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Introduction: Chagas disease is a neglected tropical disease caused by the
parasite Trypanosoma cruzi that is transmitted mainly by the feces of infected
Triatomines. In Ecuador the main vector is Rhodnius ecuadoriensis which is
distributed in several provinces of the country. More than 40% of these insects
in the wild have T. cruzi as part of their intestinal microbiota. For this reason, the
objective of this research was to characterize the intestinal bacterial microbiota
of R. ecuadoriensis.

Methods: The methodology used was based on the DNA extraction of the
intestinal contents from the wild collected insects (adults and nymphs V), as well
as the insects maintained at the insectary of the CISeAL. Finally, the samples were
analyzed by metagenomics extensions based on the di�erent selected criteria.

Results: The intestinal microbiota of R. ecuadoriensis presented a marked
divergence between laboratory-raised and wild collected insects. This di�erence
was observed in all stages andwas similar between insects from Loja andManabí.
A large loss of microbial symbionts was observed in laboratory-raised insects.

Discussion: This study is a crucial first step in investigating microbiota
interactions and advancing new methodologies.
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1 Introduction

Chagas disease, also known as American trypanosomiasis, is a zoonotic disease caused
by Trypanosoma cruzi (Chagas, 1909; Kinetoplastida: Trypanosomatidae) infection. In
2005, it was declared a neglected tropical disease (World Health Organization, 2023) and
is endemic in 21 Latin American countries. In Ecuador, as in many other countries where
the disease is endemic, it is transmitted by strict hematophagous insects of the Triatominae
subfamily through feces or urine contaminated with the parasite T. cruzi (Schaub, 2021).

According to the Pan American Health Organization (PAHO) (World Health
Organization, 2023), ∼70 million people are prone to Chagas disease, with more than
6 million already infected, and 30,000 new cases are reported every year. In Ecuador,
a seroprevalence of 0.65% was estimated in the Southern Andes, 1.75% in the Amazon
region, and 1.99% on the Central Coast (Dumonteil et al., 2016).
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In Latin America, more than 150 species of triatomines have
been documented (Justi and Galvão, 2017), while in Ecuador, 16
different species of these insects have been found. Among them, 13
have epidemiological relevance (Chaboli Alevi et al., 2021; Anabel
Padilla et al., 2019), with Rhodnius ecuadoriensis (Lent and León,
1958) (Hemiptera: Triatominae) being the main vector of the
disease (Villacís et al., 2020; Abad-Franch et al., 2001). This species
is widely distributed in provinces such as Santo Domingo de los
Tsáchilas, El Oro, Guayas, Los Ríos, and Manabí on the coast, in
the temperate valleys of Loja, in the Andean Sierra, and in northern
Peru (Grijalva et al., 2010; Abad-Franch et al., 2001; Aguilar et al.,
1999). Originally, this species of insect was found in wild areas
(sylvatic). However, human activities have unintentionally caused
environmental changes that allow these bugs to thrive closer to
peridomestic and domestic habitats (Grijalva et al., 2005).

The main problem is that triatomines are obligate
hematophagous in all their developmental stages, meaning
that they need to feed on vertebrate blood to complete their life
cycle. Triatomines feed on various blood sources, including T.

cruzi-infected mammals, which serve as reservoirs for the disease
and as a form of vector propagation to humans (Cantillo-Barraza
et al., 2020).

Rhodnius ecuadoriensis is widely distributed in various
environments, with its blood source being domestic animals in
the coastal provinces and the highlands of southern Ecuador up
to northern Peru. Combined with its synanthropic strength, this
makes it one of the main vectors of T. cruzi in Ecuador (Grijalva
and Villacis, 2009). Their infection rates with T. cruzi exceed 40%
(Grijalva et al., 2017, 2015), making this species a priority for
entomological surveillance.

When R. ecuadoriensis feeds on an infected host with T. cruzi, it
ingests trypomastigotes, which then transform into epimastigotes.
These multiply and strictly colonize the insect’s midgut, eventually
ending up as metacyclic trypomastigotes in the hindgut and
spreading through the insect’s feces, converting T. cruzi into part of
the insect’s gut microbiome (Rodríguez-Ruano et al., 2018; Soares
et al., 2015; Csete et al., 1985).

The set of these microorganisms that develop and reside in
symbiosis with a host is considered the microbiome. In the case of
the intestinal microbiome, it consists of variousmembers of various
kingdoms such as bacteria, fungi, viruses, archaea, and protozoa
(Gurung et al., 2019). These microbial communities are highly
dynamic and evolve throughout the life of the host. In insects, a
close evolutionary relationship between the microbiome and insect
is known, although the real extent of the associations is not clearly
understood (Gupta and Nair, 2020). Current evidence reveals that
these microorganisms act as (i) behavior modulators, (ii) protectors
against potential pathogens, (iii) supporters of nutrition, and (iv)
facilitators of essential compounds, among other functions (Gupta
and Nair, 2020; Dillon and Dillon, 2003).

The microbiota can be classified by its location as
“endosymbiont” for microorganisms found inside the insect
body or “ecto-symbiont” for microorganisms found on the outside
of the insect (Gupta and Nair, 2020). Similarly, microorganisms
that may or may not live in association with the insect can be
subclassified as: (i) “facultative” or “obligate” for those that strictly
need to associate with the insect to survive; (ii) “commensal” for

those that benefit from the insect without causing it any harm; and
(iii) “parasites” for those that benefit from their association with
the insect at the insect’s expense (Gupta and Nair, 2020).

The digestive system of R. ecuadoriensis serves as an ecological
niche for many endo-symbiontic microorganisms (Hypša and
Aksoy, 1997; Salcedo-Porras et al., 2020). The composition of
the intestinal microbiota varies according to different triatomine
species (Arias-Giraldo et al., 2020). In addition, it is influenced
by factors such as (i) the type of blood diet, (ii) environmental
conditions, and (iii) the presence of competitors, such as T.

cruzi, which is capable of modulating the insect’s immune
response in its favor (Castro et al., 2012). In contrast, some
bacterial genera are capable of competing with T. cruzi for the
same ecological niche (Batista et al., 2021) while others even
exhibit trypanolytic activities (Castro et al., 2012; Garcia et al.,
2010).

Previous studies have been conducted on the intestinal
microbiota of other triatomine species (Kieran et al., 2019;
da Mota et al., 2012). Other studies have utilized molecular
and morphological techniques to investigate the ecology, life
cycle, feeding, and defecation patterns, behavior, and population
genetics of R. ecuadoriensis (Grijalva et al., 2010, 2015; Villacís
et al., 2017, 2008). Despite its importance as the main vector
of Chagas disease in Ecuador, there has been no previous
study characterizing the bacterial microbiota in the gut of R.

ecuadoriensis. Therefore, understanding the interactions between
the intestinal microbiota of R. ecuadoriensis and T. cruzi is
essential for understanding the epidemiology of the disease
in Ecuador and proposing possible strategies to interrupt its
transmission in endemic areas (Grijalva and Villacis, 2009;
Ocaña-Mayorga et al., 2021; Gumiel et al., 2015; Villacís et al.,
2010).

With this study, we aim to answer the following questions:
(i) What are the predominant bacterial genera found in R.

ecuadoriensis? (ii) Are there any differences between the microbiota
of parasitized triatomines and those that are not parasitized by
T. cruzi? (iii) Are there any differences between the intestinal
microbiota of wild triatomines and those reared in the laboratory?
(iv) Does the insect’s intestinal microbiota inhibit the development
of T. cruzi?

2 Methodology

2.1 Study area

This study was conducted in three rural communities in
Ecuador that have a high presence of R. ecuadoriensis. The first
two communities, Guara and Bellamaría, are located at 1,064–
1,450 meters above sea level (MASL) and 1,000–1,384 MASL,
respectively. The climate in these communities is characterized
by strong interannual variations, particularly influenced by El
Nino events. This region also experiences a significant gradient
of precipitation, with the eastern slopes of the Cordillera
Real receiving over 4,000mm of rain annually, while the dry
valley of Catamayo receives only 300mm (Rollenbeck et al.,
2006). The third community, Caja Fuego (∼100 masl), is
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located in Portoviejo County, Manabí province. Its climate is
a mix of dry subtropical and humid tropical (Grijalva et al.,
2017).

2.2 Triatomine collection

The collection of triatomines will be conducted in the
coastal province of Manabí and the Andean province of Loja in
Ecuador, with collection permits 002-17IC-FAU-DNBAPVS/MA,
010-IC-FAU-DNBAPVS/MA, and MAAE-DBI-CM-2021-
0185, respectively (Figure 1). Domiciles, peridomiciles,
and sylvatic areas will be searched for triatomines using
previously described methods (Grijalva et al., 2005; Grijalva
and Villacis, 2009; Villacís et al., 2017). Both live and dead
insects will be collected and transported in sterile vials with
the use of mobilization permit number MAAE-CMARG-
2020-0178 to the Center for Research for Health in Latin
America (CISeAL). The identification of developmental
stages and sex (of adults) of the collected triatomines will be
performed using a dichotomous key by Lent and Wygodzinsky
(1979).

2.3 Laboratory triatomines

The insect colonies were established using specimens collected
in previous years (insects from Loja in 2019 and Manabí in
2023) from various communities in Ecuador, including those
previously mentioned. Each colony consisted of insects from a
single community and sampling point. The foundation of the
colonies was established among adults. If we consider that R.

ecuadoriensis needs at least 6 months to complete its life cycle
(Villacís et al., 2008), at least two or more generations occurred
in Loja colonies and only one in Manabí, where there may have
been contact between the newly hatched nymphs and parents. The
insects were maintained under controlled conditions of humidity,
temperature, and photoperiod as described by Villacís et al. (2008).
They were periodically fed with human blood every 15 days using
the Hemotek membrane feeding system (Hemotek Ltd., Blackburn,
UK) for 45min (Gysin et al., 2022; Luis Costa-da-Silva et al., 2014).

2.4 Extraction of intestinal contents (ICs)
and culture media

Each insect was placed in a sterile tube at −20◦C for 20min
and then rinsed with 70% ethanol and sterile distilled water to
remove dirt and the accompanying microbiota (Montoya-Porras
et al., 2018). Immediately, the ICs were extracted under aseptic
conditions in a laminar flow chamber, and a transverse cut was
made at the genitalia tip with a sterile scalpel. Hindgut and
feces were removed by using a variable-volume micropipette and
sterile filter tips. As part of the screening process, the ICs were
inoculated in different general and differential culture media, such
as blood agar, nutrient agar, SS agar, salted Mannitol agar, and
MacConkey agar.

2.5 Deoxyribonucleic acid (DNA) extraction
and polymerase chain reaction (PCR)
amplification

DNA extraction was performed using the ZymoBIOMICS
DNA Microprep Kit based on the protocol established by the
manufacturer, with the following variations: The intestinal content
was recovered directly in the lysis solution, and 10 ul of proteinase
K was added, followed by incubation at 55◦C for 50min and
centrifugation at ≥10.000 rpm for 1min. DNA concentration was
measured using a Nanodrop 2000c (Thermo Fisher Scientific,
Waltham, MA, USA). The bacterial 16S DNA was amplified with
the primers F27 and R1492 using the GoTaq Flexi DNA Polymerase
Kit and dNTPMix (Promega). Amplificationmade by conventional
PCR started with 5min of initial denaturation at 95◦C, followed by
35 cycles of 1min of denaturation at 95◦C, 1min of hybridization
at 59◦C, and 1min elongation at 72◦C, with a final elongation of
10min at 72◦C (Heuer et al., 1997). Similarly, for the amplification
of DNA of T. cruzi, TcZ1, and TcZ2 primers were used with
3min of initial denaturation at 95◦C, followed by 40 cycles of 20 s
of denaturation at 95◦C, 15 s of hybridization at 59◦C, and 30 s
elongation at 72◦C, with a final elongation of 7min at 72◦C (Moo-
Millan et al., 2019). Finally, a 1.5% agarose electrophoresis was
performed to confirm the presence of DNA.

2.6 Pools

For the formation of pools, only live insects selected by the
province, community, habitat, and sex were used. This was done
to study a larger part of the bacterial microbiota of R. ecuadoriensis
and obtain an overview of the bacterial intestinal microbiota of each
group of triatomines (Schisterman and Vexler, 2008).

2.7 Metagenomics amplicon

Amplicon sequencing was performed using extracted DNA
that had been previously quantified and grouped into pools.
The amplicons were sequenced on the Illumina MiSeq platform
(Biosequence S.A.S., Quito, Ecuador) after the library was
constructed with primers targeting the hypervariable regions
V3–V4 of the 16S ribosomal DNA. The primer pairs used
were 341F: (5′-CCTACGGGNGGCWGCAG-3′) and 805R: (5′-
GACTACHVGGGTATCTAATCC-3′).

2.8 Bioinformatic analysis

The Fastq files from each pool were subjected to a quality
and filtering process to guarantee accurate taxonomic classification.
For the taxonomic classification, a high-performance algorithm
of the Ribosomal Database Project (RDP) classifier described by
Wang et al. (2023) was used. The database used is RefSeq RDP
16S v3, based on a set of Fast Alignment Search Tool (FASTA)
format files from: https://benjjneb.github.io/dada2/training. These
files contain 16S ribosomal ribonucleic acid (rRNA) gene sequences
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FIGURE 1

Map of Ecuador showing the location of the communities: Caja Fuego community, Central Coastal Region (Manabí Province), and Bellamaría and
Guara communities, Southern Andes (Loja Province).

TABLE 1 Bacterial microbiota’s (bacteria genus) composition of nymphs and adults of wild R. ecuadoriensis.

Genus Loja male % Loja female % Loja nymph V
%

Manabí male
%

Manabí
female %

Manabí
nymph V %

Arsenophonus 3.34∗ 0.11 0.13 0.17 0.48 0.38

Corynebacterium 2.31∗ 31.23∗ 74.52∗ 0.09 0.24 64.67

Eikenella 2.00 37.24 0.04 17.50∗ 64.04∗ 0.01

Rhodococcus 26.13∗ 0.05 0.04 0.18 0.00 0.03

Williamsia 0.41 0.00 0.04 46.77∗ 0.00 3.77∗

Yokenella 0.85 8.05∗ 0.00 10.90∗ 4.04 0.00

Enterococcus 0.05 1.48∗ 0.00 10.73∗ 0.11 23.06∗

Staphylococcus 0.21 0.01 21.84∗ 0.00 0.02 0.02

Morganella 1.62 3.94∗ 0.02 0.01 0.05 0.05

Snodgrassella 0.01 2.13 0.00 0.98∗ 4.93∗ 0.02

Propionibacterium 0.51∗ 2.34∗ 0.01 0.02 0.00 0.00

Phyllobacterium 2.94∗ 0.33 0.03 0.13 0.33 0.01

Gordonia 0.01 0.01 0.01 0.29∗ 0.00 3.62∗

Lactococcus 0.21 0.02 0.00 1.12 0.02 0.00

Povalibacter 1.23∗ 0.00 0.00 0.00 0.00 0.00

Unclassified at the genus level 39.39 10.86 2.20 9.36 22.84 1.93

Other 18.78 2.20 1.13 1.73 2.91 2.43

Stage: Males (M), Females (F), Nymph V (NV). ∗Significant differences.
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FIGURE 2

Comparison of the bacterial microbiota (genus of bacteria) of nymphs and adults of wild collected and laboratory-reared R. ecuadoriensis. Stages:
Nymph V (NV), Females (F), Males (M).

FIGURE 3

The rarefaction curve shows the relationship between the number of sequenced reads and genera diversity in di�erent groups. The “Female Loja
Wild” group exhibits greater gender diversity, while others, such as laboratory samples, reach saturation with fewer readings.

in Divisive Amplicon Denoising Algorithm 2 (DADA2) (Callahan
et al., 2016) format for bacteria and archaea (Version 2). After
this, the analysis included (i) calculating species richness (using
the Margalef index), (ii) determining Shannon α diversity index

and β diversity, (iii) calculating Simpson’s dominance index, and
(iv) calculating Simpson’s diversity index for genera and species.
Rarefaction curves were also generated using iNEXT Online
(version March 2024) (Chao et al., 2016). In addition, the data were
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analyzed using theMann–Whitney test in the Statistical Package for
the Social Sciences (SPSS) software (version 29.0.2.0).

3 Results

The intestinal content of R. ecuadoriensis inoculated in non-
differential culture media demonstrated the presence of bacteria.
We observed bacterial growth after 48 h at 28 ± 3◦C only in blood
agar. The PCR results, visualized by electrophoresis, showed that
41.66% and 25.57% of the insects collected in Loja and Manabí,
respectively, were infected with T. cruzi as part of their intestinal
microbiota (data not shown).

3.1 Bacterial genus composition of wild
collected R. ecuadoriensis.

In this study, a total of 45 R. ecuadoriensis specimens were
collected from the wild and divided into six pools according to
their stage and location. The predominant bacterial genera found
in the intestines were Corynebacterium (20%), Eikenella (14.09%),
Rhodococcus (11.65%), Williamsia (5.80%), Enterococcus (3.95%),
Staphylococcus (2.53%), and Yokenella (2.39%) (Table 1). Genera
with an abundance of <1% were grouped as “other.” However,
the main species identified in the intestine were Corynebacterium
glycinophilum (23.66%), Eikenella corrodens (20.14%), Williamsia

serinedens (8.39%), Enterococcus faecalis (5.68%), Corynebacterium
terpenotabidum (4.02%), Rhodococcus marinenascens (3.90%),
Staphylococcus xylosus (2.35%), and Snodgrassella alvi (1.34%).
These results showed significant statistical differences (p=<0.001)
between the groups analyzed (Manabí and Loja), as calculated by
the Mann–Whitney test.

3.2 Comparison of the bacterial
microbiota’s (genus of bacteria) R.
ecuadoriensis: bacteria wild collected vs.
laboratory-reared

The diversity of bacterial genera in the intestinal microbiota of
R. ecuadoriensis showed significant differences (p≤ 0.001) between
wild collected (6 pools) and laboratory-reared (6 pools) insects.
In the wild collected group, the most abundant bacterial genera
in wild insects were Corynebacterium (20%), Eikenella (14.09%),
Rhodococcus (11.65%), Williamsia (5.80%), Enterococcus (3.95%),
Staphylococcus (2.53%), and Yokenella (2.39%), totaling 7 genera.
The laboratory-reared insects had a different composition, with
Arsenophonus (89.07%) and Corynebacterium (3.14%) being the
most abundant genera (2 in total). The “other” category in Figure 2
represents the sum of all genera with <1% abundance.

3.3 Diversity indices for genera and species

Figure 3 presents a rarefaction curve that explains the
relationship between the number of sequenced reads and the

diversity of genera in different groups. The results indicate that
samples such as “Female Loja Wild” exhibit a higher gender
diversity, while others, such as laboratory samples, reach saturation
with fewer readings.

Table 2 displays the diversity indices, with the female from
Loja Wild showing the highest species richness (Margalef index =
26.128). The Shannon α index for the bacterial genera and species
present in wild and laboratory-reared R. ecuadoriensis also showed
differences. Wild insects have a moderate diversity of genera and
species, with an index >1. However, the nymphs V (NV) from Loja
showed a low diversity of genera, with an index of <1. Similarly,
the female (F) from Manabí has a low diversity of species, with an
index of <1. On the other hand, the insects from the laboratory-
reared populations in both Loja and Manabí have low or very low
diversity, with indices of <1 and 0.5, respectively.

The Simpson’s Diversity Index also showed differences between
wild and laboratory-reared populations. In wild R. ecuadoriensis,
the males from Loja exhibited low diversity in genera, with an
index lower than 0.3. However, the females from Loja and males
and NV from Manabí showed moderate diversity in species, with
indices ranging from 0.34 to 0.66. All other populations, both wild
and laboratory-reared, showed high diversity, with indices >0.67
(Table 2).

3.4 Distribution of bacterial genera in the
absence and presence of the parasite, T.
cruzi

The most abundant intestinal microbiota of R. ecuadoriensis
infected with T. cruziwas composed of the genera Corynebacterium
(32.85%), Williamsia (15.59%), Eikenella (7.69%), Enterococcus

(5.01%), Yokenella (3.63%), and Povalibacter (1.23%) (Table 3).
Contrastingly, insects that did not have T. cruzi as part of their
microbiota showed the genera Eikenella (29.37%), Rhodococcus
(12.99%), Corynebacterium (11.18%), Yokenella (5.12%), and
Enterococcus (3.91%). Other abundant genera includedMorganella

(2.38%), Snodgrasella (1.89%), Phyllobacterium (1.69%), and
Propionibacterium (1.43%). However, the Mann–Whitney test did
not show significant statistical differences between the groups
analyzed (p= 0.229).

4 Discussion

We present a pioneering study of characterizing the bacterial
microbiota from the gut of R. ecuadoriensis using pools for
amplicon metagenomics. This technique allows for the analysis
of a greater number of sequences in less time and at a lower
cost compared to a traditional methodology using isolation in
culture media, which has limitations, such as a limited number
of culturable bacteria due to the specific nutritional requirements
and conditions necessary for their growth in the laboratory. In
this way, a greater panorama of the intestinal bacterial symbionts
of R. ecuadoriensis was obtained, providing valuable information
on the biology of the insect and its implications for the vectorial
transmission of T. cruzi.
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TABLE 2 Diversity indices (Species Richness, Shannon α, Simpson‘s Dominance, and Diversity) for bacterial genera and species found in wild and laboratory-reared R. ecuadoriensis.

Wild insects of Loja Loja wild Loja laboratory

Genera Species Genera Species

M F NV M F NV M F NV M F NV

Species richness (Margalef index) 0.000 0.000 0.000 22.593 26.128 9.739 9.078 9.844 9.143 6.307 6.436 5.764

Shannon alpha (α–diversity) 1.175 1.750 0.757 1.232 1.478 0.977 0.364 0.530 0.318 0.313 0.424 0.268

Beta diversity (β) (compared between Loja and Manabí) 0.632 0.472 0.430 0.219 0.301 0.222 0.376 0.373 0.400 0.822 0.299 0.231

Beta diversity (β) (compared between wild and laboratory) 0.317 0.365 0.284 0.151 0.208 0.141 0.317 0.365 0.284 0.151 0.208 0.141

Simpson’s dominance index 0.947 0.423 0.166 0.265 0.395 0.196 0.019 0.039 0.014 0.025 0.053 0.020

Simpson’s diversity index 0.053 2.362 0.834 0.735 0.605 0.804 53.527 25.447 73.321 0.975 0.947 0.980

Wild insects of Manabí Manabí wild Manabí laboratory

Genera Species Genera Species

M F NV M F NV M F NV M F NV

Species richness (Margalef index) 14.314 14.333 14.946 12.112 11.290 12.080 15.024 12.883 9.701 9.328 8.324 5.859

Shannon alpha (α-diversity) 1.660 1.182 1.152 1.400 0.939 1.606 0.895 0.562 0.394 0.825 0.458 0.357

Beta diversity (β) (compared between Loja and Manabí) 0.632 0.472 0.430 0.219 0.301 0.222 0.376 0.373 0.400 0.822 0.299 0.231

Beta diversity (β) (compared between wild and laboratory) 0.356 0.367 0.386 0.697 0.199 0.199 0.356 0.367 0.386 0.697 0.199 0.199

Simpson’s dominance index 0.390 0.237 0.232 0.394 0.234 0.427 0.156 0.060 0.022 0.164 0.071 0.026

Simpson’s diversity index 2.565 4.218 4.315 0.606 0.766 0.573 6.426 16.624 44.903 0.836 0.929 0.974

Stage: Nymph V (NV), Females (F), Males (M).
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TABLE 3 Distribution of bacterial genera in the absence and presence of

Trypanosoma cruzi.

Genus T. cruzi (+) % T. cruzi (–) %

Arsenophonus 3.37 0.21

Corynebacterium 32.85 11.18

Eikenella 7.69 29.37

Enterococcus 5.01 3.91

Morganella 0.83 2.38

Other 14.88 14.88

Phyllobacterium 0.05 1.69

Povalibacter 1.23 0.00

Propionibacterium 0.01 1.43

Rhodococcus 0.28 12.99

Snodgrassella 0.33 1.89

Staphylococcus 0.00 0.12

Unclassified at the genus level 14.24 23.69

Williamsia 15.59 0.83

Yokenella 3.63 5.12

The different insect groups (stages, habitats, and provinces)
showed a bacterial diversity that is not found in other insects.
The representative genera of this study were Arsenophonus,

Corynebacterium, Eikenella, Rhodoccoccus, Williamsia, Yokenella,

Enterococcus, and Staphylococcus, which represent more than 60%
of the bacterial microbiota of R. ecuadoriensis. Our results showed
a differentiation between bacterial genera in the different stages
of wild insects. This confirms that the digestive system of R.

ecuadoriensis is a dynamic microhabitat, and its microbiota is
directly related to the (i) insect stage, (ii) the environmental
conditions where they come from and where they develop, and (iii)
the presence of certain microbial groups (Guarneri Alessandra and
Schaub, 2021), as previously reported for other species mentioned
by Muñoz-Benavent et al. (2021).

There is a significant statistical difference in the bacterial
composition between wild and laboratory-reared triatomines.
Our results indicate that laboratory-reared R. ecuadoriensis had
a higher predominance of the Arsenophonus genus (Loja =

94.11% and Manabí = 85.35%). There are several ways in
which the insects can acquire their intestinal microbiota, starting
with hatching, contact with environmental microorganisms,
hematophagy, coprophagy, and cannibalism (Guarneri Alessandra
and Schaub, 2021). Therefore, we suggest that the loss of diversity
of insects raised in the laboratory is due to: (i) controlled
environmental conditions, (ii) the type of food (blood) and how
they are fed in the laboratory, and (iii) lack of contact with different
microorganisms (Schaub, 2024). Accordingly, only wild insects
can provide accurate information about the intestinal bacterial
microbiota of R. ecuadoriensis.

Contrary to what was expected, in this study, we did not
identify the Wolbachia genus in any of the samples analyzed.

Wolbachia is one of the well-studied bacterial genera and is
commonly found in different insects. It is known that Wolbachia’s
function can modify the behavior of the insect in its favor to
promote its transmission (Lewis and Liz, 2015). In contrast, in all
groups (wild and laboratory-reared), we noticed the presence of the
Arsenophonus genus, which has similar mechanisms to Wolbachia

to favor its transmission (Lewis and Liz, 2015). In this study, we
discovered the presence of Eikenella, an opportunistic bacterium
typically found in the human oral cavity and upper respiratory
tract. All necessary biosafety protocols, including the use of masks,
gloves, and glasses, were strictly followed during insect handling
and DNA extraction processes. Notably, Wertz and Breznak (2007)
identified a bacterium that is 94.1% similar to Eikenella corrodens

in the termite guts, suggesting that this species could begin to adapt
to other organisms.

As suggested by Durvasula et al. (2008), Corynebacterium is a
symbiotic bacterium found in triatomines. It provides pantothenic
acid to the nymphs and is necessary for their development
and maturation. This is supported by the higher presence of
this bacterial genus in wild NV nymphs of R. ecuadoriensis.
Interestingly, we also found the presence of the genus Xenorhabdus
in all the samples analyzed. This bacterium is a symbiont of
nematodes from the family Steinernematidae (Rhabditida), which
are known to be obligate endopathogens of insects (Ruiz Laparra,
2019). In addition, the genus Lactococcus was only present in adult
insects, both male and female. Conversely, the genus Nocardia was
only found in NV nymphs; nevertheless, the function of these last
two genera of bacteria is unknown.

The species Rhodococcus rhodnii was identified as a symbiont
of Rhodnius prolixus. Its function is to produce cecropin A, which
significantly reduces the parasite load of T. cruzi in the insect
and also provides the insect with vitamin B (Lage et al., 2023;
Kollien and Schaub, 2000). In this study, Rhodococcus was present
in 2.9% of non-infected individuals and only 0.28% of infected
individuals. In addition, our results indicated that the species
Serratia marcescens is present in six groups of samples. This has
been reported as a symbiont of hematophagous insects by Vieira
et al. (2018), and some strains have been found to intrinsically
possess trypanolytic activity (Rodríguez-Ruano et al., 2018), giving
light to future research for improved T. cruzi transmission control.

Rodríguez-Ruano et al. (2018) describe Arsenophonus

triatominarum as a bacterial symbiont in other triatomine species,
particularly Triatoma infestans. In our study, we found the presence
of Arsenophonus nasoniae in all samples, which raises the question
of whether this species is a natural symbiont of R. ecuadoriensis.
Montoya-Porras et al. (2018) noted that Williamsia is one of the
most prevalent bacteria in Rhodnius pallescens. This bacteria may
play a significant role as a symbiont in triatomine species and
could be useful in paratransgenic studies. This observation raises
the question of whether Williamsia is specific to the R. pallescens

complex, which includes R. colombiensis, R. ecuadoriensis, and R.

pallescens. Furthermore, additional research is needed to address
this question.

Insects have an immune system that gives them protection
from pathogens and keeps their systems in balance. While insects
have a natural resistance to T. cruzi (Mwangi et al., 2023; Abreu
et al., 2022), this also has strategies to modulate the immune
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response of the insect in its favor, such as the production of
nitrite/nitrate, allowing it to establish itself (Fredensborg et al.,
2020). The outcome of the microbiota of the insects infected
with T. cruzi indicates a variation in distribution and abundance
between insects that have T. cruzi as part of their microbiota
and those that do not. This may occur because native bacteria
compete for space and resources. Orantes et al. (2018) mention
that, in the midgut, an anaerobic environment, bacteria can
regulate extracellular glucose levels to facilitate or prevent the
colonization of competitors such as T. cruzi and by the interaction
between insects and microbiota-parasites (Soares et al., 2015).
Further research is needed to understand if there are differences
in microbiome behavior based on T. cruzi lineages. It is important
to note that only discrete typing unit I (DTU TcI) isolates were
collected from domestic, peridomestic, and sylvatic hosts and
vectors in and around several neighboring communities in Loja
Province, Ecuador (Ocana-Mayorga et al., 2010; Costales et al.,
2015).

This study provides a general overview of the bacterial
intestinal microbiota of R. ecuadoriensis without examining other
microbial kingdoms. Guarneri Alessandra and Schaub (2021)
report the presence of various fungi in the intestine of triatomines,
so the role that fungi play as symbionts of R. ecuadoriensis

could be considered for future research (Gurung et al., 2019).
Similarly, other biological entities like the Triatoma virus, the
only virus reported to affect triatomines to date (Montoya-Porras
et al., 2018; Mwangi et al., 2023), could be explored through
the tests carried out by Abreu et al. (2022). R. ecuadoriensis

indicates that it does not affect the Triatoma virus. Additional
research focused on this biological entity could lead to its
modification and use for selective control of more species
of triatomines.

The diversity indices used in this study, including Shannon
and Simpson indices and species richness, reveal low, moderate,
and high diversity of genera and species. Extrapolation lines
on the rarefaction curve suggest that additional genera may
be discovered with more sequencing reads, revealing significant
differences in genus diversity between wild and laboratory-
raised samples, as well as among communities and genera.
The microbiota of R. ecuadoriensis plays a crucial role in its
biology and the transmission of Chagas disease. Understanding
its interactions with the host and the relationship between the
intestinal microbiota and T. cruzi is essential. While progress has
been made, a complete understanding of the complex interactions
among the various microbial kingdoms in the triatomine intestinal
microbiota is still needed. This study, however, represents a
vital first step in uncovering these interactions and advancing
new methodologies.

4.1 Limitations

Given the sample pool methodology, individual information on
the insects is lost; in the same way, bacteria that present a very low

abundance are underestimated, and there is still no information on
the insects from the other provinces of Ecuador and Peru.
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