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Introduction: The advancement of antimicrobial resistance is a significant public 
health issue today. With the spread of resistant bacterial strains in water resources, 
especially in urban sewage, metagenomic studies enable the investigation of the 
microbial composition and resistance genes present in these locations. This study 
characterized the bacterial community and antibiotic resistance genes in a sewage 
system that receives effluents from various sources through metagenomics.

Methods: One liter of surface water was collected at four points of a sewage 
channel, and after filtration, the total DNA was extracted and then sequenced on 
an NGS platform (Illumina® NextSeq). The sequenced data were trimmed, and 
the microbiome was predicted using the Kraken software, while the resistome 
was analyzed on the CARD webserver. All ecological and statistical analyses 
were performed using the. RStudio tool.

Results and discussion: The complete metagenome results showed a 
community with high diversity at the beginning and more restricted diversity 
at the end of the sampling, with a predominance of the phyla Bacteroidetes, 
Actinobacteria, Firmicutes, and Proteobacteria. Most species were considered 
pathogenic, with an emphasis on those belonging to the Enterobacteriaceae 
family. It was possible to identify bacterial groups of different threat levels to 
human health according to a report by the U.S. Centers for Disease Control and 
Prevention. The resistome analysis predominantly revealed genes that confer 
resistance to multiple drugs, followed by aminoglycosides and macrolides, 
with efflux pumps and drug inactivation being the most prevalent resistance 
mechanisms. This work was pioneering in characterizing resistance in a sanitary 
environment in the Amazon region and reinforces that sanitation measures for 
urban sewage are necessary to prevent the advancement of antibiotic resistance 
and the contamination of water resources, as evidenced by the process of 
eutrophication.
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1 Introduction

For many years, antibiotic therapy has been established as an 
effective form of treatment for various bacterial infections, especially 
during the mid-20th century with the discovery of penicillin (Fleming, 
1929). However, inadequate medical prescription and the indiscriminate 
use of antibiotics have become recurrent practices in the global 
population, resulting in high selective pressure on various bacterial 
strains and initiating the antimicrobial resistance (AMR) crisis 
(Low, 2002).

Currently, AMR consists of a wide variety of antibiotic 
resistance genes (ARGs), which are found in bacterial strains from 
diverse environments such as soil (Djenadi et al., 2018), hospitals 
(Mulvey and Simor, 2009), pharmacies (Obayiuwana et al., 2018), 
food (Founou et al., 2016), and aquatic systems (Marti et al., 2013). 
Both resistance genes and antibiotics are introduced into the 
environment through the release of sanitary effluents from urban 
areas and rural agricultural activities, altering the composition and 
ecological dynamics of the local microbiome and contributing to 
the diversity of ARGs (Wright, 2010). Consequently, sewage 
networks form an important reservoir for horizontal gene transfer 
(HGT) in resistant bacterial ecosystems due to the presence of 
mobile genetic elements (MGEs) such as plasmids, transposons, 
and integrons (Wu et al., 2019; Pärnänen et al., 2019).

The implementation of wastewater treatment plants (WWTP) 
that promote the sanitization of urban and rural liquid effluents is 
an alternative for the elimination of antibiotic-resistant bacteria 
and, consequently, the containment of AMR (V. M. Starling et al., 
2021). The high availability of decomposing organic matter 
combined with the presence of antibiotic residues and other 
molecules in sewage waters makes this environment conducive to 
the transfer of ARGs among bacteria (Atashgahi et  al., 2015). 
Among some human pathogenic taxa commonly cited in 
metagenomic studies of wastewater are Escherichia coli, Klebsiella 
pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, 
Shigella spp., Salmonella spp., Vibrio spp., Acinetobacter spp., and 
Enterococcus spp. (Pärnänen et al., 2019; Fouz et al., 2020).

Therefore, to understand and evaluate the microbiome 
present in sewage systems, studies have used the metagenomic 
approach to elucidate knowledge gaps in environmental 
microbiology, as it is a cultivation-independent technique (Rowe 
et al., 2017; Hendriksen et al., 2019; Schloss and Handelsman, 
2003). This approach allows for the exploration of the microbial 
framework present in the Brazilian Amazon region which, despite 
its vast extent of water resources, lacks studies related to AMR 
(Freitas et al., 2019).

Thus, the present study aimed to characterize the bacterial 
diversity and gene repertoire associated with antibiotic resistance 
in a sanitary sub-basin in the municipality of Belém, which lacks 
a connected WWTP and discharges its effluents through a 
collector channel directly into a natural resource, the Guamá 
River. As mentioned earlier, sanitary effluents alter the aquatic 
microbial ecosystem and favor the emergence of AMR and ARGs. 
To assess the presence of these in this sub-basin, metagenomics 
was applied to also monitor how microbial communities and the 
antibiotic resistome are characterized in this type of water 
resource in the city.

2 Materials and methods

2.1 Water sampling

Water samples were collected once in February 2021 from an 
open-air sewage collector channel, with an extension of 934 meters, 
belonging to the Una sub-basin, Belém, Pará, Brazil. Four collection 
points were marked, which were spaced at equal distances along the 
length of the collector channel: P1 (1.448167 S 48.486778 W); P2 
(1.445972 S 48.488389 W); P3 (1.443833 S 48.489972 W); P4 
(1.442028 S 48.492194 W). These collection sites were strategically 
selected, as they are located close to sanitary waste disposal pipes.

For the metagenomic analysis, biological triplicate sampling 
was performed, collecting 1 L of surface liquid effluent (1 m) at each 
point using appropriate and pre-sterilized materials, in which the 
replicates were named P1R1, P1R2, P1R3 (for point P1) and so on. 
For the physicochemical analyses, 2 L of wastewater were obtained 
from a pool of 500 mL collected at each point. Due to budgetary 
constraints, we were unable to request analysis for each collection 
site. The samples were stored and labeled in sterile 1 L polypropylene 
bottles and transported in a climate-controlled cooler to the 
laboratory who provided outsourced services for 
physicochemical analysis.

The evaluation of physicochemical and microbiological 
parameters was carried out by Multianálises S/S, following an 
individual protocol and assessing the parameters: dissolved oxygen, 
salinity, pH, conductivity, chemical oxygen demand, biochemical 
oxygen demand, total coliforms, and Escherichia coli. Due to the 
nature of the sample being wastewater, the results of these 
parameters could not be  compared with those stipulated in 
Resolution No. 357/2005 of the National Environmental Council 
(CONAMA), as there is no legislation addressing the quality of this 
type of water resource (Brazil, 2005).

2.2 Metagenomic approach

2.2.1 Sample processing, total microbial DNA 
(TM-DNA) extraction and quality

The sampling at each point, considering the collected 
triplicates, resulted in a total of 12 samples, with the contents 
(1 L) filtered using a 0.22 μm pore nitrocellulose membrane 
(MF-Millipore®) connected to a vacuum pump. The membrane 
was replaced with a new one when saturated, until the entire 
content of each sample was exhausted. The membranes were 
placed in Falcon tubes (50 mL) containing saline-Tris-EDTA 
solution for washing, aided by a shaker (120 RPM/12H) at room 
temperature. After washing, the tube contents were centrifuged 
(9,500 RPM/10′) to form a pellet and stored at −20°C.

DNA extraction was performed using the DNeasy PowerLyzer 
PowerSoil kit (QIAGEN), following the manufacturer’s instructions. 
The quality of the obtained TM-DNA was verified using a 
NanoDrop Lite (Thermo Fisher Scientific), accepting samples with 
a concentration and purity level of 50 ng/μL and 1.8 to 2.0 nm, 
respectively. The integrity of the TM-DNA was assessed by 1% 
agarose gel electrophoresis with the addition of 0.1 μL of ethidium 
bromide, visualized under ultraviolet light.
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2.3 Next generation sequencing and 
metagenome community analysis

The whole-metagenome shotgun approach was chosen to 
characterize the microbiome, in which the library preparation kit for 
metagenomic sequencing of the samples was the Nextera XT DNA 
Library Preparation Kit (Illumina), and the technique utilized was the 
NextSeq 550 System (Illumina) with a paired-end approach (2×150 
bp). Following this, the quality of the total reads was analyzed using 
the FastQC tool, and a Phred quality score cutoff of 33 was adopted. 
Sequences with lower quality were removed and filtered using the 
Trimmomatic program, admitting sequences with a minimum length 
of 200 bp.

The identification of operational taxonomic units (OTU) from the 
reads was performed using Kraken 2 software (Wood et al., 2019), 
which generated report files containing the number of reads and the 
taxonomic description of each taxon (see Figure  1). The Pavian 
package in RStudio (RStudio Team, 2020) assisted in producing tables 
for ecological analyses. The standardization of the number of reads 
was achieved by the “prop.table” function, applying a conditional 
proportion based on the sum of columns for each sample, and 
multiplying by one million. The clustering of samples from each 
collection site was evaluated using discriminant analysis of principal 
components (DAPC) (Jombart, 2008; Jombart et al., 2010) through 
the “adegenet” package, and permutational multivariate analysis of 
variance (PERMANOVA) (Anderson, 2017) was performed using the 
“vegan” package. Richness (S) and diversity analyses, utilizing the 
Shannon (H′) indices, were also conducted using the “vegan” library, 
with rarefaction curves based on Hill numbers generated by the 
iNEXT package (Hill, 1973). All statistical tests were executed within 
the same program.

For abundance analyses, the most representative taxa among 
phyla, families, and genera were selected, and the corresponding 
graphs were produced using the “ggplot2” library in RStudio. Heatmap 
construction was performed using the “Pheatmap” package in the 
same program, employing “correlation” and “euclidean” as clustering 
distances and the “complete” method, which statistically hierarchizes 
the most similar treatments, considering the sampling points as 
independent variables (Figure  1). To illustrate the distribution of 
pathogens in the study environment, eight pathogenic families of 
medical importance were selected based on various articles describing 
their presence in wastewater (Singh et al., 2020; Pärnänen et al., 2019; 
Fouz et al., 2020; Marutescu et al., 2023).

2.4 Metagenome assembly and resistome 
analysis

The assembly of metagenomic data was performed using the 
MEGAHIT software (Li et al., 2015), where the generated contigs 
were analyzed with the ABRICATE program utilizing the 
Comprehensive Antibiotic Resistance Database (CARD) (McArthur 
et al., 2013; Jia et al., 2017). The Resistance Gene Identifier (RGI) 
tool was employed using strict and perfect algorithms to identify 
antibiotic resistance genes (ARG) based on homology against 4,970 
reference sequences. The parameters used followed the web server’s 
recommendations for metagenomic data, indicating “low” for 
sequence quality and considering ARG with a minimum of 80% 

identity and 95% coverage, respectively. At the end, a report was 
generated containing the gene name/ID, gene family, coverage, 
identity, resistance mechanism, and antibiotic class to which the 
gene is linked. The Centers for Disease Control and Prevention 
(CDC) Threat Report was used as a guide to select the four genera 
of bacterial pathogens with serious health threat levels (Centers for 
Disease Control and Prevention, 2019). All contigs related to the 
selected genera were retrieved through a shell script and using the 
taxaID of the respective OTUs from the Kraken2 reports of each 
sample. Subsequently, the resistome of these metagenome-
assembled genomes (MAGs) was predicted by the same method 
above for each pathogen. More details of this step are shown in 
Figure 1.

3 Results

3.1 Physical, chemical and microbiological 
analysis

Regarding the physicochemical findings obtained from the pooled 
sample taken from the sewage channel, the parameters considered 
were salinity, pH, electrical conductivity, dissolved oxygen (DO), 
chemical oxygen demand (COD), and biochemical oxygen demand 
(BOD). Among these, the pH was found to be highly acidic (1.17 at 
25°C), and the conductivity was measured at 407 μS/cm at 25°C. For 
the microbiological parameters, total coliforms and Escherichia coli 
were quantified and found to be  present in the sample 
(Supplementary Table 1).

3.2 Sequencing and metagenomic 
community analysis

The metagenome of microbial communities present in the 
wastewater yielded, on average, approximately 23 million (± 
4,417,343.649), 21 million (± 8,023,626.86), 24 million (± 
14,329,491.92), and 22 million (± 14,515,690.23) reads at sampling 
points P1, P2, P3, and P4, respectively (see Supplementary Table 2 
for details).

The DAPC performed on the number of reads of OTUs in each 
sample revealed that the clusters of the sites were close to each other, 
indicating a certain similarity in abundances between the sampling 
points. However, the DAPC groups showed significant differences 
(PERMANOVA; p-value = 0.044) between the sampling sites 
(Figure 2A). Alpha diversity generated from 7,556 OTUs at species level 
showed that Shannon index values increased from the first to the last 
collection point, but there was no statistically significant difference 
between the sampling sites (Kruskal-Wallis; p-value = 0.063) (Figure 2B). 
Other ecological parameters related to the metagenomic communities 
can be found in Supplementary Table 3.

The Bacteria domain was the most predominant across all 
samples, with the most representative phyla being Proteobacteria (P1: 
4.79%; P2: 12.11%; P3: 17.03%; P4: 17.42%), Firmicutes (P1: 7.90%; 
P2: 5.05%; P3: 3.15%; P4: 3.03%), Fusobacteria (P1: 7.47%; P2: 4.24%; 
P3: 2.37%; P4: 2.09%), Bacteroidetes (P1: 3.71%; P2: 2.57%; P3: 1.83%; 
P4: 1.83%), and Actinobacteria (P1: 1.03%; P2: 0.94%; P3: 0.55%; P4: 
0.56%) (Figure 2C).
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The five most predominant families were Enterobacteriaceae 
(20.25%), Aeromonadaceae (9.32%), Fusobacteriaceae (8.29%), 
Lachnospiraceae (8.11%), and Leptotrichiaceae (7.90%) (Figure 2D). 
Regarding the ten most abundant genera overall, the highlights are 
Aeromonas (9.23%), Fusobacterium (8.28%), Enterobacter (6.78%), 
Paenibacillus (6.62%), Acinetobacter (6.26%), Klebsiella (6.15%), 
Streptobacillus (5.97%), Clostridium (5.85%), Citrobacter (4.02%), 
and Acidovorax (3.89%) (Figure 2E).

Finally, pathogenic bacteria at the family taxonomic level had 
their respective genera highlighted in a heatmap showing the 
distribution of their abundances, on a logarithmic scale, in the water 
body. Additionally, taxa with a similar number of reads between 
samples and between genera are clustered (Figure 3).

Enterobacteriaceae included 26 genera, which are present in two 
groups, one containing Escherichia and Shigella, and another larger 
group encompassing various pathogenic genera such as Acinetobacter, 

FIGURE 1

Methodological steps of sample processing for microbial profiling (left) and resistome (right), including analysis of MAGs of pathogens reported by CDC. 
DAPC, discriminant analysis of principal components; CARD, the Comprehensive Antibiotic Resistance Database; CDC, Centers for Disease Control and 
Prevention; MAG, metagenome-assembled genome; AMR, antimicrobial resistance; ARG, antimicrobial resistance gene; ATM, antimicrobial.
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Klebsiella, Enterobacter, Fusobacterium, and Streptobacillus. It is noted 
that samples with the lowest number of reads, P1R2, P1R3, and P2R1, 
clustered separately from the others, with this distinction being evident 
for most Enterobacteriaceae genera. The replicate P1R1 did not present 
a satisfactory number of reads for these microbial groups and therefore 
is not included in this analysis.

When assessing whether the microbiome of the sewage 
channel could be significantly influenced by the microbial load 
of hospital sanitary effluents, the abundances of pathogenic 
bacteria at point P4 (located between two hospitals) did not show 
significant differences compared to other collection points 
(Kruskal-Wallis; p-value = 0.96).

FIGURE 2

Discriminant analysis of principal components (DAPC) (A), Shannon alpha diversity (B), relative abundance of the phyla (C), families (D) and genera 
(E) most representative of the microbiome.
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3.3 Resistome analysis

The contigs generated from the metagenomic data assembly 
achieved N50 values above 600, with the complete description of the 
assembly parameters available in Supplementary Table 2. From the 
contigs, CARD identified 92, 120, 118, and 102 ARGs at points P1, P2, 
P3, and P4, respectively. Additionally, around 33% of the genes at P1 
conferred resistance to multiple drugs, while the points P2 and P3, 
approximately 32 and 35%, respectively, while P4 had around 22% 
MDR genes.

From the 80 most abundant ARGs, a heatmap was created, 
identifying the presence of four gene clusters distributed across the 
points, namely: Group  1: cmlA5 – aph(6)-ld; Group  2: dfrA15b – 
qnrD1; Group 3: aadA5 – kpnH K pneumoniae; Group 4: emrA – AcrS 
(Figure 4). Additionally, four gene clusters were identified, with the 
first three showing the most extensive distribution of genes along the 
sewage channel. However, the report generated by CARD also 
revealed numerous genes that individually confer resistance to 
multiple drug classes, all of which were classified under the MDR 
category, such as: ermF, qacEdelta1, msrE, mdtE, acrB, among others 
of great medical importance conferring resistance to macrolide, 
lincosamide, acridine, fluoroquinolone, penam and streptogramin.

The second and third groups of genes expressed heterogeneity in 
abundance and are genetic variants of different families of β-lactamases 
that confer resistance to a variety of β-lactams, such as blaGES-5, blaKPC-2, 
blaOXA-1, blaOXA-10, blaOXA-2, blaTEM-1, and blaCFXA6. It is important to note that 
a total of 143 genes encoding β-lactamases were identified in the sewage 
channel resistome, although they are not shown in the heatmap (Figure 4).

Another set of genes that stood out consists of ARGs associated 
with aminoglycosides (AMG), comprising 12 genes, being the second 
class with the largest number of genes in the top 80 most abundant 
ARGs depicted in Figure 5. Among these are aph(6)-Id, aph(3″)-Ib, 
aadA2, aadA5 and ANT(3″)-IIa, being the most predominant of the 
AMG resistance genes.

The distribution of ARG abundance across antimicrobial classes 
in the sampled sites of the channel is depicted in Figure 5A, where 
categories such as MDR, aminoglycosides (AMG), fluoroquinolones 
(FNQ), and tetracyclines (TET) were generally the most predominant, 
except at point P4 where diaminopyrimidines (DMP) ranked third in 
ARG abundance, followed by TET. Regarding resistance mechanisms, 
from point P2 to P4, inactivation, efflux pump, and target alteration 
were the most important defense systems in terms of ARG numbers, 
while target protection was the third most abundant mechanism at 
P1 in this analysis (Figure 5B).

FIGURE 3

Heatmap with the abundance (in log scale) of bacterial genera of medical importance and the respective families that compose them.
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In the context of antimicrobial classes identified in the resistome, 
the Venn diagram illustrated in Figure 5C shows intersections where 
points have genes conferring resistance to, respectively, classes. The 
classes with the highest prevalence of ARGs were betas-lactams (37 

different ARGs), followed by MDR (32), AMG (28), TET, and DMP, 
with 12 ARGs, respectively.

Regarding antimicrobial resistance mechanisms, the CARD 
web server detected a total of eight antibiotic evasion processes in 

FIGURE 4

Heatmap of the 80 most predominant ARGs in the resistome and their respective antimicrobials to which they confer resistance. AMG, 
Aminoglycoside; AMC, Aminocoumarin; DMP, Diaminopyrimidine; Agents and Dyes, Disinfecting agents and intercalating dyes; FQN, Fluoroquinolone; 
FOS, Fosfomycin; GLC, Glycylcycline; TET, Tetracycline; MAC, Macrolide; MDR, Multidrug resistant; NIT, Nitroimidazole; NUC, Nucleoside; PEP, Peptide; 
PHE, Phenicol; RIF, Rifamycin; SUL, Sulfonamide; TET, Tetracycline.
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the metagenomic data, as depicted in Figure 5D. It was found that 
87.5% of resistance mechanisms were distributed across the four 
collection points, with inactivation being the predominant 
antibiotic evasion mechanism with the highest number of related 
ARGs (79), followed by efflux pump (44), and target 
alteration (14).

Investigating CDC reports on the landscape of AMR in the 
country, the governmental agency identified several significant 
microbial threats in the context of antibiotic resistance, including 
Klebisiella pneumoniae, Acinetobacter baumannii, Pseudomonas 
aeruginosa, and Enterobacter cloacae. These pathogens have been 
major contributors to increased hospitalizations and mortality due to 
rising antimicrobial resistance.

In this regard, the resistome generated for these agents exhibited 
a diverse profile of genes (Figure 6A), many of which encoded beta-
lactamases and the majority of ARGs conferring multidrug resistance 

(Figure 6B). All evaluated pathogens showed an MDR profile, with 
K. pneumoniae notably demonstrating a broad repertoire of ARGs and 
the highest number of contigs associated with MDR ARGs.

4 Discussion

In the present study, we  characterized the microbiome and 
resistome of an open sewage channel that receives liquid effluents 
from various sectors of the city of Belém, including domestic, hospital, 
industrial, and food service effluents. The accumulation of waste from 
diverse sources in the sanitary aquatic environment directly influences 
the selective pressure on the microbiome present there, contributing 
to the formation of a highly varied resistome, especially when this 
location does not receive adequate sanitary treatment (Mutuku 
et al., 2022).

FIGURE 5

Frequency of ARGs (number of contigs) by antimicrobial class (A) and by type of resistance mechanism (B). Venn plot for drug classes (C) and 
mechanisms (D) at each collection site. AMC, Aminocoumarin; AMG, Aminoglycoside; DMP, Diaminopyrimidine; Agents and Dyes, Disinfecting agents 
and intercalating dyes; FQN, Fluoroquinolone; RIF, Rifamycin; PEP, Peptide; FOS, Fosfomycin; GPD, Glycopeptide; TET, Tetracycline; GLC, 
Glycylcycline; LIN, Lincosamide; NUC, Nucleoside; MON, Monobactam; NIT, Nitroimidazole; MAC, Macrolide; PHE, Phenicol; SUL, Sulfonamide.
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4.1 Microbial communities analysis

It is important to note that the sewage channel under study lacks 
a wastewater treatment plant (WWTP). Geographically situated near 
the mouth of a river (known as Baía do Guajará), this sub-basin may 
receive contaminated effluents from the channel, thereby causing 
significant environmental impact on aquatic biota. As observed in the 
physical–chemical and microbiological parameters of the sewage 
effluents, the water quality of Baía do Guajará is continually 
compromised. This could potentially affect the health of riverside 
communities adjacent to the metropolis, who rely on river water for 
daily activities and consumption.

The presence of fecal coliforms indicates human feces in the water, 
carrying a high microbial load from the human gastrointestinal tract. 
This can disseminate pathogenic microorganisms in the aquatic 
environment, increasing oral-fecal transmission of diseases, especially 
in the absence of WWTPs that effectively treat highly polluted 
effluents such as those from hospitals (McLellan and Eren, 2014; Kaur 
et al., 2020; Lira et al., 2020). With increasing urbanization, ensuring 
the quality control of wastewater discharged into water bodies has 
become a significant challenge, particularly in developing countries 
where gaps in public health surveillance hinder the provision of 
adequate sanitation services in cities (Abraham, 2011; Ercumen et al., 
2018; Iskandar et al., 2021).

In this context, the One Health approach assumes contemporary 
importance by recognizing the interconnectedness of human, animal, 
and environmental health. It seeks to promote an integrated 
assessment to understand and address health issues affecting humans, 
animals, and ecosystems. The fundamental idea is that the health of 
one species is intrinsically linked to the health of others and the 
environment they share (Mackenzie and Jeggo, 2019). In the context 
of AMR, One Health can relate to the presence of multidrug-resistant 
bacteria in soil, affecting human health through contamination of 
vegetables and animals traded in the food industry (Velazquez-Meza 
et al., 2022; Rahman et al., 2021; Kaviani et al., 2022).

Aligned with our study, the potential contamination of aquatic 
biota in Baía do Guajará by MDR bacteria and sanitary waste could 
impact human health, particularly given the extensive 
commercialization of fish caught in the bay for the local population.

Considering the aforementioned scenario, this study characterized 
the microbiome structure present in the sewage channel, highlighting 
the high predominance of components from the families 
Aeromonadaceae, Enterobacteriaceae, and Moraxellaceae. These 
families encompass genera frequently associated with foodborne and 
nosocomial infections, such as Aeromonas, Acinetobacter, 
Enterobacter, and Klebsiella (Singh et  al., 2020), which were 
quantitatively more represented in the studied environment.

The presence of species like Enterococcus faecium, Staphylococcus 
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 
Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE 
pathogens) in sanitary effluents must be continuously monitored, as 
they pose a high risk to human health and are determinants of 
resistance to last-resort antibiotics such as beta-lactams 
(carbapenems), colistin, and other multiple drugs. The establishment 
of WWTPs represents an alternative to mitigate the spread of these 
organisms (Marutescu et al., 2023).

The microbiological diversity at the sewage channel collection 
points showed that the Shannon index was higher at points P2, P3, 

and P4 compared to P1, where there was a quantitatively lower 
abundance profile and significantly different diversity (Figure 2B). 
One possible explanation for this is that during the collection of 
samples from P1, conducted early in the morning (~8:00 AM), the 
channel had a low water level. As human activities began, there was 
an increase in the water level in the channel, which may be related to 
a change in the abundance profile and diversity at subsequent 
collection sites. This suggests that sewage is an environment that 
reflects circulating microorganisms in the local population. It is also 
important to highlight that the DAPC exhibited a significantly 
different microbial profile between each collection point, due to high 
inter-group variability.

The literature extensively documents comparisons between 
microbial communities from different environments and those 
originating from humans, using metagenomic approaches to establish 
a connection between humans and their external environment 
(Claesson et al., 2011; Shanks et al., 2013; David et al., 2014; Fisher 
et al., 2015). A study supporting this hypothesis compared the human 
microbiome in 71 US cities with that found in the sewage of those 
locations, finding a similarity of about 15% between the metagenomes. 
Notably, bacterial diversity in sewage was approximately three times 
higher than in fecal samples, indicating that sewage reflects the 
structure of microbial communities present in the surrounding 
human population (Newton et al., 2015).

The heatmap featuring six families with high pathogenic potential 
for humans demonstrates that genera such as Klebsiella, Serratia, 
Salmonella, Pseudomonas, Escherichia, Enterobacter, Raoultella, 
Acinetobacter, Streptococcus, Sebaldella, Sneathia, Fusobacterium, and 
Streptobacillus constituted a group with the highest abundances in this 
category of bacteria, maintaining consistent presence across all 
sampling sites (Figure 3). Most of these taxa, along with less prevalent 
ones like Legionella and Vibrio, form a group that is challenging to 
eradicate even by wastewater treatment plants (WWTPs), as several 
studies have shown their presence in treated effluents due to their 
ability to form biofilms and resist detergent action and unfavorable 
environmental conditions (Molofsky and Swanson, 2004; Numberger 
et al., 2019; Alam et al., 2021).

4.2 Resistome analysis

Antimicrobial resistance represents a serious contemporary issue, 
as patients with complex infections often exhibit low responsiveness 
to antibiotic therapy due to the presence of multidrug-resistant 
bacterial strains. This study identified a substantial number of 
antimicrobial resistance genes with this characteristic, with the 
multidrug-resistant category being the most prevalent across all 
sampling points.

Recent literature indicates a high prevalence of MDR microbial 
strains being disseminated in the environment, particularly through 
sewage systems, with certain species contributing significantly to 
the spread of these multidrug-resistant genes. These species include 
Salmonella spp., Shigella spp., Staphylococcus aureus, Enterococcus 
spp., and Aeromonas spp. The classes most commonly associated 
with multidrug resistance are glycylcyclines (GLC), beta-lactams, 
tetracyclines, and aminoglycosides (Adugna and Sivalingam, 2022; 
Zieliński et  al., 2020; Gotkowska-Płachta, 2021; Harnisz and 
Korzeniewska, 2018).
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Among the most prevalent genes, notable examples include 
qacEdelta1 encoding efflux pumps resistant to acrimin and biocides 
(Pastrana-Carrasco et  al., 2012); mdtE and mdtF encoding efflux 
pumps resistant to macrolides, fluoroquinolones, and penems (Zhang 
et al., 2011); and blaOXA-10 and blaGES-5, which produce beta-lactamases 
that inactivate carbapenems, cephalosporins, and penems (Maurya 
et al., 2017; Ribeiro et al., 2014).

A wide spectrum of ARGs encoding beta-lactamases and members 
of the bla gene cluster was found, totaling 18 genes, including blaKPC, 
blaTEM, blaGES, blaOXA, blaCTX-M, and blaCFxA, which are common in Gram-
negative bacteria (Ojdana et al., 2014). In this study, these genes were 
present in all sampling points except blaCTX-M, which was restricted to site 
P3. This group of genes encompasses enzymes conferring resistance to 
penicillins and cephalosporins, as well as extended-spectrum beta-
lactamases (ESBLs), which are clinically highly relevant (Bradford, 2001; 
Worthington and Melander, 2014).

A wide range of bla ESBL gene variants are already known, such 
as blaCTX-M-1, bla-GES, and blaOXA-10, among others (Wang et al., 2015). In 
our data, CARD identified 155 molecular variants originating or not 
from different bla gene families, showing that sewage can harbor a 
diverse and complex resistome (Tello et al., 2012; Xiong et al., 2015; 
Al Salah et al., 2022; Munk et al., 2023).

When evaluating the resistome from the perspective of 
resistance mechanisms, studies indicate a range of evasion systems 
that counteract antibiotic action. In our study, it was observed that 

mechanisms such as enzymatic inactivation linked to beta-
lactamases, efflux pumps, and molecular target modification 
gathered a large number of ARGs (Figure 5B). Studies show that the 
most prevalent mechanisms in ESKAPE group bacteria include 
enzymatic inactivation, modification of the molecular target due to 
mutations, alteration of cell permeability through regulation of 
porin channel expression, upregulation of efflux pumps, and 
mechanical protection. In addition, biofilm formation on surfaces 
can ensure greater survival of the organism in the environment, 
including protection against antibiotics (Santajit and Indrawattana, 
2016; De Oliveira et al., 2020).

From the analysis of contigs from four pathogens listed in the 
CDC’s threat ranking, it was found that they exhibit characteristics 
similar to those described in the 2019 report, with varied multidrug-
resistant profiles highly capable of causing severe infections in 
humans. Precise investigations like this are crucial for understanding 
the resistome structure of important bacterial genera, providing 
additional knowledge to the scientific community and the public to 
collectively combat AMR. Within this context, as a global leader in 
antibiotic consumption and production, China implemented a new 
national action plan in 2022 aimed at reducing the spread of 
antibiotic resistance in the country by 2025, through collaboration 
across various public and private sectors following the One Health 
model (Chen et  al., 2023). Therefore, the Brazilian government 
must pay more attention to the country’s health conditions, invest 

FIGURE 6

Number of ARGs (A) in each pathogen selected from the CDC report and antimicrobial classes related to them (B). AMG, Aminoglycoside; DMP, 
Diaminopyrimidine; RIF, Rifamycin; PNA, Penam; FOS, Fosfomycin; TET, Tetracycline; PHE, Phenicol.
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in health education for the population, develop new guidelines for 
antibiotic therapy and base itself on international models for 
combating AMR and adapt them to the reality of Brazil so that 
antimicrobial resistance can be contained.

Finally, our study interestingly demonstrated that the distribution 
of antimicrobial classes and different categories of resistance 
mechanisms was highly heterogeneous, as both components were 
present across all sampling points (Figures  5C,D). This can 
be attributed to the interconnected sewage system in the city of Belém, 
which consolidates effluents from multiple sources in specific 
locations, such as the study site. Therefore, it is important to highlight 
that the discharge of hazardous materials into the city’s sewage system, 
including hospital and industrial effluents, should undergo prior 
treatment to prevent amplifying the issue of AMR in the aquatic 
environment, particularly due to the absence of WWTPs in this area.

5 Conclusion

This study highlights the critical issue of antimicrobial resistance 
in an untreated sewage channel that discharges contaminants into the 
bay, compromising water quality and public health. The presence of 
fecal coliforms and pathogenic bacteria, such as those from the 
Enterobacteriaceae family, indicates significant risks of fecal 
contamination and disease transmission, exacerbated by inadequate 
sanitation infrastructure.

Our findings reveal a diverse resistome with a high prevalence of 
multidrug resistance genes, posing substantial challenges to 
contemporary medicine due to the reduced efficacy of antibiotics 
against MDR bacterial strains. The study also highlights the role of 
sewage systems in the spread of AMR, with a notable abundance of 
genes encoding beta-lactamases, efflux pumps, and other resistance 
mechanisms. This suggests the need for improved wastewater 
treatment strategies, especially for hospital and industrial effluents, to 
reduce AMR in the aquatic environment. Despite limitations such as 
small sample size and lack of comparisons between different 
environments such as pre- and post-WWTP microbiome analysis, this 
exploratory study provides important insights into the dynamics of 
AMR and the need to use a One Health approach to address this issue 
in a multifaceted way.
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