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This study involves the development and molecular characterization of the isogenic 
markerless knockout mutant SG ΔpurB, a genetically engineered live attenuated 
strain aimed at controlling Salmonella Gallinarum (SG) infection in poultry. The 
mutant was generated by deleting the purB gene using λ-Red recombination 
technology, impairing adenylosuccinate lyase, necessary for purine biosynthesis. An 
1,180  bp deletion was engineered within the purB gene, leaving a residual 298  bp 
genomic scar resulting in a purine auxotrophic mutant. Phenotypically, SG ΔpurB 
showed a 66.5% reduction in growth in LB broth compared to the wild-type strain 
and failed to grow in minimal media without adenosine. Growth was restored to 
near wild-type levels with 0.3  mM adenosine supplementation, demonstrating the 
strain’s conditional attenuation. In vivo pathogenicity assessments revealed that oral 
inoculation of SG ΔpurB into 3-day-old chickens at a dose of 2 × 108  CFU resulted 
in zero mortality, compared to an 80% mortality rate in chickens challenged with 
the wild-type strain. The SG ΔpurB strain exhibited significantly reduced clinical 
signs and lesion scores, with clinical sign scores dropping from 2.5/3 with the 
wild-type to 0.4/3 with the ΔpurB mutant, and lesion scores decreasing from 2.9/3 
to 0.3/3. Additionally, the mutant was efficiently cleared from liver and spleen 
tissues by 14  days post-inoculation, unlike the wild-type strain, which persisted 
until the experiment’s end on day 21. The SG ΔpurB mutant shows potential as a 
safe alternative for preventing fowl typhoid, highlighting the promise of targeted 
genetic attenuation in developing effective vaccines for poultry diseases.

KEYWORDS

Salmonella enterica serovar Gallinarum, purine biosynthesis, purB gene, virulence, safety

1 Introduction

Salmonellosis continues to be a prevalent infectious disease within the poultry sector 
globally (Calnek, 1991; Chappell et al., 2009). Salmonella enterica serovar Gallinarum (SG), a 
host-specific serovar., induces fowl typhoid (FT), a systemic condition characterized by 
septicemia affecting domestic poultry of all ages, including week-old chicks (Calnek, 1991; 
Kwon et al., 2010). Fowl typhoid persists as a significant concern in various regions experiencing 
elevated ambient temperatures, which complicate environmental hygiene, leading to 
considerable economic losses due to mortality, morbidity, and reduced egg production (Zhang-
Barber et al., 1998; Berchieri et al., 2001; Kwon et al., 2010). Vaccination represents an effective 
approach for the prevention of Salmonella infections (Mastroeni et al., 2001). Live attenuated 
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Salmonella strains are more effective as vaccines against salmonellosis 
in various animal species compared to inactivated vaccines (Smith, 
1956). Inactivated vaccines stimulate antibody production but do not 
significantly enhance the cellular immunity (Gast et  al., 1993). In 
contrast, live vaccines generate strong humoral and cellular immune 
responses, particularly when the vaccine strain is invasive (Babu et al., 
2003). Despite not having full accreditation, the widely recognized live 
vaccine strain 9R has substantially contributed to reducing the 
prevalence of the disease (Smith, 1956; Bouzoubaa et al., 1989; Kwon 
et al., 2010), However, the persistence of residual virulence, incomplete 
immunity, and the undefined genotype of the 9R vaccine strain have 
prompted researchers to pursue the development of improved vaccine 
strains (Griffin and Barrow, 1993; Shah et al., 2007; Matsuda et al., 2010; 
Penha Filho et al., 2010). To improve vaccine safety, it is recommended 
to explore attenuated strains with well-characterized genotypes. 
Previously various genes have been mutated in SG toward developing 
a safe vaccine candidate including aroA (Griffin and Barrow, 1993), 
SPI-2 (Jones et al., 1998), nuoG (Zhang-Barber et al., 1998), aroA-serC 
(Barrow et al., 2000), metC (Shah et al., 2007), ΔlonΔcpxR (Matsuda 
et al., 2011a), fur (Łaniewski et al., 2014), ΔcobSΔcbiA (Penha Filho 
et al., 2010; Penha Filho et al., 2016) among others. In the early 1950s, 
Bacon and his colleagues observed that mutation in gene involved in 
purine production results in reduced virulence (Bacon et al., 1950a,b). 
Another experiment was conducted to evaluate the impact of various 
purine auxotrophic mutations on the virulence of a Vi-positive strain 
of Salmonella dublin and two strains of Salmonella typhimurium in 
mice (McFarland and Stocker, 1987). To our knowledge, the generation 
and safety assessment of purine-deficient Salmonella Gallinarum have 
not been previously documented. This study investigates the impact of 
purB deletion in SG on virulence, lesion scoring, and bacterial 
persistence, offering insights into its potential role in pathogenicity 
modulation. Specifically, we describe the creation of a single isogenic, 
markerless knockout mutant, denoted as SG ΔpurB, engineered using 
λ-Red recombination. This mutant strain, lacking purB, disrupts 
adenylosuccinate lyase function, impacting purine biosynthesis and 
resulting in slower growth. The observed reduction in virulence in 
certain auxotrophic strains is attributed to compromised growth, 
impeding evasion of host defenses in contexts where essential 
metabolites are deficient (McFarland and Stocker, 1987). Further 
investigations are necessary to evaluate its immunogenicity and 
protective efficacy. Strategies like co-administration with adjuvants or 
combination with additional attenuating mutations may enhance its 
immunogenicity and effectiveness against Salmonella Gallinarum 
infection, addressing poultry health concerns.

2 Materials and methods

2.1 Bacterial strains and plasmids

Bacterial strains and plasmids employed in this study are 
delineated in Table  1. Local isolates of Salmonella enterica subsp. 
enterica serovar Gallinarum biovar Gallinarum (SG) (Accession no. 
CP150644) were sourced from the University Diagnostic Laboratory 
(UDL) of UVAS, Lahore. Plasmids utilized in the study, denoted as 
pCLF3 (EU629213), pKD46 and pCP20 (Datsenko and Wanner, 2000) 
were acquired from the McClelland laboratory, UCI, United States.

2.2 Construction of single mutant ΔpurB of 
Salmonella Gallinarum

The markerless isogenic single mutant ΔpurB:ΩCm of SG was 
constructed by λ-Red-mediated recombination system (Datsenko and 
Wanner, 2000). The primer sequences employed for the generation 
and verification of mutant are detailed in Table 2.

2.2.1 Amplification of purB-F50: CmR: purB-R50

For targeted deletion of the purB, specific 70-base pair primers 
purB-F and purB-R were utilized to amplify segments containing the 
Chloramphenicol resistance marker along with Promoter T7 and FLP 
recombination target (FRT) sites from pCLF3. The resulting PCR 
products, flanked by 50-base homologous sequences at their ends, 
were designed to match regions proximal to the 5′ and 3′ ends of the 
purB gene. Cycling parameters included initial denaturation at 98°C 
for 1 min 30 s, followed by denaturation at 98°C for 15 s, annealing at 
54°C for 20 s, and elongation at 72°C for 1 min 10 s for five cycles. 
Subsequently, there were 30 cycles of denaturation at 98°C for 15 s and 
elongation at 72°C for 1 min 30 s, with a final elongation step at 72°C 
for 3 min. After confirmation via gel electrophoresis, the amplified 
selection cassette was purified from the PCR mixture using the 
QIAquick PCR purification kit (QIAGEN, Germany).

2.2.2 Electro-transformation of Salmonella 
Gallinarum with pKD46 (λ red plasmid)

The Lambda red plasmid pKD46 was extracted from MG1655 
Escherichia coli using the commercially available plasmid extraction 
kit QIAprep® Spin Miniprep Kit (QIAGEN, United  States). 
S. gallinarum was prepared for electroporation using the subsequent 
protocol with some modifications (Cox et al., 2007) Datsenko and 

TABLE 1 Bacterial strains and plasmids used in study.

Bacterial isolate Characteristics References

Salmonella Gallinarum Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum, isolated from an 

outbreak in the district Sheikhupura, Province Punjab, Pakistan

University Diagnostic laboratory, UVAS, 

Lahore.

Plasmid Characteristics References

pCLF3 Derivative of pKD3, Chloramphenicol resistance cassette, the PT7 promoter, and the FRT sites Santiviago et al. (2009)

MG1655/pKD46 λ Red recombinase expression plasmid, repA101(ts), araBp-gam-bet-exo, bla (AmpR) Department of Microbiology and Molecular 

Genetics, UCI, United States

EC100Δpir116/pCP20 AmpR, CmR, FLP recombinase expression Department of Microbiology and Molecular 

Genetics, UCI, United States
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Wanner. The prepared electrocompetent cells were electroporated 
with the pKD46 plasmid at 1.8 kV in 1 mm cuvette (Bio-Rad, 
United States) for 5.7 milliseconds (ms) using EC1 on MicroPulser 
electroporator (Bio-Rad, United  States), followed by recovery in 
SOC media and plating on LB medium supplemented with 
ampicillin (100 μg/mL). All resulting Salmonella Gallinarum 
transformants carrying the pKD46 plasmid were stored at-80°C for 
further analysis.

2.2.3 Electro-transformation of purB-F50: CmR: 
purB-R50 into SG: pKD46

SG cells harboring the pKD46 plasmid (46 μL) were inoculated 
into 23 mL of LB/Amp broth and incubated at 30°C with agitation for 
1 h, followed by induction with 0.02% L-arabinose. Cells were grown 
to an OD600 of 0.47–0.48, and electrocompetent cells were prepared as 
described. Purified PCR product purB-F50: CmR: purB-R50 having 
DNA concentration 1.5 μg (Serra-Moreno et  al., 2006) was 
electroporated into electrocompetent cells of SG:pKD46 at 1.8 kV in a 
1 mm cuvette (Bio-Rad, United States), followed by recovery in SOC 
media for 50 min at 37°C with shaking. Both, the cells harboring the 
purB (CmR) marker and the cells subjected to the water control (IDT 
Nuclease-free water), were spread onto LB/Cm (15 μg/mL) plates and 
incubated overnight at 37°C (Karlinsey, 2007). Confirmation of SG 
ΔpurB:ΩCm colonies was achieved through PCR amplification using 
purB flank-F, purB flank-R, and Cassette-R primers.

2.2.4 Excision of resistance marker and curing of 
pCP20

To generate an isogenic markerless mutant, the Cm resistance 
marker was deleted following specific modifications (Czarniak and 
Hensel, 2015). A volume of 50 μL of competent cells of SG ΔpurB:ΩCm 
was mixed with 3 μL of plasmid pCP20 in a pre-chilled electroporation 
cuvette and electroporated at 1.8 kV, followed by recovery in SOC 
media for 50 min at 30°C with shaking. Cells harboring the pCP20 
plasmid were then spread onto LB/Amp (100 μg/mL) plates and 
incubated at room temperature. After 48 h, the cells were scraped, 
suspended in LB/20% glycerol, and diluted for overnight culture at 
43°C. The culture was then streaked and spread on LB plates and 
incubated at 37°C. Eight colonies were selected and tested on LB/Cm 
(15 μg/mL) and LB/Amp (100 μg/mL) plates. The resulting SG ΔpurB 
mutants were further verified by PCR and stored in 20% glycerol 
at-80°C.

2.3 Phenotypic characteristics of SG ΔpurB

For the auxotrophic experiment, a single colony of SG ΔpurB was 
cultured in 3 mL LB broth overnight at 37°C. Subsequently, 200ul of 
the overnight culture was inoculated into 20 mL of M9 minimal 
media, with one set of tubes supplemented with 0.3 mM adenosine 
and the other set without adenosine, incubated overnight at 37°C 
(Park et al., 2007; Jelsbak et al., 2014). To assess the in vitro growth 
pattern, a confirmed colony of SG ΔpurB was inoculated into 3 mL LB 
broth and incubated overnight at 37°C. The following day, 200 μL of 
the overnight culture was transferred into 20 mL of LB broth, and 
optical density (OD600) was measured every hour for a duration of 
10 h. The growth pattern of the wild-type SG was similarly observed 
as a control under the same conditions (Kang et al., 2022).

2.4 Animal ethics and husbandry conditions

The chicken experiments in this study were approved by the 
Animal Ethics Committee of UVAS and conducted in accordance with 
institutional ethical guidelines. Disease-free broiler chickens were 
obtained as day-old chicks from a commercial hatchery and housed 
in pre-sterilized pens within an environmentally controlled room, 
provided with water and antibiotic-free food ad lib.

2.5 Assessment of bacterial virulence

This experiment involved the evaluation of SG wild-type strain 
and SG ΔpurB virulence by administering different doses of each 
strain orally to chickens. One hundred and ten day-old chickens 
were divided into three major groups (Group A, B, and C). Groups 
A and B, each comprising fifty chickens, were further subdivided 
into subsequent sub-groups, each containing ten birds. Group C 
consisted of 10 birds. On day 3, each sub-group of Group A (n = 10) 
received a 10-fold dilution (ranging from 1 × 105 to 1 × 109) dose of 
SG ΔpurB, while each sub-group of Group B was inoculated with a 
10-fold dilution (1 × 105 to 1 × 109) dose of SG wild-type via oral 
route in 100 μL PBS. Ten birds in group C were inoculated with 
100 μL PBS as a control group. Bird mortality was monitored for 
duration of 2 weeks. The Lethal dose (LD50) was calculated by Probit 
analysis (Finney, 1971).

TABLE 2 Primers used in study.

Gene 
name

Primer 
nature

Primer 
name

Primer sequence 5′---3′ Reference

purB (Red 

Primers)

Forward purB-F 5′TGACCGCCGTTTCCCCTGTCGATGGACGCTACGGCGATAAAGTCAGCGCGGTG 

CAGGCTGGAGCTGCTTC3′

This study

Reverse purB-R 5′ACCAGAGTCACAGCGCGACCGATATAATTTGCCGGCGTCATGGCTTTAAGCAT 

ATGAATATCCTCCTTAG3′

This study

purB flank Forward purB flank-F 5’TCATTTAACCCCGGAGTTAT3` This study

Reverse purB flank-R 5’TGAAGAAAAGAGGGTGAGGC3` This study

Cassette-R 5’CTTCGAAGCAGCTCCAGCCTGCAC 3` This study
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2.5.1 General condition, mortality and gross 
lesion observations

In this experiment, ninety Salmonella-negative day-old 
chickens were allocated into three groups. On day 3, Group A and 
Group B were orally inoculated with the SG ΔpurB mutant and SG 
wild-type strains, respectively, at a dosage of 2 × 108 CFU per bird 
in 100 μL PBS, while Control Group C received 100 μL PBS via the 
same route. Body weights of the birds were recorded at 0, 7, 14, 21, 
and 28 days post-infection (DPI) (Kang et al., 2022). Throughout 
the 28-day observation period, clinical symptoms and lesion 
scores were monitored. Gross lesions in the spleen and liver were 
assessed through post-mortem examination of 5 randomly 
selected birds from each group on 7 DPI, with the remaining 
chickens being humanely slaughtered at the trial’s conclusion. 
Clinical symptoms, such as depression and diarrhea, were 
monitored daily from 5DPI to 10DPI. The scoring criteria for both 
clinical symptoms and gross lesions were based on methods 
described in a previous study (Matsuda et al., 2011b).

2.5.2 Persistence of bacteria in liver and spleen
Bacteriological examination of the organs was conducted to assess 

bacterial persistence. Three birds from each group were slaughtered at 
3, 7, 10, 14 and 21 DPI, and samples of the liver and spleen were 
collected aseptically in sterile zip bags. One gram samples of the liver 
and spleen were minced and homogenized in 1 mL of 
PBS. Subsequently, 10-fold serially diluted samples (100 μL) were 
inoculated onto BGA and XLD agar plates, which were then incubated 
at 37°C for 24 h. Additionally, homogenized samples in PBS were 
inoculated into Rappaport-Vassiliadis broth at 42°C for 24 to 48 h for 
enrichment, followed by inoculation of 100 μL onto BGA agar plates, 
which were incubated at 37°C for 24 h. Confirmation of the mutant 
strain (SG ΔpurB) and SG wild-type from the samples was achieved 
via PCR using specific primers purB flank-F/purB flank-R. The 
persistence of SG ΔpurB and SG wild-type was quantified and 
expressed in log10 CFU/g. Samples that tested positive only after 
enrichment were considered as 1 CFU/g, while those that remained 
negative after enrichment were considered as 0 CFU/g for data analysis 
(Matsuda et al., 2010).

3 Results

3.1 Molecular validation of purB deletion in 
Salmonella Gallinarum

The amplification of target sequences with purB-F and purB-R 
primers resulted in 1180 bp PCR product, designated as purB-
F50:CmR:purB-R50. This purified PCR product (1.5 μg) when transformed 
into SG:pKD46, produced 15 colonies on LB/Cm (15 μg/mL) plates, 
whereas, no colonies were observed in the water control. PCR screening 
of SG ΔpurB:ΩCm mutants demonstrated a 1,222 bp product in the 
mutant strain and a 1,421 bp product in the wild-type strain using purB 
flank-F/purB flank-R primers, confirming the inactivation of purB 
(Supplementary Figure S1). Additionally, amplification with purB 
flank-F/Cassette-R primers generated a 114 bp product in the mutant 
strain, verifying the insertion of the chloramphenicol resistance cassette 
at the target site (Supplementary Figure S2). The antibiotic cassette 
inserted into the inactivated purB gene was removed using FLP 
recombinase, resulting in the intended 298 bp genomic scars, as 
confirmed by PCR using specific flanking primers purB flank-F/purB 
flank-R (Supplementary Figure S3).

3.2 Auxotrophic evaluation and growth 
dynamics of SG ΔpurB

The growth dynamics of SG ΔpurB mutant and SG wild-type were 
monitored over a 10 h period in LB broth. Following the specified 
duration, the optical density at 600 nm (OD600) for SG ΔpurB reached 
0.47, reflecting a notable 66.5% reduction compared to the robust 
OD600 of 1.40 observed for the SG wild-type (p = 0.02; Figure 1). The 
growth dynamics of the SG ΔpurB mutant in M9 minimal media, with 
or without supplemented adenosine, were evaluated. At the time of 
inoculation, the SG ΔpurB mutant exhibited an initial OD600 of 0.03. 
After ten hours of incubation, the SG ΔpurB mutant showed no 
significant growth, maintaining an OD600 of 0.02. In contrast, the SG 
wild-type reached an OD600 of 1.40 under the same conditions 
(p = 0.7). Notably, when the M9 minimal media was supplemented 

FIGURE 1

Growth patterns of the SG ΔpurB mutant and the SG wild-type strains in LB broth over a 10  h period. A significant difference in growth between the SG 
ΔpurB mutant and the SG wild-type was observed at the 10  h mark, as determined by a two-tailed Student’s t-test with equal variance (p  =  0.02).
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with 0.3 mM adenosine, the OD600 of the SG ΔpurB mutant increased 
significantly to 1.30, closely approaching the OD600 of 1.40 observed 
for the SG wild-type (Figure 2).

3.3 Virulence assessment of SG ΔpurB 
mutant vs. SG wild-type

Virulence was evaluated in 3-day old chickens by calculating LD50 
of SG ΔpurB and SG wild-type. LD50 of SG wild-type was 2 × 108 CFU/
mL whereas no chickens died in the group challenged by SG ΔpurB.

Following the oral administration of 2 × 108 CFU in 100 μL PBS of 
SG ΔpurB and SG wild-type to 3-day old chickens, body weight 
changes were monitored weekly, with values expressed as Mean ± SEM 
and analyzed using GraphPad Prism 10 software. The data, presented 
in Table  3, showed that Group B, inoculated with SG wild-type, 
demonstrated significantly lower body weights than control of 
84.4 ± 0.53 g, 221.9 ± 0.60 g, 365.9 ± 0.84 g, 724.5 ± 0.70 g, and 
1137.3 ± 0.57 g at 0, 7, 14, 21, and 28 DPI, respectively (p = 0.01). Group 
A, inoculated with SG ΔpurB, exhibited body weights of 84.6 ± 0.30 g, 
255.1 ± 0.80 g, 430.5 ± 0.84 g, 851.2 ± 0.72 g, and 1318.6 ± 1.19 g at 0, 7, 
14, 21, and 28 DPI, respectively. These values were similar to those of 
the control group (Group C), which received 100 μL PBS and showed 
weights of 84.3 ± 0.36 g, 262 ± 0.89 g, 442.5 ± 0.45 g, 873.5 ± 0.833 g, and 
1,340 ± 1.11 g at the same intervals (p = 0.7), which indicate that SG 
ΔpurB has significantly reduced its ability to cause detrimental effect 
on chicken growth (Figure 3). Mortality was also recorded throughout 
the study period, as illustrated in Figure 4. Both Group C (PBS control) 

and Group A (SG ΔpurB) exhibited no mortality, whereas Group B (SG 
wild-type) experienced a high mortality rate of 80%. These findings 
underscore the marked attenuation of virulence in the SG ΔpurB 
mutant relative to the wild-type strain, as well as its non-lethal effects 
on the growth performance of the host.

3.4 Clinical manifestations and 
macroscopic lesions

Clinical observations were conducted bi-daily across all 
experimental groups (Groups A, B, and C) as delineated in Table 4, 
with findings presented as mean ± SEM. Notably, chickens in Group B 
(inoculated with SG wild-type) exhibited significantly heightened 
depression scores from 5 DPI to 10 DPI compared to Group A, as 
determined by the Mann- Whitney U-test (p = 0.001). The peak 
depression scores recorded during the study period for Groups A, B, 
and C were 0.2 ± 0.1, 2.5 ± 0.3, and 0.0 ± 0.0, respectively (Figure 5).

Similarly, Group B also demonstrated significantly more severe 
diarrheal symptoms compared to Group A, as evidenced by Mann–
Whitney U-test results (p = 0.001). The maximum diarrheal scores 
observed for Groups A, B, and C throughout the experiment was 
0.4 ± 0.2, 2.7 ± 0.2, and 0.0 ± 0.0, respectively, as depicted in Figure 6. 
To observe the gross lesions, spleen and liver was collected from 5 
randomly chickens each group on the 7 DPI. Group B showed 
significantly severe systemic infection when compared with Group A 
according to Mann–Whitney U-test (p = 0.001) and data presented as 
Mean ± SEM as shown in Table 5. Mean score for liver enlargement in 

FIGURE 2

Growth dynamics of the SG ΔpurB mutant and SG wild-type strains in M9 minimal media, with and without adenosine supplementation. The growth 
curve of SG ΔpurB supplemented with adenosine showed no significant difference compared to SG wild-type without adenosine (p  =  0.7). However, a 
significant difference was observed between the growth curve of SG ΔpurB and SG wild-type without adenosine supplementation (p  <  0.05), as 
determined by a t-test.

TABLE 3 Comparison of body weight changes in chickens following infection with SG ΔpurB and SG wild-type.

Groups n Body weight changes (g)

0DPI 7DPI 14DPI 21DPI 28DPI

SG ΔpurB 20 84.6 ± 0.30 255.1 ± 0.80 430.5 ± 0.84 851.2 ± 0.72 1318.6 ± 1.19

SG wild-type 20 84.4 ± 0.53 221.9 ± 0.60 365.9 ± 0.84 724.5 ± 0.70 1137.3 ± 0.57

PBS 20 84.3 ± 0.36 262 ± 0.89 442.5 ± 0.45 873.5 ± 0.83 1,340 ± 1.11
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group A (SG ΔpurB) and group B (SG wild-type) was 0.6 ± 0.3 and 
2.5 ± 0.2, respectively. Whereas mean score for liver necrotic foci in the 
group A and group B was 0.2 ± 0.1 and 2.7 ± 0.3, respectively. Similarly, 
the mean score for spleen enlargement in the group A and group B 
was 0.4 ± 0.1 and 2.7 ± 0.4, respectively. Whereas the mean score for 
spleen necrotic foci in group A and group B was 0.5 ± 0.3 and 2.5 ± 0.4, 
respectively. Group C inoculated with PBS, a control group was 
negative for all gross lesions as shown in Table  5. Graphical 
presentation also showed in Figures 7, 8.

3.5 Duration of SG retention in liver and 
spleen

Bacterial colonization and persistence within the liver and 
spleen were systematically evaluated at 3, 7, 10, 14 and 21 days 

post-infection (DPI). The control group showed no Salmonella 
recovery from either organ following enrichment in Rappaport 
Vassiliadis broth, confirming the specificity of the infection model. 
In contrast, colonization by SG ΔpurB was markedly reduced in 
both the liver and spleen throughout the study period, 
demonstrating significantly lower bacterial counts (p < 0.05) 
compared to the SG wild-type. Quantitative analysis revealed that 
in Group A (SG ΔpurB), the bacterial load in the liver measured 
3.11 ± 0.23, 2.19 ± 0.19, 0.98 ± 0.20, 0.0 ± 0.0, and 0.0 ± 0.0 CFU/g, 
and in the spleen 3.21 ± 0.19, 2.58 ± 0.25, 1.34 ± 0.21, 0.0 ± 0.0, and 
0.0 ± 0.0 CFU/g at 3, 7, 10, 14, and 21 DPI, respectively (Figure 9; 
Table 6). Conversely, Group B (SG wild-type) exhibited consistently 
higher CFU/g in the liver (5.50 ± 0.17, 6.34 ± 0.32, 5.76 ± 0.22, 
4.54 ± 0.21, 3.49 ± 0.16) and spleen (5.12 ± 0.21, 5.98 ± 0.24, 
4.89 ± 0.22, 3.88 ± 0.21, 2.89 ± 0.29) at corresponding time points 
(Figure 10; Table 6).

FIGURE 3

Body weight changes of chickens following infection with SG ΔpurB, SG wild-type, and a control group administered 100  μL of PBS. Body weights 
were measured at 0, 7, 14, 21, and 28  days post-infection (DPI). A significant difference was observed in the group infected with SG wild-type on 21 and 
28 DPI compared to the group infected with SG ΔpurB and the uninfected control group (* p  <  0.05), as determined by two-way ANOVA followed by 
Bonferroni’s multiple comparison tests. Data are presented as mean  ±  SEM.

FIGURE 4

Mortality of chickens observed after infection with SGΔpurB, SG wild-type, and control groups administered PBS during the experimental period. The 
group infected with SG wild-type exhibited 80% mortality, whereas no mortality was observed in the group infected with SGΔpurB and the uninfected 
control group.
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4 Discussion

Fowl Typhoid (FT), a septicemic disease induced by Salmonella 
Gallinarum (SG), causes substantial economic setbacks to the poultry 

industry worldwide (Matsuda et  al., 2011b). Previous studies 
demonstrated that SG is transmitted both vertically and horizontally 
(Berchieri et al., 2001). To control and prevent Salmonella infections 
within poultry flocks, vaccination of chickens is a helpful method in 
addition to adequate management, good agricultural practices, and 
stringent biosecurity measures (Revolledo and Ferreira, 2012). When 
it comes to eliciting an immune response against Salmonella infection, 
live attenuated vaccines work better than inactivated or subunit 
vaccines (Barrow, 2007). In the current investigation, we endeavored 
to develop a single markerless isogenic mutant denoted as SG ΔpurB 
and subsequently assess its safety, virulence, lesion scoring, and 
bacterial colonization as a potential live attenuated vaccine candidate. 
To the best of our knowledge, this is the first example of purine 
biosynthesis deficient mutant in SG and use of chicken as an infection 
model for purB mutant.

The current study demonstrated the attenuation of SG through the 
deletion of the purB gene, which is responsible for encoding 
adenylosuccinate lyase—a key enzyme in the final step of the purine 
biosynthesis pathway that converts adenylosuccinate to 
AMP. Previously, studies have been conducted on mutations in the 
purine biosynthesis pathway in the purE and purH, purD genes of 
Brucella melitensis and Shigella flexneri, respectively. These 
auxotrophic mutants were unable to grow in minimal media without 
purine supplements (Drazek et al., 1995; Crawford et al., 1996; Cersini 
et  al., 2003). It was also demonstrated that auxotrophic mutants 
exhibit slow growth due to insufficient nutrient availability (McFarland 
and Stocker, 1987). In the present study, deletion of purB in SG 
resulted in 66.5% reduction in growth in LB broth when compared to 
wild-type. In addition, SG ΔpurB could not maintain its growth in 
minimal media but restored its growth when supplemented with 
0.3 mM adenosine in minimal media. This phenotypic characteristic 
confirms that purB mutant growth was impaired due to inability of the 
mutant to produce its endogenous adenosine and requires exogenous 
adenosine for normal growth which might be due to deficiency of 
purine biosynthesis as studied previously (Park et al., 2007).

Previous studies in a mouse model showed that purine 
biosynthesis is crucial for Listeria monocytogenes virulence, as purB 
mutants exhibited reduced virulence due to impaired multiplication 
within intestinal epithelial cells (Faith et al., 2012). To study virulence 
of SG in chicken model, a previously developed lesion scoring method 
was adopted (Matsuda et  al., 2011b). The lesions in the liver and 
spleen, such as necrotic foci and hepatosplenomegaly caused by 
lymphocyte infiltration, are characteristic of SG infection. However, 
their role in protective immunity remains unclear, likely due to the 
acute pathogenicity of SG in chickens (Permin and Bisgaard, 2013). 
In this study, clinical signs and lesion scores were significantly higher 
in chickens infected with the SG wild-type compared to those infected 
with the SG ΔpurB mutant, indicating significant attenuation of 
pathogenicity due to the mutation. Oral inoculation with SG ΔpurB 

TABLE 4 Clinical sign scoring after infection.

Groups Depression scoring Diarrheal scoring

SG ΔpurB (A) 0.2 ± 0.1 0.4 ± 0.2

SG wild-type (B) 2.5 ± 0.3 2.7 ± 0.2

Control (C) 0.0 ± 0.0 0.0 ± 0.0

FIGURE 5

Maximum depression scores of all groups from 5 DPI to 10 DPI, 
represented as Mean  ±  SEM. The group infected with SG wild-type 
(grey bar) showed significantly severe depression scores from 5 DPI 
compared to the group infected with SG ΔpurB (black bar) (Mann–
Whitney U-test, * p  <  0.05). The uninfected control group showed no 
clinical signs.

FIGURE 6

Maximum diarrheal scores of all groups from 5 DPI to 10 DPI, 
represented as Mean  ±  SEM. The group infected with SG wild-type 
(grey bar) showed significantly severe diarrheal scores compared to 
the group infected with SG ΔpurB (black bar) (Mann–Whitney U-test, 
* p  <  0.05). The uninfected control group showed no clinical signs.

TABLE 5 Gross lesions in liver and spleen after infection.

Groups n Gross lesions after infection

LE LN SE SN

SG ΔpurB 5 0.6 ± 0.3 0.2 ± 0.1 0.4 ± 0.1 0.5 ± 0.3

SG wild-type 5 2.5 ± 0.2 2.7 ± 0.3 2.7 ± 0.4 2.5 ± 0.4

Control 5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
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resulted in minimal adverse effects, with only a few small necrotic foci 
observed on the liver and spleen within a few days post-inoculation. 
Additionally, by 7 days post-inoculation (DPI), there was moderate 
enlargement of the spleen and liver in the SG ΔpurB-infected group, 
with recovery observed by 14 DPI. These mild lesions are likely due 
to a cellular immune response rather than significant tissue and 
functional disturbances. The significant attenuation observed in the 
SG ΔpurB mutant aligns with previous findings that mutations 
introducing new auxotrophic requirements can reduce virulence by 
hindering bacterial growth in host tissues (Lan et al., 2010). According 

to previous study (Christensen et al., 1996), the presence of gross 
lesions and clinical symptoms may be  related to the quantity of 
completely virulent SG in the spleen. However, in cases when the host 
is resistant or the SG is attenuated, the spleen can remove the SG 
without causing severe clinical symptoms that would indicate the 
peak of the immune response (Wigley et al., 2005). To determine if 
the attenuation of virulence in the purB mutant was due to reduced 
invasiveness or a lower microbial burden in reticuloendothelial 
organs, we compared the purB mutant persistence in liver and spleen, 
with that of the wild-type strain. The purB mutant bacteria were 
present in the livers and spleens from day 3 post-inoculation, but their 
numbers were significantly lower (p < 0.01) than those of the WT 

FIGURE 7

Gross liver lesions were observed at 7 DPI. (A) Mean liver 
enlargement scores in the SG wild-type group (grey bar) were 
significantly higher than in the SG ΔpurB group (black bar), as 
measured by the Mann–Whitney U-test, * p  <  0.05 (LE scoring: 0- 
Clear ridge; 1- Soft tissue; 2- Large without covering gizzard; 3- 
Large covering gizzard). (B) Mean liver necrotic foci scores in the SG 
wild-type group (grey bar) were significantly higher than in the SG 
ΔpurB group (black bar), as measured by the Mann–Whitney U-test, 
* p  <  0.05 (LN scoring: 0- No foci; 1- <  5 foci; 2- <  20 foci; 3- >  20 
foci). Data are presented as mean  ±  SEM. The uninfected control 
group showed no gross lesions.

FIGURE 8

Gross lesions on the spleen were observed on 7 DPI. (A) Mean spleen 
enlargement scores in SG wild-type group (grey bar) was significantly 
higher than SG ΔpurB group (black bar) as measured by Mann–
Whitney U-test, * p  <  0.05 (SE scoring, 0-not soft; 1-soft without 
enlargement; 2-large with <1.5  dm; 3-large with >1.5  dm) (B) Mean 
spleen necrotic foci scores in SG wild-type group (grey bar) was 
significantly higher than SG ΔpurB group (black bar) as measured by 
Mann–Whitney U-test, * p  <  0.05 (SN scoring, 0- No foci; 1- if <3 
foci; 2- if <10 foci; 3- if >10 foci), data presented as (Mean  ±  SEM). 
The uninfected control group had no gross lesions.
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strain. This indicates that the deletion of the purB gene reduced SG 
virulence by decreasing the bacterial burden in the liver and spleen of 
chickens. Importantly, the mutant bacteria were undetectable in the 
spleen and in the liver from day 14 onwards, suggesting a significant 
reduction in in vivo growth rate. This reduction is likely due to 
inadequate adenosine availability in the chicken intestinal tract and/
or more effective elimination by the host’s immune defense 
mechanisms as mentioned in a previous study (Shah et al., 2007). 
Similarly, in our study, the body weights of chicks infected with SG 
ΔpurB closely paralleled those of the control group, whereas the 
weights of the wild-type infected group were significantly lower at 21 
and 28 days post-infection (DPI). This weight reduction in the wild-
type infected group was associated with high fever, reduced feed 
intake as described in previous study (Audisio and Terzolo, 2002)  
and severe clinical signs starting from 5 days post-inoculation, 
underscoring that purB deletion effectively diminishes SG virulence.

Our study shows that SG ΔpurB caused minimal adverse effects, 
with only a few minor necrotic foci in the liver and spleen, and are 
rapidly cleared from these organs within 14 DPI. Infected birds 
recovered swiftly, indicating a markedly attenuated phenotype which 
ensures its safety. Further studies would be required to determine the 
immunogenicity of this strain when used as a vaccine candidate. These 
findings underscore the promise of SG ΔpurB as a foundation for 
developing optimized attenuated strains for vaccine design, against 
Salmonella Gallinarum, addressing key poultry health concerns.

5 Conclusion

Our investigation demonstrates a significant reduction in 
virulence of the purB-deleted SG strain in chickens following oral 
inoculation. This strain exhibited early organ clearance, reduced lesion 

FIGURE 9

Bacterial colonization in the liver was assessed at 3, 7, 10, 14, and 21  days post-infection (DPI). Bacterial counts are expressed as the log10 of CFU/g. 
Each data point represents the mean of five samples, with data presented as mean  ±  SEM. Bacterial persistence in the group infected with the SG wild-
type strain was significantly higher than in the group infected with the SG ΔpurB strain, as determined by two-tailed t-tests p  <  0.05. The SG ΔpurB 
strain was cleared from the liver by 14 DPI.

TABLE 6 Bacterial persistence in liver and spleen after infection.

Groups n DPI Log10 mean counts per gram

Liver Spleen

SG ΔpurB

3 3 3.11 ± 0.23 3.21 ± 0.19

3 7 2.19 ± 0.19 2.58 ± 0.25

3 10 0.98 ± 0.20 1.34 ± 0.21

3 14 0.0 ± 0.0 0.0 ± 0.0

3 21 0.0 ± 0.0 0.0 ± 0.0

SG wild-type

3 3 5.50 ± 0.17 5.12 ± 0.21

3 7 6.34 ± 0.32 5.98 ± 0.24

3 10 5.76 ± 0.22 4.89 ± 0.22

3 14 4.54 ± 0.21 3.88 ± 0.21

3 21 3.49 ± 0.16 2.89 ± 0.18
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severity, enhanced safety, and no adverse impact on chicken growth 
rate or weight gain, poses it as a promising vaccine candidate.
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FIGURE 10

Bacterial colonization in the spleen was assessed at 3, 7, 10, 14, and 21  days post-infection (DPI). Bacterial counts are expressed as the log10 of CFU/g. 
Each data point represents the mean of five samples, with data presented as mean  ±  SEM. Bacterial persistence in the group infected with the SG wild-
type strain was significantly higher than in the group infected with the SG ΔpurB strain, as determined by two-tailed t-tests p  <  0.05. The SG ΔpurB 
strain was cleared from the spleen by 14 DPI.
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