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Seasonality influences skin 
bacterial community structure 
and anti-Bd function in two 
anuran species
Han Zhang , Hongying Ma , Jie Deng , Hu Zhao , Cheng Fang , 
Jianlu Zhang , Qijun Wang , Hongxing Zhang , Wei Jiang  and 
Fei Kong *

Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi’an, China

Microorganisms on amphibian skin reduce disease susceptibility and play an 
important role in pathogen defense. We hypothesized that anuran skin bacterial 
communities would change in response to seasonal variation and host species. 
To test this hypothesis, we  used 16S rRNA amplicon sequencing to identify 
cutaneous bacterial communities of two frogs from the Qinling Mountains of 
China, Pelophylax nigromaculatus and Nanorana quadranus. We matched the 
amplicon sequence variants (ASVs) of microbes exhibiting protective effects against 
the pathogen Batrachochytrium dendrobatidis (Bd), using a database containing 
over 1900 16S rRNA gene sequences from amphibian skin bacteria. The results 
showed that seasonal variation had a stronger effect than host species on the 
structure (alpha-diversity, beta-diversity, species composition and abundance, 
and biomarkers) and anti-Bd function of cutaneous bacterial communities. These 
communities were highly dynamic but varied similarly between hosts. Their 
structural similarities were more consistent at the phylum level, but markedly less 
so at finer taxonomic levels. The highest relative abundance of anti-Bd reads was 
observed in P. nigromaculatus during summer, but anti-Bd reads were present in 
both frog species during different seasons. Therefore, the protective function of 
cutaneous microbial communities appears to be continuous despite between-
species differences in anti-Bd ASV abundance. This observation does not directly 
explain why Bd infections have not been recorded in the region, butprovides 
important insight on anuran pathogen defense mechanisms. Our findings also 
suggest that specific seasons can be periods of high infection risk, with major 
implications for research on amphibian ecology and conservation.
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1 Introduction

Bacterial communities on the skin are an important first line of defense against 
pathogens in amphibians (Brunetti et  al., 2021; Jani et  al., 2021; Longo et  al., 2015). 
Experimentally removing skin bacteria increases morbidity associated with chytridiomycosis, 
whereas the addition of certain nascent bacteria reduces morbidity and mortality in some 
amphibian species (Becker et al., 2009; Harris et al., 2009; Kueneman et al., 2016; Walke et al., 
2015). Symbiotic bacterial communities have gained greater recognition in mediating 
protection against a wide range of pathogens by modulating and contributing to host 
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immunity (Bletz et  al., 2017b; Fraune et  al., 2015; Khosravi and 
Mazmanian, 2013; Rosenberg et al., 2007; Woodhams et al., 2007). 
Moreover, skin bacterial protection may be  linked to specific 
bacterial metabolites and volatile compounds (Becker et al., 2009; 
Woodhams et al., 2018). For instance, violacein, prodigiosin, and 
volatile organic compounds produced by amphibian skin bacteria 
inhibit two species of chytrid fungi, Batrachochytrium dendrobatidis 
(Bd) and B. salamandrivorans (Bsal) (Brucker et  al., 2008a; 
Woodhams et  al., 2018), the criminal ringleader of 
amphibian chytridiomycosis.

Chytridiomycosis is a fatal skin disease that has significantly 
contributed to global decline and extinction of amphibian populations 
(Scheele et al., 2019). Of the two pathogens, Bd exhibits a broader host 
range, including a large number of Anuran, Caudate, and 
Gymnophiona species. While Bsal typically infects salamanders, it can 
also affect anuran species, including Osteopilus septentrionalis (Basanta 
et al., 2022; Gray et al., 2023; Laking et al., 2017; Towe et al., 2021). Bd 
infection exhibits temporal variation, and Bsal infection may exhibit 
similar pattern (Bletz et al., 2017b; Longo et al., 2015; Kinney et al., 
2011; Longo et al., 2010; Phillott et al., 2013). This temporal variation 
is largely driven by temperature fluctuations (Bletz et  al., 2017b). 
Therefore, temporal or seasonal variations in skin microbiota may 
be an important factor in disease dynamics. Amphibian skin microbial 
communities may also vary in response to habitat and pathogen 
presence, as well as host-specific factors such as species and 
developmental stage (Bletz et al., 2017a; Longo and Zamudio, 2017; 
McKenzie et al., 2012; Prest et al., 2018; Rebollar et al., 2016; Rebollar 
et al., 2019).

The Qinling Mountains serve as the natural demarcation line 
between northern and southern China. These mountains are 
important biodiversity hotspots but have recently experienced a sharp 
decline in amphibian populations. The most evident causes include 
climate change and habitat destruction, but pathogen infection has not 
been ruled out. Interestingly, no Bd- or Bsal-infected amphibians have 
been reported to date. However, no studies have investigated the 
assemblages and structures of amphibian cutaneous bacterial 
community in the Qinling Mountains; hence, we cannot conclude 
whether the lack of infection is due to superior anti-pathogen 
protection on amphibian skin or an absence of pathogens in 
the region.

To address these knowledge gaps, our study focused on two 
questions. First, what happens to the composition and diversity of 
amphibian cutaneous bacteria communities in response to seasonal 
variation and host species differences? Second, do any resultant 
fluctuations in microbial communities influence their protective 
function against pathogens such as Bd? We obtained data from two 
common and abundant aquatic anuran species in the Qinling 
Mountains, Pelophylax nigromaculatus and Nanorana quadranus. 
We  sampled the cutaneous bacterial community across seasons, 
calculated their diversity and structure, as well as assessed whether 
chytridiomycosis was present and amplicon sequence variants (ASVs) 
from cutaneous microbes exhibited anti-Bd properties. Our findings 
should facilitate the elucidation of the cutaneous microbial ecology of 
frogs from the Qinling Mountains. Additionally, understanding the 
biological mechanism associated with pathogen susceptibility, even in 
species that are not currently in decline, can help us to establish how 
this range of susceptibility relates to the cutaneous skin microbiota 
of amphibians.

2 Materials and methods

2.1 Sample collection

Adult individuals from two aquatic anurans [the running-water 
frog, N. quadranus (n = 20), and the quiet-water frog, P. nigromaculatus 
(n = 12)] were sampled in spring, summer, and autumn of 2023 at 
Huangbaiyuan, located in the southern foot of the Qinling Mountains. 
Frogs were not sampled in winter because they hibernate during that 
season. The two species were selected for their abundance, increasing 
the likelihood of obtaining adequate sample sizes across seasons. For 
details on specific sampling times and locations (see Table 1).

Frogs were captured manually by researchers wearing sterile 
high-density polyethylene gloves (one pair per subject) and then 
rinsed thrice with purified water to flush away dirt and transient 
bacteria. Skin on the back, abdomen, and limbs was swabbed 30 
times using a sterile skin swab. These swabs were placed in 2 mL of 
DNA storage solution (consisted of Tris, EDTA-2Na, and NaCl; 
Shanghai Langfu Industrial) and stored at 4°C. Collected samples 
were transported on dry ice to Beijing Biomarker Technologies 
for sequencing.

2.2 DNA extraction and sequencing

Total genomic DNA was extracted from all swabs using a TGuide 
S96 Magnetic Soil/Stool DNA Kit (Tiangen Biotech, Beijing, China), 
including lysozyme pretreatment. Extracted DNA was used as 
templates to amplify the V4 region of the 16S rRNA gene using 
barcoded primers pairs (515F: 5′-GTGYCAGCMGCCGCGGTAA-3′; 
806R: 5′-GGACTACNVGGGTWTCTAAT-3′) in a polymerase chain 
reaction (PCR) reaction (Bletz et al., 2017b). The PCR products were 
quantified through agarose gel electrophoresis and purified using a 
DNA purification kit (Omega, Norcross, GA, USA). Purified 
amplicons were subjected to paired-end sequencing (2 × 250 bp) on 
the Illumina Novaseq 6,000 platform.

2.3 Sequence processing

Sequence processing and analyses were performed using BMK 
Cloud.1 Raw data were primarily filtered based on single-nucleotide 
quality in Trimmomatic (version 0.33) (Bolger et al., 2014). Primer 
sequences were identified and removed in Cutadapt (version 1.9.1) 
(Martin, 2011).

Further quality control of data was performed using filterAndTrim 
function, setting maxEE to 2 [EE = sum(10^(−Q/10))] and other 
parameters as default. Model construction was performed using 
learnErrors function, de-noising was performed with dada2 function, 
and double-end reads splicing was performed using mergePairs 
function (setting parameters: minOverlap: 18, maxMismatch: 18*0.2). 
Chimera removal was performed using the removeBimeraDenovo 
function (select the consensus method) (Edgar et al., 2011; Edgar, 
2013; Callahan et al., 2016).

1 http://www.biocloud.net/
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2.4 Sequence analysis

Feature classification was conducted using clean reads to generate 
ASVs through dada2, and ASVs with counts <2 across all samples 
were filtered (Callahan et al., 2016). These ASVs were matched against 
the SILVA database (release 138.1) in QIIME2 for taxonomic 
annotation, based on the Naive Bayes classifier with a confidence 
threshold of 70% (Quast et al., 2013).

Shannon, Simpson, Chao1 and ACE indices were calculated for 
frog skin samples using QIIME2 and displayed using ggplot2 
(version 3.1.1). Between-group (species) differences in alpha 
diversity were determined with Wilcoxon test. Significance was set 
at p < 0.05. Beta diversity was calculated with unweighted UniFrac 
and Binary jaccard and visualized with principal coordinates analysis 
based on dissimilarity matrices (PCoA) (Bolyen et  al., 2019). 
Between-group differences in beta diversity were tested using 
PERMANOVA [Adonis function in the R (version3.1.1) Vegan 
(version 2.3–0) package] (Dixon, 2003; Anderson, 2017). 
Unweighted pair group method with arithmetic mean (UPGMA) in 
Python was used to determine clustering patterns across samples. 
Linear discriminant analysis-effect size (LEfSe) was used to test for 
significant taxonomic differences between groups (Segata et  al., 
2011). A logarithmic LDA score of 4.5 was set as the threshold for 
discriminative features to analyse the effect of season on bacterial 
communities, while the LDA score of 4.0 was set to analyse the effect 
of host species on bacterial communities.

Next, to explore the protective effect of cutaneous bacterial 
communities, a database was utilized which containing over 1900 
16S rRNA gene sequences from amphibian skin bacteria that have 
been tested for activity against the pathogen, Bd (Woodhams et al., 
2015). Positive hits were then matched with ASVs present in the 
samples to calculate the proportion of anti-Bd reads 
(100%matching rate). Correlations between proportion of 
inhibitory reads and seasonal or species differences were tested 
using ANOSIM.2

In the sequence analysis, frog samples were divided into groups 
based on capture date. Therefore, P. nigromaculatus caught in spring, 
summer, and autumn were, respectively, labeled as “SpringPn” 
(SpringPn1–8), “SummerPn” (SummerPn1–6), and “AutumnPn” 
(AutumnPn1–6). Because no N. quadranus was caught in the spring, 
these frogs were divided into two groups: “SummerNq” 
(SummerNq1–6) and “AutumnNq” (AutumnNq1–6) (Table 2).

2 http://cloudtutu.com.cn/

2.5 Detection of chytridiomycosis

The extracted DNA was then subjected to detection through PCR 
utilizing Bd and Bsal nested primer pairs. The outer nest primer pairs 
of Bd and Bsal are ITS1f1 (5′- CTT GGT CAT TTA GAG GAA GTAA 
−3′) and ITS4 (5′-TCC TCC GCT TAT TGA TAT GC-3′). The inner 
nest primer pairs of Bd are Bd1a (5’-CAGTGTGCCATATGTCACG-3′) 
and Bd2a (5’-CATGGTTCATATCTGTCCAG-3′), and the inner nest 
primer pairs of Bsal are STerF (5′TGCTCCATCTCCCCCTCTTCA3′) 
and STerR (5′TGAACGCACATTGCACTCTAC3′).

The PCR reaction system consisted of 2 × Taq PCR Mix II (catalog# 
KT211-02, Tiangen Biotech) in a volume of 10 μL, with 1 μL each of 
upstream and downstream primers (10 μM), 1 μL of template DNA, and 
7 μL of deionized water (ddH2O), resulting in a total reaction volume of 
20 μL. The PCR amplification conditions were 10 min at 95°C, followed 
by 30 cycles of 10 s at 95°C, 10 s at 53°C (outer nest primer pairs) /52°C 
(inner nest primer pairs of Bd) /58°C (inner nest primer pairs of Bsal), 
and 10 s at 72°C and a final 10 min at 72°C. The resulting target gene 
fragments of Bd and Bsal were of lengths 296 bp and 161 bp, repectively.

3 Results

3.1 Overview of cutaneous bacterial 
communities

After sequencing, data filtering, and sequence splicing of 16S 
rRNA amplicons from 33 frog skin samples, we obtained 1,054,720 
sequences. These sequences were further processed and clustered into 
1943 ASVs, predominantly from five phyla: Proteobacteria (558), 
Firmicutes (283), Actinobacteriota (199), Bacteroidetes (276), and 
Acidobacteriota (157).

Table 2 and Figure 1 show the number of ASVs per sample and 
relative ASV abundance by phyla per sample, respectively. We found 
88 ASVs common to all samples, belonging to Proteobacteria (38), 
Firmicutes (17), Bacteroidota (15), Actinobacteriota (10), 
Acidobacteriota (2), Cyanobacteria (1), Acidobacteriota (1), 
Verrucomicrobiota (1), Desulfobacteriota (1), Fusobacteriota (1), 
unclassified_Bacteria (1) and Unassigned (1) (Supplementary Figure 1).

3.2 Seasonal variation influenced bacterial 
communities

The SpringPn, SummerPn, and AutumnPn groups shared 202 
ASVs, or 10.66% of total ASVs found in these samples 

TABLE 1 Sample information of anuran species included in this study.

Species Sampling time Sample size Location Elevation (m) Site description

Pelophylax nigromaculatus 25th, April 8 (F, 4; M, 4) 33.70964668°N 

107.39150169°E

989 Paddy fields

17th, July 6 (F, 3; M, 3)

19th, September 6 (F, 2; M, 4)

Nanorana quadranus 25th, April \ 33.70561351°N

107.38986328°E

988 Stream

17th, July 6 (F, 3; M, 3)

19th, September 6 (F, 3; M, 3)
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(Supplementary Figure 2). The SummerNq and AutumnNq groups 
shared 255 ASVs, accounting for 14.74% of the total across both 
datasets (Supplementary Figure 3).

The Chao1 and ACE indices showed that the microbial species 
richness of P. nigromaculatus significantly differed across the three 
seasons, decreasing in the order of AutumnPn > SpringPn > 
SummerPn (Table 2; Figures 2A,B). Shannon and Simpson indices 
showed that the AutumnPn group had significantly greater species 
diversity than the SpringPn and SummerPn groups; however, the 
latter two groups did not differ (p > 0.05, Table 2; Figures 2C,D). For 
N. quadranus, species richness and diversity were significantly greater 
in the AutumnNq group than in the SummerNq group (Figures 2E–H).

Using PCoA to analyse the unweighted UniFrac and Binary 
jaccard distance indices, we found seasonal differences in the species 
composition of cutaneous bacterial communities. On the PC1 axis, 
SummerPn clustered to the left, AutumnPn to the right, and SpringPn 
in the center. A large gap in their bacterial communities existed 
between the three seasons. On the PC2 axis, SpringPn clustered on the 
upper side, while SummerPn and AutumnPn were separated by a large 
gap with SpringPn (Figures 3A,B). For N. quadranus, the PC1 axis was 
the main factor contributing to a large difference between SummerNq 
and AutumnNq (Figures 3A,B). PERMANOVA (p = 0.001, Treatments 
1, 2 in Tables 3, 4) verified the seasonal difference in the bacterial 
communities between the different seasons for both frog species.

TABLE 2 The number of amplicon sequence variants (ASVs) and alpha diversity indices in each sample.

Group Sample ASV number
Abundance index Diversity index

Chao1 ACE Shannon Simpson

SpringPn SpringPn1 406 406.5 406.4364 5.3235 0.8584

SpringPn2 451 451.6 451.6352 5.5888 0.8912

SpringPn3 368 369.1111 368.9486 5.2654 0.8988

SpringPn4 379 379.0769 379.4055 4.8156 0.8623

SpringPn5 533 538.625 535.0931 5.7751 0.8969

SpringPn6 475 475.1111 475.3453 5.7726 0.8741

SpringPn7 422 422.0909 422.3238 4.8648 0.8453

SpringPn8 458 458.7895 459.3034 4.4526 0.8191

SummerPn SummerPn1 266 267.5 266.8661 5.7775 0.9522

SummerPn2 289 290.75 291.1224 4.8987 0.9011

SummerPn3 195 199.375 201.1858 2.2206 0.581

SummerPn4 264 265.5 266.0122 3.7751 0.7001

SummerPn5 260 262.0 260.8191 5.9919 0.9684

SummerPn6 256 256.0 256.1788 5.9082 0.9603

AutumnPn AutumnPn1 750 750.7143 750.8289 6.8989 0.9323

AutumnPn2 896 896.5 896.6 8.5164 0.9852

AutumnPn3 903 904.9091 904.0607 8.0817 0.9759

AutumnPn4 892 893.0 892.751 8.0666 0.9716

AutumnPn5 899 899.75 899.4297 8.9083 0.9953

AutumnPn6 928 928.8333 928.8036 9.069 0.9964

SummerNq SummerNq1 299 300.5 300.3972 5.9934 0.9663

SummerNq2 249 249.0 249.2215 5.5122 0.9443

SummerNq3 258 264.875 261.0846 3.138 0.5883

SummerNq4 356 358.0 357.0349 5.9816 0.9418

SummerNq5 282 282.25 282.4167 6.0471 0.9544

SummerNq6 274 275.5 274.5855 5.9061 0.9613

AutumnNq AutumnNq1 892 892.8571 892.7027 9.0916 0.9964

AutumnNq2 950 951.25 950.8267 9.2332 0.9971

AutumnNq3 868 869.875 869.0421 9.0158 0.9962

AutumnNq4 769 770.0714 770.1384 8.5982 0.994

AutumnNq5 898 899.1111 898.8503 8.8625 0.9945

AutumnNq6 757 761.5 758.6142 8.2892 0.9865
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FIGURE 1

Histogram of skin microbial distribution at the phylum level. Different colors indicate different species; stacked columns are the top 10 taxa in relative 
abundance at each taxonomic level.

FIGURE 2

Box plot of variation in alpha diversity indices for cutaneous bacteria on Pelophylax nigromaculatus across three seasons (A–D) and on Nanorana 
quadranus across two seasons (E–H). The horizontal coordinates are the group names, and the vertical coordinates are the values of the 
corresponding alpha diversity indices. (A,E) Wilcoxon test of Chao1 index; (B,F) Wilcoxon test of ACE index; (C,G) Wilcoxon test of Shannon index; (D,H) 
Wilcoxon test of Simpson index.
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The top five phyla composition of skin microbes in the SpringPn, 
SummerPn and AutumnPn groups possessed high similarity, although 
their relative abundance varied (Figure 1; Table 5). In the SummerNq 
and AutumnNq groups, three of the top five phyla were also identical, 
but with different relative abundance (Figure 1; Table 5).

The UPGMA clustering tree (unweighted UniFrac distance) 
combined with the species distribution histogram (genus level) 
revealed that samples collected in the same season were more similar 
in species composition (Figure  4). Between-season differences in 
composition and relative abundance were significant (Figures 4A,B 

FIGURE 3

Principal coordinates analysis of beta diversity in cutaneous bacteria on all groups. (A) unweighted UniFrac distance; (B) Binary jaccard distance. Each 
point represents the skin bacterial community of an individual sample.

https://doi.org/10.3389/fmicb.2024.1463563
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2024.1463563

Frontiers in Microbiology 07 frontiersin.org

and Table 6). The top five genera observed in AutumnNq accounted 
for only approximately 20.89% of cutaneous microorganisms (Table 6). 
The relative abundance of Lysobacter (1.97% ± 0.20%) and unclassified_
Microscillaceae (1.81% ± 0.12%) in AutumnPn group ranked 11th and 
12th, respectively, and did not appear in SummerNq group.

Next, LEfSe (LDA score of 4.5) of bacterial populations with 
between-group differences in relative abundance revealed multiple 
biomarkers (Figure  5). At the genus level, the most abundant 
biomarker in SpringPn was Gardnerella, while that in summerPn was 
unclassified_Erwiniaceae (Figure 5A). The most abundant biomarkers 
in SummerNq was Endozoicomonas (Figure 5B).

3.3 Effect of host species on cutaneous 
bacterial communities

The Venn diagram of cutaneous bacterial communities from frog 
samples revealed that 468 ASVs were shared between SummerPn and 

SummerNq, accounting for 56.05% of all ASVs in these two groups 
(Supplementary Figure 4). Additionally, 1,227 ASVs (87.39% of all) 
were shared between the AutumnPn and AutumnNq groups 
(Supplementary Figure 5).

Alpha diversity did not differ (p > 0.05) between the two species 
during summer or autumn (Figures  6A–H). PCoA analysis 
demonstrated that the elliptical circles formed by each of the samples 
of two frog species in same season partially overlapped (Figures 3A,B). 
Therefore, P. nigromaculatus and N. quadranus appear to have similar 
bacterial communities in summer and autumn. The results from 
PERMANOVA (p > 0.05, Treatments 3, 4 in Tables 3, 4) confirmed 
that the beta diversity of the two frog species did not differ during the 
same season.

Samples from the two frog species differed in microbial phyla and 
genera composition and abundance during the same season 
(Figures 1, 7). The UPGMA clustering tree (Figures 7A,B) indicated 
that skin samples from the two frog species share similar microbial 
species composition within the same season.

TABLE 3 Summary of PERMANOVA models (unweighted UniFrac distance) of beta diversity for microbial communities on frog skin.

Treat Variables Degrees of 
freedom

Sums of 
squares

Mean 
squares

F. model R2 P

1 P. nigromaculatus in different seasons 2 2.205844 1.102922 20.11499 0.702953 0.001**

2 N. quadranus in different seasons 1 1.428132 1.428132 20.33018 0.670295 0.001**

3 P. nigromaculatus and N. quadranus 

in summer
1 0.098588 0.098588 0.911988 0.083577 0.309

4 P. nigromaculatus and N. quadranus 

in autumn
1 0.030326 0.030326 0.868604 0.079919 0.459

Effects on variation due season (treat 1 and treat 2), and species (treat 3 and treat 4) are considered. Significant results are marked with an asterisk.

TABLE 4 Summary of PERMANOVA models (Binary jaccard distance) of beta diversity for microbial communities on frog skin.

Treat Variables
Degrees of 

freedom
Sums of 
squares

Mean 
squares

F. model R2 P

1 P. nigromaculatus in different seasons 2 3.606148 1.803074 11.90274 0.583389 0.001**

2 N. quadranus in different seasons 1 2.010845 2.010845 13.16891 0.568387 0.001**

3 P. nigromaculatus and N. quadranus 

in summer
1 0.225315 0.225315 1.068052 0.096499 0.212

4 P. nigromaculatus and N. quadranus 

in autumn
1 0.078062 0.078062 0.872997 0.08029 0.571

Effects on variation due season (treat 1 and treat 2), and species (treat 3 and treat 4) are considered. Significant results are marked with an asterisk.

TABLE 5 The composition and relative abundance of the top five phyla in each groups.

Phylum SpringPn SummerPn AutumnPn SummerNq AutumnNq

Actinobacteriota 33.57% ± 2.33% 1.36 ± 0.28% 7.69 ± 0.68% 1.91% ± 0.35% 9.51% ± 1.46%

Proteobacteria 29.10% ± 3.44% 55.51 ± 10.49% 38.86 ± 2.08% 50.57% ± 5.63% 34.29% ± 2.00%

Firmicutes 16.94% ± 2.05% 26.23 ± 6.44% 6.51 ± 1.01% 29.98% ± 3.68% \

Bacteroidota 6.10% ± 0.47% 10.52 ± 2.65% 8.85 ± 0.35% 9.79% ± 1.03% 9.12% ± 0.25%

Cyanobacteria 4.79% ± 0.86% \ \ \ \

Verrucomicrobiota \ 3.28% ± 0.95% \ 3.52% ± 0.81% \

Acidobacteriota \ \ 8.89 ± 0.64% \ 10.87% ± 0.48%

Gemmatimonadota \ \ \ \ 4.71% ± 0.52%

“\“means the phylum of corresponding group was not appeared in the top five.
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TABLE 6 The composition and relative abundance of the top five genera in each groups.

Genus SpringPn SummerPn AutumnPn SummerNq AutumnNq

Gardnerella 29.28% ± 2.13% \ \ \ \

unclassified_Comamonadaceae 15.41% ± 4.25% 13.17% ± 8.83% 12.08% ± 3.84% 18.15% ± 9.83% 4.15% ± 0.71%

unclassified_Cyanobacteriales 4.75% ± 0.86% \ 6.40% ± 1.16% \ 4.66% ± 1.41%

Ureaplasma 4.29% ± 0.43% \ \ \ \

unclassified_Bacteria 2.57% ± 0.54% \ 5.38% ± 0.53% \ 4.51% ± 0.31%

unclassified_Erwiniaceae \ 13.72% ± 9.90% \ \ \

Endozoicomonas \ 8.12% ± 2.31% \ 10.60% ± 1.99% \

Rickettsiella \ 7.29% ± 1.91% \ 8.88% ± 1.55% \

Pseudomonas \ 7.16% ± 4.54% \ \ \

Sphingomonas \ \ 3.43% ± 0.36% \ 3.92% ± 0.36%

unclassified_Gemmatimonadaceae \ \ 2.85% ± 0.33% \ \

Megamonas \ \ \ 6.61% ± 0.97% \

Faecalibacterium \ \ \ 5.06% ± 0.60% \

unclassified_Gemmatimonadaceae \ \ \ \ 3.65% ± 0.36%

“\“means the genus of corresponding group was not appeared in the top five.

FIGURE 4

Clustering tree from unweighted pair group method with arithmetic mean (unweighted UniFrac distance) combined with species distribution 
histogram (genus level) for P. nigromaculatus in three seasons (A) and N. quadranus in two seasons (B). Clustering tree on the left, species distribution 
histogram on the right.
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When LDA score was set to 4.0, the SummerNq group had one 
biomarker, Romboutsia, and the SummerPn group had none 
(Figure 8). Neither frog species exhibited any biomarker in autumn.

3.4 Anti-Bd activity was stable across 
seasonal variation and host species

Of the 1943 ASVs identified, 924 (47.56%) matched the anti-Bd 
ASV database. Within all samples, anti-Bd ASVs accounted for an 
average relative abundance of 53.33% and were predominantly from 
five phyla: Proteobacteria (301), Bacteroidota (164), Firmicutes (161), 
Actinobacteriota (100), Acidobacteriota (66). Some anti-Bd ASVs 
appeared only in one frog species, while others appeared in both. 
We detected 46 anti-Bd bacterial ASVs common to all the groups. 

These were predominantly Proteobacteria (19), Bacteroidetes (9), 
Firmicutes (2), Actinobacteriota (5), and Acidobacteriota (6).

The percentage of anti-Bd ASVs varied between groups. The 
SummerPn group had the highest percentage (327/616, 53.08% 
anti-Bd ASVs), followed by SummerNq (349/687, 50.80% anti-Bd 
ASVs), SpringPn (490/1000, 49.00% anti-Bd ASVs), AutumnNq 
(573/1298, 44.14% anti-Bd ASVs), and AutumnPn (577/1333, 43.29% 
anti-Bd ASVs). To summarize, in P. nigromaculatus, more anti-Bd 
ASVs were present in the summer than in spring or autumn, with the 
fewest present in autumn. For N. quadranus, more anti-Bd ASVs were 
present in summer than in autumn.

The variation in the relative abundance of anti-Bd reads 
(percentage of summed reads associated with anti-Bd ASVs, relative 
to all reads) differed from that in the percentage of anti-Bd ASVs. The 
relative abundance of anti-Bd reads in SpringPn, SummerPn, 

FIGURE 5

Histogram of the distribution of LDA values (LDA score of 4.5), comparing P. nigromaculatus in three seasons (A) and N. quadranus in two seasons (B). 
The vertical axis represents the taxonomic units exhibiting significant differences between the groups, while the horizontal axis displays bar graphs 
illustrating the logarithmic scores of LDA analysis for each respective taxonomic unit.
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FIGURE 6

Box plot of variation in alpha diversity indices for cutaneous bacteria on P. nigromaculatus and N. quadranus in the same seasons, including summer 
(A–D) and autumn (E–H). The horizontal coordinates are the group names, and the vertical coordinates are the values of the corresponding alpha 
diversity indices. (A,E) Wilcoxon test of Chao1 index; (B,F) Wilcoxon test of ACE index; (C,G) Wilcoxon test of Shannon index; (D,H) Wilcoxon test of 
Simpson index.

FIGURE 7

Clustering tree from unweighted pair group method with arithmetic mean (unweighted UniFrac distance) combined with species distribution 
histogram (genus level) for P. nigromaculatus and N. quadranus in the same seasons, including summer (A) and autumn (B).

AutumnPn, SummerNq, and AutumnNq was 40.20, 72.56, 46.60, 
68.47, and 43.21%, respectively. ANOSIM indicated a significant 
difference across seasons for P. nigromaculatus (Bray-Curtis, R = 0.843, 
p = 0.001) and N. quadranus (Bray-Curtis, R = 1, p = 0.002). However, 
anti-Bd reads did not differ across host species in same seasons.

In addition, the PCR results for chytridiomycosis showed all the 
samples tested negative for Bd and Bsal.

4 Discussion

Seasonal fluctuations and host-specific factors can influence 
pathogen resistance through their effects on the amphibian skin 
microbiome (Costa et al., 2016; Ellison et al., 2019a; Ellison et al., 
2019b; Longo et al., 2015; Muletz-Wolz et al., 2017). Herein, we used 
samples from P. nigromaculatus and N. quadranus across different 
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seasons to find empirical support for this hypothesis in anurans from 
the Qinling Mountains. Our results showed that seasonal variation 
had a significantly stronger effect on skin bacterial community 
structure than host species. Stronger effects were observed in changes 
to microbial alpha-diversity, beta-diversity, species composition and 
abundance, biomarkers, and anti-Bd function.

Notably, while the phylum level showed higher consistency, the 
compositions of bacterial communities were much less consistent at 
the finer taxonomic levels. For example, Lysobacter and unclassified_
Microscillaceae appeared on the skin of both frog species in autumn 
but was not found in summer and was very rare in spring. Lysobacter 
species are known as “peptide production specialist” and produce 
peptides that disrupt the cell walls or cell membranes of other 
microorganisms (Panthee et al., 2016). This means that seasonal 
variation are associated with peptide production and bacteriostatic 
action of frog skin. Gardnerella was present only in the SpringPn 
group, despite a high relative abundance. Because we did not capture 
any N. quadranus in spring, we could not verify whether Gardnerella 
spp. would be present on N. quadranus in that season. Gardnerella 
is associated with the etiology of human bacterial vaginosis 
(Shvartsman et al., 2023), but its pathogenic effects on frog skin 
remain unclear. In addition, unclassified_Erwiniaceae appeared in 
two samples from the SummerPn group. Erwiniaceae can produce 
antibiotics and inhibit the growth of entomopathogenic fungi 
(Cambronero-Heinrichs et  al., 2023). Therefore, the presence of 
pathogenic fungi in these two samples from the SummerPn group 
may have caused an increase in unclassified_Erwiniaceae. We ruled 
out the possibility of Bd or Bsal infection in these two samples 
using PCR.

Our observations on P. nigromaculatus and N. quadranus suggest 
that skin bacterial communities are highly dynamic environments. 
Seasonality in particular had a strong effect on cutaneous bacterial 
community structure. Bacterial species richness on P. nigromaculatus 
decreased from spring to summer and increased from summer to 
autumn, while bacterial richness on N. quadranus increased from 
summer to autumn. The consistent increase from summer to autumn 
may be attributable to new bacterial taxa colonizing the skin. Indeed, 
we observed that 1,076 ASVs on P. nigromaculatus and 1,043 ASVs on 
N. quadranus were present in autumn but not in summer 
(Supplementary Figures  2, 3). Notably, P. nigromaculatus and 
N. quadranus showed similar variation in community structure 
despite being different species and from different locations. In both 

frogs, microbial species richness and diversity were significantly 
greater in autumn than in summer. Additionally, Actinobacteria was 
more abundant in autumn than in summer, whereas Proteobacteria 
was more abundant in summer than in autumn.

The prominent seasonal shift in bacterial community structure 
in these two aquatic frog species is probably related to changes in 
water temperature at both locations. Temperature directly 
influences the growth of bacterial community assemblages, 
community-member interactions, and antifungal functions (Bletz 
et al., 2017b; Daskin et al., 2014; Woodhams et al., 2014). Although 
environmental microorganisms were not sampled and analysed in 
this study literature shows that environmental temperature can 
alter amphibian gut microbiota and microbial communities in 
surrounding habitats (Bletz et al., 2017b; Kohl and Yahn, 2016). For 
aquatic frogs, bacteria in paddy fields, ponds, rivers, and near-
water soils are important microbial reservoirs that colonize the 
skin; bacterial communities in these habitats also exhibit 
considerable temporal variation (Crump and Hobbie, 2005; Rasche 
et al., 2011). Therefore, seasonal (temperature-related) shifts in 
bacterial communities may dictate host-associated microbiota 
variations. The absence of environmental controls lead us to the 
current lack of clarity on the changes in the bacterial community 
specific to frog skin.

Anti-Bd bacterial ASVs (47.56%) within our all samples were 
higher than those reported on anuran species from Panama (8.47%), 
but lower than those reported from India (51.7%) (Mutnale et al., 
2021; Varela et  al., 2018). The factors contributing to the varying 
percentages of anti-Bd ASVs included soil pH, precipitation, 
prevalence of Bd infection, and others (Mutnale et al., 2021; Varela 
et  al., 2018). Notably, the average percentage of anti-Bd ASVs in 
summer (51.94%) were higher than those in spring and autumn in our 
study. Therefore, the sampling season had a significant effect on the 
percentage of anti-Bd bacterial ASVs.

The top five most abundant genera in SummerPn all possessed 
anti-Bd properties, representing 60.15% of anti-Bd ASV abundance 
in the group. Overall, P. nigromaculatus skin bacteria in summer 
had the highest anti-Bd ASV abundance (72.56% average relative 
abundance), but all the test groups exhibited potential anti-Bd 
activity. This functional stability resulted from the constant presence 
of specific ASVs and replacement by different ASVs in some 
seasons. For example, anti-Bd Pseudomonas ASV (ASV 376) and 
Acinetobacter ASV (ASV 1770) were consistently present across all 

FIGURE 8

Histogram of the distribution of LDA values (LDA score of 4.0), comparing P. nigromaculatus and N. quadranus in the same seasons, including summer. 
The vertical axis represents the taxonomic units exhibiting significant differences between the groups, while the horizontal axis displays bar graphs 
illustrating the logarithmic scores of LDA analysis for each respective taxonomic unit.
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the three seasons, whereas anti-Bd Serratia ASV (ASV 162) only 
appeared in spring for P. nigromaculatus and autumn for 
N. quadranus. Moreover, Janthinobacterium ASV (ASV 31908) only 
appeared in spring and summer for P. nigromaculatus. In vitro 
experiments have demonstrated that Pseudomonas and 
Acinetobacter, isolated from amphibians, produced metabolites 
with Bd inhibitory activity (Brucker et  al., 2008b; Becker et  al., 
2015; Woodhams et  al., 2015). Additionally, Janthinobacterium 
lividum and Serratia marcescens can produce anti-Bd (and generally 
antifungal/antibacterial) metabolites such as prodigiosin and 
violacein (Woodhams et al., 2018; Zhang et al., 2024). Therefore, 
our predicted anti-Bd genera align with prior finding from in vitro 
experiments. Overall, seasonal shifts in host-associated bacterial 
communities were associated with significant variation in potential 
anti-Bd functions. Consequently, hosts may temporarily lose 
important protective bacterial taxa during certain seasons, 
drastically increasing their susceptibility to this disease.

Anti-Bd bacteria can produce Bd inhibitory metabolites or 
biofilms on frog skin. The host itself may also possess mechanisms 
to select anti-Bd metabolite-producing bacteria on the skin 
(Woodhams et al., 2018; Mutnale et al., 2021; Loudon et al., 2014; 
Piovia-Scott et  al., 2017; Loudon et  al., 2016). In this study, 
we demonstrated that the two tested frog species exhibited abundant 
anti-Bd bacterial ASVs on the skin. However, it is unclear whether 
this is directly related to the temporary absence of Bd infections in 
anuran populations from the Qinling Mountains. Moreover, the 
anti-Bd ASV database assembled by Woodhams et al. (2015) does 
not include any sampling from Qinling Mountains of China; hence, 
it cannot be ruled out that there are certain bacteria in the Qinling 
Mountains that might have anti-Bd activity but have not been 
matched with the anti-Bd ASV database. This area may be the focus 
of our subsequent studies.

5 Conclusion

Our results indicated that seasonal variation exerted a greater 
effect than host species on the structure and anti-Bd function of 
cutaneous bacterial communities. These communities exhibited more 
consistent structural similarities at the phylum level but were more 
diverse at finer taxonomic levels. Although both frog species hosted 
bacteria with anti-Bd function, the skin of P. nigromaculatus during 
summer had the highest anti-Bd bacterial ASV abundance. Our study 
provides important insights into the seasonality of cutaneous bacterial 
community structure on amphibians inhabiting the Qinling 
Mountains. The findings establish foundational knowledge for future 
studies on host–bacteria interactions and the structure–function 
relationship within amphibian skin bacterial communities. The 
findings from this study and other related studies can potentially 
benefit research on disease etiology and control in other wildlife hosts 
of cutaneous microbes.
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