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The microbial communities inhabiting polar ecosystems, particularly in Maxwell 
Bay, Antarctica, play a pivotal role in nutrient cycling and ecosystem dynamics. 
However, the diversity of these microbial communities remains underexplored. 
In this study, we  aim to address this gap by investigating the distribution, 
environmental drivers, and metabolic potential of microorganisms in Maxwell 
Bay. We  analyzed the prokaryotic and eukaryotic microbiota at 11 stations, 
revealing distinctive community structures and diverse phylum dominance 
by using high-throughput sequencing. Spatial analysis revealed a significant 
impact of longitude on microbial communities, with microeukaryotes exhibiting 
greater sensitivity to spatial factors than microprokaryotes. We constructed co-
occurrence networks to explore the stability of microbial communities, indicating 
the complexity and stability of microprokaryotic communities compared with 
those of microeukaryotes. Our findings suggest that the microeukaryotic 
communities in Maxwell Bay are more susceptible to disturbances. Additionally, 
this study revealed the spatial correlations between microbial communities, 
diversity, and environmental variables. Redundancy analysis highlighted the 
significance of pH and dissolved oxygen in shaping microprokaryotic and 
microeukaryotic communities, indicating the anthropogenic influence near the 
scientific research stations. Functional predictions using Tax4Fun2 and FUNGuild 
revealed the metabolic potential and trophic modes of the microprokaryotic and 
microeukaryotic communities, respectively. Finally, this study provides novel 
insights into the microbial ecology of Maxwell Bay, expanding the understanding 
of polar microbiomes and their responses to environmental factors.
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1 Introduction

Microbes are essential in natural ecology (Konopka, 2009; Tiedje et al., 2022) and 
drive the Earth’s biogeochemical cycles (Cavicchioli et al., 2019; Falkowski et al., 2008). 
Polar regions, with their significant influence on the Earth’s ecology, are a focal point 
of research attention (Ji et al., 2022). Ecological changes in these areas markedly affect 
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global ecosystems, particularly those in Antarctica (Barrett et al., 
2006; Cowan et al., 2014). The Antarctic Ocean microbiome is 
crucial in the biochemical cycles of the region (Coutinho et al., 
2021; Niederberger et  al., 2019), as marine microorganisms 
participate in almost all biochemical reactions in the ocean and 
significantly impact the biological carbon (Moran et al., 2022), 
nitrogen (Hutchins and Fu, 2017), and sulfur (Li et  al., 2023) 
cycles in marine ecosystems.

Generally, community variation along geographical gradients 
is a well-known ecological trend (Leroux, 2018; Lurgi et  al., 
2020), and fine-scale analyses may provide insights into the 
community dynamics and functions of the ocean microbiome 
(Leigh et al., 2018; Xu et al., 2022). Previous studies have shown 
that the microbial diversity is affected by environmental and 
biological factors on large and local scales (Buschi et al., 2023; 
Toledo et al., 2023), and total beta diversity and species turnover 
of bacteria can be determined using spatial, environmental, and 
biotic variables (Wu et al., 2020). Therefore, understanding the 
distribution and diversity of the microbiome in Antarctica is 
crucial for elucidating the intricacies of these ecosystems. 
Microbial communities respond to environmental gradients, and 
studying their spatial patterns provides valuable insights into the 
factors influencing their composition and function.

Maxwell Bay, nestled in the Antarctic, is a microcosm of 
Antarctic microbial communities (Rego et  al., 2020). Its 
geographical location within the Southern Ocean, surrounded by 
King George Island, a large, ice-free and biodiverse area in 
maritime Antarctica (Bello et al., 2022), provides a unique setting 
for studying the adaptability and resilience of the microbiome to 
extreme environments (Zhang et al., 2018). In addition, Maxwell 
Bay has a high density of scientific stations where most biological 
studies are conducted (Amaro et  al., 2015). Studies have been 
conducted on bacterial and eukaryotic communities in specific 
locations within Maxwell Bay, including the Great Wall, Ardley 
(Liu and Jiang, 2020; Luo et  al., 2015; Zeng et  al., 2014), and 
Marian Coves (Kim et  al., 2020), however, comprehensive 
investigations of the overall microbial distribution in the bay are 
lacking. The microbial driving factors are unclear, and their 
potential ecological functions remain unexplored.

Therefore, in this study, we collected samples from 11 stations 
in Maxwell Bay. And the objectives of this study were to (1) 
characterize the distribution patterns of microprokaryotic and 
microeukaryotic communities; (2) investigate the impact of 
environmental parameters on microbial communities; (3) 
potential functions of the microbiome in Maxwell Bay. To some 
extent, our findings might enhance the understanding of the 
microbial distribution patterns and their impact on the Antarctic 
and provide valuable insights for global ecosystems and 
environmental management and the assessment of global 
climate change.

2 Materials and methods

2.1 Sample collection

Eleven samples were collected from Maxwell Bay in January 2017 
during the Chinese 33th Antarctic research expedition. The sample 

locations are shown in Figure 1A. Samples were collected from surface 
water at all stations.

2.2 Physical and chemical composition of 
seawater

The physical and chemical properties of the analyzed samples are 
summarized in Figures 1B–I. Water temperature and salinity were 
measured using an YSI Model 30 instrument (Yellow Springs 
Instruments, Yellow Springs, OH, United States). Nutrients, including 
nitrite (NO2

− and NO3
−), silicate (SiO3

2−), and phosphate (PO4
3−), were 

measured spectrophotometrically with a continuous flow auto-
analyzer Scan++ (Skalar, The Netherlands) after filtering seawater 
through 0.45-μm cellulose acetate membrane filters (Whatman) (Luo 
et al., 2015). Dissolved oxygen (DO) concentration was determined 
using a previously described method (Strickland and Parsons, 1972).

2.3 DNA extraction, qualification, and 
sequencing analysis

Surface seawater (1 L) from each station was collected and 
pre-filtered through a 20-μm mesh sieve to remove most 
mesozooplankton and large particles and subsequently directly filtered 
through a 0.2-μm pore size nucleopore membrane filter (Whatman) 
(Zhang et  al., 2022). The filters were frozen at −80°C in 
cetyltrimethylammonium bromide buffer until laboratory 
experiments were performed. DNA was extracted as previously 
described (Luo et  al., 2009). The V3-V4 region of the 16S rRNA 
bacterial gene was amplified using the universal primers 338F 
(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GACTACHV 
GGGTWTCTAAT-3′) (Wang et  al., 2021). For the eukaryotic 
microbiota, the 18S rRNA gene was amplified using the primers 
SSU0817F (5′-TTAGCATGGAATAATRRAATAGGA-3′) and 1196R 
(5′-TCTGGACCTGGTGAGTTTCC-3′) (Yi et al., 2019). The primers 
contain barcode sequences unique to each sample. The PCR products 
were purified (Ren et al., 2015) using a PCR purification kit (Takara, 
Dalian, China), and their contents were measured using a Thermo 
Scientific NanoDrop8000 UV–vis spectrophotometer (NanoDrop 
Technologies, Wilmington, DE, United  States). The barcoded PCR 
products were merged into equimolar quantities and subjected to high-
throughput sequencing using a MiSeq benchtop sequencer for 2 × 300 bp 
DNA sequencing (Illumina, San Diego, CA, United States) at Majorbio, 
Ltd. (China). Microprokaryotes and microeukaryotes operational 
taxonomic unit (OTU) representative sequences were classified 
taxonomically by blasting against the Silva 138 database (Quast 
et al., 2013).

2.4 Sequence processing

All raw MiSeq-generated sequences were processed using QIIME 
(version 1.8) (Caporaso et al., 2010). High-quality sequences were 
obtained by removing sequences with ambiguous bases of >2, 
homopolymers of >10, primer mismatches, and average quality scores 
of <50 bp. Chimeras were removed using UCHIME software (Edgar 
et al., 2011). Subsequently, the trimmed sequences were clustered into 
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OTUs with 97% similarity (Edgar, 2010), and the Shannon index, 
Simpson’s index (1-D), and Chao1 estimator values were calculated 
using UCLUST (version 1.2.22) at the OTU level (Edgar, 2013; 
Simpson, 1949; Tao et al., 2014).

2.5 Statistical analyses

Pearson’s correlation coefficient, linear fitting, and chord 
diagrams were conducted using OriginPro 10.05. The R program 
(version 4.2.3) was used to perform heat mapping, variation 
partitioning analysis, redundancy analysis (RDA), Principal 
Coordinates Analysis (PCoA), and the Monte Carlo permutation 
test. In the heat map, metabolic pathways and trophic modes were 
transformed using z-scores. Community similarity was determined 
using Bray–Curtis distance matrices (Beals, 1984) with 999 
permutations. Analysis of similarities (ANOSIM) with 999 
permutations was performed by using the vegan package in R to 
determine significant differences between samples based on Bray–
Curtis distance matrices (Bokulich et  al., 2014). Tax4Fun2 and 
FUNGuild software were used to predict microprokaryotic 
(Wemheuer et al., 2020) and microeukaryotic (Polme et al., 2020) 
functions, respectively. Visualizations of microbial network analysis 
were performed using the Gephi software (version 0.9.1) (Wang 
et al., 2019).

3 Results

3.1 Microbial community structure and 
diversity

A total of 425,993 and 410,151 high-quality sequences were 
obtained for prokaryotic and eukaryotic microbiota, respectively. After 
quality control of all samples, 481 and 355 OTUs were obtained for 
microprokaryotes and microeukaryotes, respectively, with 97% 
similarity. In all, 12 prokaryotic and 32 eukaryotic microbial phyla were 
identified in all the samples. Only 8 and 12 prokaryotic and eukaryotic 
microbial phyla were dominant (average relative abundance of >1%). 
Their relative abundances are shown in Figures 2A,B. In the prokaryotic 
microbiota, the predominant phyla were Bacteroidota, Cyanobacteria, 
and Proteobacteria (relative abundances ≥10%) in S1, S2, S3, S5, S8, S9, 
and S11; Bacteroidota in S4; Bacteroidota and Proteobacteria in S6 and 
S7; and Firmicutes in S10. With regard to the eukaryotic microbiota, 
the predominant phyla were Basidiomycota, Ascomycota, and 
Cryptophyceae in S1 and S2; Ascomycota and Cryptophyceae in S3; 
Ascomycota, Holozoa, and Cryptophyceae in S8 and S11; Cryptophyceae 
in S4 and S5; and Holozoa and Cryptophyceae in S6, S7, S9, and S10.

Principal coordinates analysis showed that the distribution of 
prokaryotic microbial communities in the groups was scattered, 
indicating that the microprokaryotic community structures in the groups 
were significantly different (ANOSIM: R = 0.52, p = 0.001; Figure 2C). 

FIGURE 1

Map showing the samples information. (A) Geographical location of the stations from which samples were collected. (B) Temperature of samples. 
(C) pH of samples. (D) Practical salinity units of samples. (E) Dissolved oxygen of samples. (F) Phosphate concentration of the samples. (G) NO2

− 
concentration of the samples. (H) NO3

− concentration of the samples. (I) Silicate concentration of the samples. The cyan dots represent the sample 
stations, and the red triangles represent the scientific research stations.
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However, no significant scattering was observed in the eukaryotic 
microbiota distribution (ANOSIM: R = 0.002, p = 0.925; Figure 2D).

Additionally, the diversities of the prokaryotic and eukaryotic 
microbiota were estimated using the Shannon, Simpson, and Chao1 
(Supplementary Tables S1, S2). For prokaryotic microbiota, the 
Shannon index ranged from 1.39 (S4) to 4.13 (S6), the Simpson’s index 
ranged from 0.50 (S4) to 0.93 (S6), and the Chao1 index ranged from 
4 (S4) to 44.5 (S11) at the 11 stations. For the eukaryotic microbiota, 
the Shannon index ranged from 0.79 (S5) to 3.57 (S2), the Simpson’s 
index ranged from 0.21 (S5) to 0.83 (S11), and the Chao1 index 
ranged from 25 (S5) to 77.5 (S2) at the 11 stations. The diversity 
differed according to the microbial community structure. There were 
significant differences in the prokaryotic and eukaryotic microbiota 
among the three groups (Figure  3). This finding indicates that 
significant differences in the community structure and diversity of 
microprokaryotes, as well as significant differences in the diversity of 
microeukaryotes in Maxwell Bay.

3.2 Microbial distribution patterns

Principal coordinates analysis of the microbial community 
structure revealed that the points were distributed along PCo2 

(Figures 2C,D). PCo2 was subjected to correlation analysis with 
latitude and longitude for microprokaryotes and microeukaryotes 
across the 11 stations. There was a significant correlation between 
PCo2 and longitude in microprokaryotes (microprokaryotes: 
p < 0.01, R2 = 0.64; microeukaryotes, p > 0.05, R2 = 0.17). However, 
this was not observed with latitude (p  > 0.05; Figures  4A,B; 
Supplementary Figure S1). This finding revealed a significant 
correlation between microprokaryotic communities 
and longitude.

In addition, the relationship between microbial diversity and 
latitude and longitude was analyzed. The diversity of 
microeukaryotes was significantly correlated with longitude, 
whereas no correlation was seen for microprokaryotes 
(microprokaryotes p > 0.05; microeukaryotes, p < 0.01, R2 = 0.47; 
Figures 4C,D; Supplementary Figure S2). There was no significant 
correlation between the diversities of microeukaryotes and 
microprokaryotes and latitude (Supplementary Figure S3). This 
finding indicates that microeukaryotic diversity is more 
susceptible to longitudinal influence.

Second, microeukaryotic community similarity decreased 
significantly with increasing geographic distance 
(microprokaryotes, p > 0.05; microeukaryotes, p < 0.01, R2 = 0.26; 
Figures 5A,B). This observation reveals that the impact of spatial 

FIGURE 2

Distribution of the microbiota at the 11 stations. (A) Prokaryotic microbiota. (B) Eukaryotic microbiota. Only phyla with an average abundance of >1% 
are indicated. Phyla with less than 1% abundance are combined and shown in the “others” category. (C) Principal Coordinates Analysis (PCoA) of the 
prokaryotic microbiota. (D) PCoA of the eukaryotic microbiota. Significance was determined using ANOSIM.
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factors on microeukaryotes is more significant than that  
on microprokaryotes. Furthermore, microprokaryotic and 
microeukaryotic co-occurrence networks were constructed based 
on Spearman’s correlations among OTUs to investigate microbial 
stability (Figures  5C,D). A total of 281 nodes linked by 1,872 
edges comprised the microprokaryotic community network, and 
132 nodes linked by 1,872 edges comprised the microeukaryotic 
community network. These results showed that the 
microprokaryotic community was more complex and stable than 
the microeukaryotic community. All results suggest that the 
microeukaryotic community is more susceptible to disturbances 
at the 11 stations in Maxwell Bay.

3.3 Effects of environmental variables on 
shaping the microprokaryotic diversity 
patterns

Redundancy analysis demonstrated that the first two sequencing 
axes revealed 26.43 and 22.35% of the microprokaryotic and 29.56 and 
20.78% of the microeukaryotic community variations, respectively 
(Figures 6A,B). The Monte Carlo analysis established that DO and pH 
were environmental factors that significantly affected the 
microprokaryotic community (p < 0.05), whereas only pH significantly 
affected the microeukaryotic community (p  < 0.05). Variance 
partitioning analysis was used to analyze crucial environmental 

FIGURE 3

Microbial diversities at the 11 stations. Horizontal lines indicate the median, and lowercase letters above the bars indicate significant differences 
(p  <  0.05) among the three groups (Fisher’s least significant difference test).
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factors. For the microprokaryotic community, pH and DO revealed 
13.56 and 12.02% of community variabilities, respectively, among 
which 4.72 and 5.86% were independently revealed by pH and DO, 
respectively (Figure 6C). For the microeukaryotic community, DO 
revealed 23.67% of community variability, 8.51% of which was 
independently revealed by DO (Figure 6D).

3.4 Potential function of the microbial 
community

For the microprokaryotic community, six metabolic pathways, 
including 45 Kyoto Encyclopedia of Genes and Genomes (KEGG) 
second-classification functional pathways, were detected using 
Tax4Fun2. In the global and overview maps, had the highest average 
relative abundance (34.29%), followed by carbohydrate metabolism 
(8.75%), amino acid metabolism (8.20%), membrane transport 
(5.35%), cellular community–prokaryotes (3.81%), energy metabolism 

(3.46%), signal transduction (3.09%), metabolism of cofactors and 
vitamins (2.90%), lipid metabolism (2.59%), xenobiotics 
biodegradation and metabolism (2.54%), nucleotide metabolism 
(2.06%), metabolism of other amino acids (1.54%), translation 
(1.30%), biosynthesis of other secondary metabolites (1.15%), 
metabolism of terpenoids and polyketides (1.13%), replication and 
repair (1.13%), and others with average relative abundance of <1% 
(Figure 7A). Among them, carbohydrate and amino acid metabolisms 
are essential in the marine carbon and nitrogen cycles, respectively.

Based on the fungal guild classification identified using 
FUNGuild, eight trophic modes were detected in the microeukaryotic 
community (Figure 7B). The trophic modes comprised pathogens 
(0.18%), pathogen-saprotrophs (1.04%), pathogen-saprotroph-
symbiotrophs (0.15%), pathogen-symbiotrophs (0.07%), saprotrophs 
(0.0090%), saprotroph-symbiotrophs (0.05%), symbiotrophs (0.92%), 
and unknown (97.58%). The 15 guilds were annotated. Among these, 
the most average abundant guild was unknown (97.58%), followed by 
animal pathogen-undefined saprotrophs (0.97%), lichenized (0.92%), 

FIGURE 4

Effect of longitude on the microbial community and diversity. (A) Relationship between the PCo2 (microprokaryotic community) and longitude. 
(B) Relationship between the PCo2 (microeukaryotic community) and longitude. (C) Relationship between the microprokaryotic diversity and 
longitude. (D) Relationship between the microeukaryotic diversity and longitude.
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plant pathogens (0.1%), and others with an average relative abundance 
of <0.1%.

4 Discussion

In this study, we  investigated the microbial structure and 
diversity in Maxwell Bay using high-throughput sequencing, 
uncovering key patterns and environmental influences that shape 
these communities. Our findings revealed that the dominant 
microprokaryotic phyla-Proteobacteria, Bacteroidetes, and 
Cyanobacteria-exhibited distinct distributions corresponding to 

different coves (S2, S11, and S7). This is in alignment with previous 
studies (Kim et  al., 2020; Luo et  al., 2015; Zeng et  al., 2014). 
Importantly, the sensitivity of Proteobacteria and Bacteroidetes to 
temperature fluctuations (Newsham et al., 2019; Prekrasna et al., 
2022) suggests a strong link between these microbial communities 
and the unique climate of Antarctica, reinforcing their role as 
bioindicators of environmental change.

For the microeukaryotic community, we identified Cryptophyta, 
Ascomycota, and Basidiomycota as the dominant phyla, also with 
distributions tied to specific coves. However, our results differ from 
previously published findings, which could be attributed to temporal 
variations leading to changes in community structure, as the recent 

FIGURE 5

Microbial community stability. Distance-decay relationships of (A) microprokaryotic and (B) microeukaryotic (based on Bray–Curtis distance) 
communities. Co-occurrence networks analysis for (C) microprokaryotic community. (D) Co-occurrence networks analysis for microeukaryotic 
community.
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available results related to the microeukaryotic community were 
published in 2015 (Luo et al., 2015).

The PCoA analysis revealed significant differences among the 
microbial communities of the coves. This finding suggests a significant 
dissimilarity between the microbial communities of the three coves 
(Figure 2C). The microprokaryotes and microeukaryotes in the three 
groups exhibited distinct patterns of dissimilarity. For 
microprokaryotes, both community structure and diversity were 
significantly affected, while for microeukaryotes, only diversity was 
significantly impacted (Figure 3). Previous studies have shown similar 
results (Zheng and Gong, 2019). And our results indicate that 
the coves significantly impacted microprokaryotic and 
microeukaryotic communities.

Space has been demonstrated to be essential in shaping microbial 
communities in many studies (Brown et al., 2012; Martiny et al., 
2006; Zhang et al., 2020). Such as water-depth has significant impact 

on microbial diversity and community structure (Xu et al., 2022). In 
addition, space could have different impact on microbial structure 
and diversity, such elevation has significant effect on bacterial 
diversity than structure (Larsen et  al., 2024). In this study, 
we  investigated the influence of spatial factors on microbial 
community diversity. This investigation showed that the impact of 
spatial factors on microeukaryotes was greater than that on 
microprokaryotes, with only longitude showing a significant 
correlation with the microprokaryotic structure (Figures  4, 5; 
Supplementary Figures S1–S3). These results revealed that the 
microeukaryotic community was unstable and susceptible to 
influences. For the network analysis, previous studies revealed that 
network stability is strongly correlated with network complexity 
(Cornell et al., 2023; Shen et al., 2023; Yuan et al., 2021). Our network 
analysis further differentiated between microprokaryotic and 
microeukaryotic communities, revealing greater complexity and 

FIGURE 6

Effect of environmental factors on the microbial community. Redundancy analysis is based on environmental factors in the (A) microprokaryotic and 
(B) microeukaryotic communities. The green dots represent the microbial phylum; the blue triangles represent the 11 stations; the red arrows point to 
the different environmental factors. The solid lines indicate significant (p  <  0.001) correlations between environmental factors and microbial 
communities, and the dotted lines indicate no significant (p  >  0.05) correlations. Variance partitioning analysis showing contributions of environmental 
factors to the (C) microprokaryotic and (D) microeukaryotic community.
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stability within the microprokaryotic networks. This aligns with the 
hypothesis that complex microbial networks enhance ecosystem 
resilience and functional diversity (Wagg et al., 2019), a crucial factor 
in the sustainability of polar ecosystems. The relative simplicity and 
instability of microeukaryotic networks, as observed, may reflect 
their vulnerability to environmental disturbances, suggesting a need 
for ongoing monitoring.

Environmental factors significantly influence microbial 
communities and their functions (Centurion et  al., 2021; Louca 

et al., 2016). In this study, environmental factors such as pH and DO 
were found to have significant impacts on microbial community 
structure. The correlation between these factors and microbial 
diversity emphasizes the role of human activities, particularly near 
research stations, in altering local environmental conditions (Liu 
and Jiang, 2020). The observed variations in pH and DO, which 
correspond with human activity, underscore the anthropogenic 
pressures on these sensitive ecosystems and highlight the necessity 
for conservation efforts.

FIGURE 7

Functional prediction of microbial communities at the 11 stations. (A) Relative abundance of microprokaryotic potential functional categories obtained 
using Tax4Fun2. (B) Relative abundance of microeukaryotic potential functional guilds generated using FUNGuild analysis.
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Polar microbes are crucial components of ecosystems and 
significantly affect the environment (Ji et al., 2022; Papale et al., 2020). 
Finally, functional predictions using Tax4Fun2 and FUNGuild 
revealed crucial roles for microprokaryotic communities in marine 
carbon and nitrogen cycles, particularly through carbohydrate and 
amino acid metabolism. These functions are essential for nutrient 
cycling in extreme environments, consistent with findings from other 
polar studies (Yuan et al., 2023). The diverse trophic modes within 
microeukaryotic communities further complicate the ecological 
dynamics in Maxwell Bay, indicating a complex interplay of functions 
that warrants deeper investigation to fully understand their ecological 
roles and adaptive strategies in polar ecosystems.

5 Conclusion

In conclusion, our study significantly advances the understanding 
of microbial ecology in polar regions, offering new insights into the 
distribution and diversity of microprokaryotic and microeukaryotic 
communities. We  found distinct differences in their community 
structures, with microeukaryotic communities exhibiting greater 
sensitivity to environmental disturbances, as revealed by spatial 
correlation and network analysis. Environmental factors such as 
dissolved oxygen (DO) and pH were identified as key drivers for 
microprokaryotic communities, while pH played a crucial role in 
shaping microeukaryotic communities.

Our functional analysis underscored the pivotal roles of 
carbohydrate and amino acid metabolism in microprokaryotes and 
highlighted the diverse trophic strategies employed by 
microeukaryotes. These findings suggest that the intricate balance of 
these microbial communities is closely tied to environmental 
parameters, emphasizing the need for ongoing, long-term monitoring 
to track the impacts of climate change on the Antarctic microbiome.

In the future, the integration of advanced technologies such as 
metagenomics, metatranscriptomics, and metaproteomics will 
be crucial. These tools will deepen our understanding of the complex 
lifestyles of Antarctic microorganisms and their interactions with the 
extreme environment. Such research is vital for predicting the future 
dynamics of these ecosystems in the face of global climate change.
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