We selected pure and mixed stands of
The results showed that (1) All stands were strongly acidic phosphorus-deficient soils (pH < 4.0, available phosphorus <10.0 mg·kg−1). There was a significant rhizosphere aggregation effect for soil organic C, total and available N and K, microbial biomass, and inorganic P fraction. (2) The mixed planting significantly increased the soil water content, organic C, available nutrients, the activities of β-1,4-glucosidase and urease, and microbial biomass. The inorganic P fractions are more influenced by rhizosphere, while organic P fractions are more influenced by tree species composition. (3) Fungi and their ecological functions are more susceptible to tree species than bacteria are, and have higher community compositional complexity and α-diversity in mixed plantations. And mixed planting can improve network complexity among key microorganisms. (4) The correlation between soil microorganisms and environmental factors was significantly higher in mixed forests than in pure forests. Soil organic C, available N and P, microbial biomass C and N, β-1,4-glucosidase, and stable P fractions were the key environmental factors driving changes in fungal and bacterial communities.
In conclusion, the mixed planting patterns are more advantageous than pure plantations in improving soil physicochemical properties, enhancing nutrient effectiveness, and promoting microbial activities and diversity, especially