Skip to main content

ORIGINAL RESEARCH article

Front. Microbiol.
Sec. Microorganisms in Vertebrate Digestive Systems
Volume 15 - 2024 | doi: 10.3389/fmicb.2024.1467205

Colonization Profiles of Gut Microbiota in Goat Kids from Neonatal to Weaning Period

Provisionally accepted
  • Sichuan Agricultural University, Ya'an, China

The final, formatted version of the article will be published soon.

    Understanding the colonization and change patterns of gut microbiota is pivotal for comprehending host health. As a newly cultured breed, the studies on the gut microbiota of Tianfu goats remain limited. This study aimed to address this gap by analyzing the microbial composition and colonization patterns of fecal samples collected from goat kids from birth to weaning. Fecal samples were collected on days 0, 7, 14, 21, 28, 35, 42, 49, 53, 55, 57, and 64, and the changes and colonization patterns of microorganisms were analyzed through high-throughput 16S rRNA sequencing. The results showed that the abundance of fecal microbiota in goat kids gradually increased over time, followed by a decrease after weaning and stabilization, with reduced individual differences. The colonization of fecal microorganisms mainly presented three different stages: days 0-14, days 21-49, and days 53-64. During the suckling period, the relative abundance of Proteobacteria (72.34%) was the highest, followed by Firmicutes (21.66%). From 21 days old, the microbiota in goat kids gradually to be diverse, with Lachnospiraceae and Ruminococcaceae being dominant.During post-weaning, Ruminococcaceae (30.98%-33.34%) was becoming prominence which helpful for cellulose decomposition. LEfSe analyzed three important time points (d0 vs d7, d7 vs d14, d49 vs d53, LDA score > 4 and p < 0.05), 53 microbial communities with stage differences were identified. Functional prediction using PICRUSt revealed that differential microbial communities are mainly related to carbohydrate and amino acid metabolism pathways. Overall, this study addresses the intricate relationship between ages, diets, and microbiota compositions in Tianfu goat kids, and also offering insights into microorganisms-host interactions.

    Keywords: Bacterial colonization, Diet, fecal microbiota, Goat, Weaning

    Received: 22 Jul 2024; Accepted: 13 Sep 2024.

    Copyright: © 2024 Wu, Hou, ZHAN, Wang, Cao, Guo, Li, Zhang, Niu and Zhong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Tao Zhong, Sichuan Agricultural University, Ya'an, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.