to thyme. 
Furthermore, the observed dampening effect on capsule gene 
expression by the essential oil combinations highlights a potentially 
novel mechanism by which they exert their antibacterial activity 
against K. pneumoniae.

These results indicate that essential oils were able to down-regulate 
the expression of the investigated genes which signifies their 
antagonistic properties against Klebsiella. Decreasing Klebsiella 
virulence through the synergistic effect of essential oils and antibiotics 
would reduce the pathogen’s ability to cause infection. This is an 
important concept in the era of antibiotic resistance.

In conclusion, this study highlights the promising potential of 
combining conventional antibiotics with essential oils derived from 
medicinal plants (such as tea tree and thyme) for developing novel 
antimicrobial therapies and mitigating drug resistance. The synergistic 
activity observed between the tested antibiotics and essential oils opens 
up new treatment strategies against various microbial infections and 
provides hope for combating the growing threat of antibiotic resistance.

However, it is important to note that these findings are based on 
in vitro experiments. Further in vivo studies are necessary to confirm 
the observed synergy and evaluate the efficacy and safety of these 
combinations in a more complex biological system Additionally, 
understanding the molecular mechanisms underlying this synergistic 
interaction is crucial for the development of effective antibacterial 
drugs derived from medicinal plants.
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