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Global climate warming has led to changes in the suitable habitats for fungi. 
Colletotrichum acutatum, a common fungus causing anthracnose disease, is 
widely distributed in southern China. Currently, research on the relationship 
between C. acutatum and environmental warming was limited. In this study, 
MaxEnt and ArcGIS software were used to predict the suitable habitats of C. 
acutatum under current and future climate conditions based on its occurrence 
records and environmental factors. The optimal MaxEnt model parameters were 
set as feature combination (FC)  =  lp and regularization multiplier (RM)  =  2.6. 
Bio15, Bio12, Bio09, and Bio19 were identified as the main environmental factors 
influencing the distribution of C. acutatum. Under current climate conditions, 
C. acutatum was distributed across all continents globally, except Antarctica. In 
China, C. acutatum was primarily distributed south of the Qinling-Huaihe Line, 
with a total suitable area of 259.52  ×  104  km2. Under future climate conditions, 
the potential suitable habitat area for C. acutatum was expected to increase 
and spread towards inland China. The results of this study provided timely risk 
assessment for the distribution and spread of C. acutatum in China and offer 
scientific guidance for monitoring and timely controlled of its distribution areas.
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1 Introduction

Anthracnose is a significant fungal disease that commonly occurs in plants and is mainly 
caused by species of the genus Colletotrichum (Cannon et al., 2012). Anthracnose often occurs 
on the leaves, stems, flowers, and fruits of plants. In the early stages of the disease, small spots 
typically appear on the infected areas, which later expand into dark brown circular lesions. In 
severe cases, the disease can cause the plant’s crown and stems to rot, leading to wilting and 
death of seedlings (Cannon et al., 2012). Colletotrichum acutatum is a common species within 
the genus Colletotrichum that can parasitize many plants and cause anthracnose. Initially, this 
fungus was isolated by researchers from diseased tissues of papaya, chili peppers, and 
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delphiniums in Australia (Baroncelli et  al., 2015). Nowadays, it is 
commonly found on tropical and subtropical crops such as 
strawberries, mangoes, citrus fruits, peach trees, avocados, bananas, 
coffee, and cereals (Thao et  al., 2023). The conidia produced by 
C. acutatum are primarily spread through rainfall and wind (Dowling 
and Schnabel, 2020). When the conidia land on injured host plant 
tissue, they can cause secondary infections in the plant (Tan et al., 
2022). The optimal conditions for C. acutatum to infect plants include 
high humidity, warm temperatures, wounds or natural openings on the 
plants, and susceptible or weakened plant varieties. The pathogen is 
most active in warm environments between 20°C and 30°C, where its 
spores rapidly germinate under high humidity or in the presence of 
water droplets on leaves. The spores then enter the plant tissue through 
wounds or stomata, leading to infection. When these conditions are 
present simultaneously, plants are more susceptible to infection by 
C. acutatum, resulting in severe disease outbreaks (Ruvishika Shehali 
et al., 2021). The high transmissibility and infectivity of C. acutatum 
make it a significant threat to the growth and yield of many fruit trees 
and crops, leading to decreased agricultural production and impacting 
the healthy development of the agricultural economy. Research has 
shown that there are both dominant and recessive resistance genes in 
C. acutatum. For example, the resistance of green pepper to the disease 
is controlled by a pair of recessive genes, while the resistance of mature 
fruit pepper is controlled by a pair of recessive genes (Mahasuk et al., 
2009). In strawberry species, resistance to this fungus is a quantitative 
trait, with a dominant gene controlling high levels of resistance and a 
micro-effective gene controlling moderate levels of resistance 
(Mahasuk et al., 2009). Given that C. acutatum is sensitive to climate, 
global climate change could potentially expand its distribution. 
Therefore, understanding the current and future potential distribution 
of C. acutatum is crucial for preventing further infections and 
protecting crop growth.

Climate is a major factor influencing species distribution 
patterns. The Fifth Assessment Report (AR5) of the Intergovernmental 
Panel on Climate Change (IPCC) indicated that the annual mean 
temperature of the Earth’s surface had increased by 0.85°C over the 
past 130 years (1880–2012). While the mean temperature of the past 
60 years (1951–2012) had increased by 0.72°C (IPCC, 2013). 
According to researchers’ projections of greenhouse gas emission 
scenarios, by the end of the 21st century, the global average surface 
temperature will increase by 0.3 to 4.8°C compared to current levels 
(Li et al., 2020). Climate change will lead to changes in ecosystems, 
directly impacting the survival of certain species and affecting the 
food chains they belong to, thereby further altering the composition 
of ecosystem patterns. Overall, global warming May accelerate the 
reproduction of heat-loving species and lead to the decline of cold-
loving species (Parmesan and Yohe, 2003). Therefore, quantitative 
and visual analysis of climate factors affecting species distribution 
and the current and future potential distribution of species has 
become a focal point of biological research.

With the rise of statistical techniques and GIS tools, predictive 
models of species habitat distribution have rapidly emerged in 
biology and are widely used to forecast the potential distribution of 
invasive species, endangered species, harmful insects, and more (Gao 
et al., 2023). These models statistically correlate the geographical 
distribution of species with current environmental conditions, 
essentially being static and probabilistic in nature (Guisan and 
Zimmermann, 2000). Species distribution models (SDMs) encompass 

a wide range of disciplines, including ecology, biogeography, 
environmental science, conservation biology, species management, 
and more (Benavides Rios et al., 2024). Currently, many niche models 
are used to predict the potential distribution of species, including the 
bioclimate analysis and prediction system (BIOCLIM) (Ajene et al., 
2024), the genetic algorithm for rule set production (GARP) 
(Townsend Peterson et al., 2007), the ecological niche factor analysis 
(ENFA) (Cushman et al., 2024), and the Maximum Entropy Model 
(Maxent) (Zhao et al., 2024). Species distribution models (SDMs) are 
widely used, but there are still some shortcomings. For example, the 
sample data for species occurrence May not always be accurate due 
to inaccuracies in recording or uncertainties in species classification, 
leading to potential biases in the samples (Elith and Leathwick, 2009). 
These niche models only consider the interaction between species 
distribution and environmental factors, lacking consideration for 
factors such as interactions between species, evolutionary processes 
within species, and disturbances from extreme conditions (Li et al., 
2020). However, niche models remain a common tool for predicting 
species distributions because they can quickly infer the potential 
range of a species based on the presence of partial samples, thereby 
reducing the need for manual field surveys and re-recording processes.

The MaxEnt model, based on the principle of maximum entropy, 
is an effective and accurate tool for predicting species distributions. 
Maximum entropy principle serves as a criterion for learning 
probability models, where the model’s quality is assessed based on the 
magnitude of entropy; higher entropy indicates a better model (Steven 
et  al., 2006). In general, the maximum entropy principle involves 
selecting the model with the highest entropy under specified 
constraints. The MaxEnt model utilizes current species occurrence 
data and various environmental factors such as soil, climate, and 
microbial factors to simulate both current and future potential 
distributions of species. It is known for its effective predictive 
capabilities, verifiable predictions, fast computation speed, and 
operational flexibility (Hirzel et al., 2006; Hou et al., 2023). In many 
studies, this model often operated using default parameters and all 
available environmental variables that can be  collected. These 
operations increased the complexity of the model, reduced efficiency, 
and were not suitable for predicting suitable habitats for all species. 
Research had found that over-parameterized models tended to 
underestimate the availability of suitable habitats when transferring to 
new time periods, while under-parameterized models often 
overestimated it (Dan and Stephanie, 2011). In machine learning 
algorithms, complex models often led to overfitting, resulting in poor 
performance when predicting the spatiotemporal changes of species 
habitats (Zhao et al., 2022). Therefore, adjusting model parameters to 
reduce complexity and selecting appropriate environmental factors to 
enhance prediction accuracy was a necessary consideration.

In this study, after optimizing the parameters of the MaxEnt 
model and selecting environmental variables, the distribution changes 
of C. acutatum under different climatic conditions were demonstrated. 
The main objectives of this study were as follows: (1) Explore the 
suitable MaxEnt parameters and environmental factors for 
C. acutatum. (2) Investigate the environmental factors that 
significantly impact the distribution of C. acutatum. (3) Compare the 
distribution and changes of suitable habitats for C. acutatum under 
different time periods and economic emission scenarios. The 
significance of this study lay in providing scientific basis to prevent 
further spread of C. acutatum, manage anthracnose infections 
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effectively, and enable relevant authorities to implement targeted 
measures, thereby reducing its impact on agricultural economies.

2 Materials and methods

2.1 Species occurrence data

The current distribution data of C. acutatum mainly came 
from the Global Biodiversity Information Facility (GBIF, https://
www.gbif.org), supplemented with analysis of literature sources. 
Using Google Maps, latitude and longitude data were collected for 
234 distribution points of C. acutatum where coordinates were not 
initially available. To reduce spatial autocorrelation (Marie-Josée, 
1999), each grid (5 km × 5 km) was used as a standard, and ENM 
Tools 1.4 was employed to prune redundant data points, ensuring 
that each grid cell contains only one distribution point. The 
spatial resolution used was 2.5 arc-minutes (approximately 4.5 
kilometers) (Gao et al., 2023). After pruning the coordinates using 
ENM Tools 1.4, the reduced dataset of coordinate points was 
imported into ArcGIS v10.8. In ArcGIS, data points that did not 
meet the criteria were removed, resulting in a final dataset of 164 
distribution points.

2.2 Screening and processing of the 
environmental variables

Nineteen bioclimatic variables and 3 terrain variables were used to 
predict the current and future potential distribution of C. acutatum 
(Table  1). These variables were sourced from the World Climate 
Database1 and covered the time period from 1970 to 2000. They 
included spatial resolutions of 10 arc-minutes, 5 arc-minutes, 2.5 
arc-minutes, and 30 arc-seconds, with modeling conducted at a 
resolution of 2.5 arc-minutes. Future climate data were obtained from 
the CMIP 6 (Coupled Model Intercomparison Project Phase 6) under 
the Beijing Climate Center Climate System Model (BCC-CSM 2-MR) 
climate model (Gao et al., 2023). In the study, scenarios from the 2050s 
(average from 2041 to 2060) and 2070s (average from 2061 to 2080) 
under SSP1-2.6, SSP3-7.0, and SSP5-8.5 were used for modeling. These 
scenarios represented different socioeconomic pathways and 
greenhouse gas emission levels that influenced the distribution of 
C. acutatum. Due to high correlations among these variables, directly 
using them in MaxEnt modeling could lead to overfitting. Initially, the 
environmental variables surrounding the distribution points of 
C. acutatum were analyzed using the sampling function in ArcGIS 10.8 
software. Using SPSS software, a multicollinearity analysis was 
conducted to calculate the Variance Inflation Factor (VIF) (Ab Lah 
et al., 2021). This analysis preliminarily filtered out environmental 
factors with VIF values less than 100. VIF, also known as the reciprocal 
of tolerance, indicates severe multicollinearity when VIF > 100. 
Subsequently, ENMTools software was used to compute Pearson 
correlation coefficients (Figure 1), identifying and removing climate 
variables with correlation values greater than 0.8 to enhance the 
model’s accuracy (Wang et al., 2021). Nine environmental variables 
were retained: Slope, Elev (Elevation), Bio02, Bio03, Bio08, Bio09, 
Bio12, Bio15, and Bio19 (Table 2).

2.3 MaxEnt model setting and selection

The MaxEnt model calculates the maximum entropy of species 
distribution by inputting current species occurrence data and 
environmental variables. This estimation helps to predict the suitable 
habitat for the species (Steven et al., 2006). The prediction results of 
the MaxEnt model are related to feature combinations (FC), 
regularization multiplier (RM), and maximum background points 
(BC). The model includes five feature types: linear (linear-L), quadratic 
(quadratic-Q), hinge (hinge-H), product (product-P), and threshold 
(threshold-T) (Wan et al., 2020). Combining these types of factors 
results in a total of 31 combinations. The regularization multiplier 
varies from 0.1 to 4 in increments of 0.1, yielding 40 values. Therefore, 
combining the feature combinations with the regularization multiplier 
results in 1240 parameter combinations. The default parameters of the 
MaxEnt model May not necessarily be  suitable for predicting the 
potential distribution of all species. Muscarella et al. developed an R 
package called ENMeval to evaluate the combination of model 
parameters (Muscarella et  al., 2014). Using R Studio, based on 
statistical significance (ROC with 500 iterations), predictive ability 

1 https://www.worldclim.org

TABLE 1 Environmental variables related to the distributions.

Abbreviation Climate variables Unit

Bio01 Annual mean temperature °C

Bio02 Mean diurnal range °C

Bio03 Isothermality (bio2 / bio7) (× 100)

Bio04 Temperature seasonality (standard 

deviation×100)

Bio05 Max temperature of warmest month °C

Bio06 Min temperature of coldest month °C

Bio07 Temperature annual range (bio5–bio6) °C

Bio08 Mean temperature of wettest quarter °C

Bio09 Mean temperature of driest quarter °C

Bio10 Mean temperature of warmest quarter °C

Bio11 Mean temperature of coldest quarter °C

Bio12 Annual precipitation mm

Bio13 Precipitation of wettest month mm

Bio14 Precipitation of driest month mm

Bio15 Precipitation seasonality (Coefficient of 

variation)

Bio16 Precipitation of wettest quarter mm

Bio17 Precipitation of driest quarter mm

Bio18 Precipitation of warmest quarter mm

Bio19 Precipitation of coldest quarter mm

Elev Altitude (elevation above sea level) (m) m

Slope Slope °

Aspect Aspect rad
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(omission rate, OR), and model complexity (AICc), the performance 
of these 1,240 candidate models was evaluated (Shi et al., 2023). The 
difference in Akaike Information Criterion corrected for small sample 
sizes (delta AICc) between the calibrated model and the current 
model is less than 2, and the omission rates are less than 5% (Zhao 
et al., 2022). Therefore, this calibrated model parameter combination 
is considered the optimal parameter combination. Finally, an 
optimized MaxEnt model was established. 75% of the presence data 
was randomly allocated as training data, while the remaining 25% was 
used as testing data. The feature combination included linear and 
product features, with a regularization multiplier of 2.6 and a 
maximum of 10,000 background points. The sampling method chosen 
was non-replacement subsampling, repeated ten times. The final 

MaxEnt prediction result was obtained by averaging the results of 
these ten runs. Model performance was evaluated using the Area 
Under the Receiver Operating Characteristic Curve (AUC and ROC). 
AUC values range from 0 to 1, with values closer to 1 indicating better 
predictive performance (Wang et al., 2020).

2.4 MaxEnt model analysis

The prediction results of the MaxEnt model are output in logistic 
format, where the species habitat suitability is quantitatively assessed 
on a scale from 0 to 1. Subsequently, these MaxEnt model predictions 
were imported into ArcGIS 10.8 software for reclassification and 
visualization. Using the Jenks’ natural break method, the habitat 
suitability of C. acutatum was classified into four categories: 
unsuitable (<0.08), low suitability (0.08–0.27), medium suitability 
(0.27–0.49), and high suitability (0.49–1) (Li et al., 2022). Finally, the 
ranges of each suitability zone were determined, and the areas of each 
suitability zone were calculated.

3 Result

3.1 MaxEnt model optimization and 
accuracy evaluation

In this study, the optimized MaxEnt model showed excellent 
performance. The default parameters with FC = Auto feature and 

FIGURE 1

Correlation analysis of environmental variables.

TABLE 2 The nine environment variables used for modeling.

Variable Environmental variables

Bio02 (°C) Mean diurnal range (mean of monthly max temp-min temp)

Bio03 (°C) Isothermality (Bio02/Bio07) × 100

Bio08 (°C) Mean temperature of wettest quarter

Bio09 (°C) Mean temperature of driest quarter

Bio12 (mm) Annual precipitation

Bio15 (mm) Precipitation seasonality (coefficient of variation)

Bio19 (mm) Precipitation of coldest quarter

Elev (m) Elevation

Slope (%) Slope
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RM = 1 yielded an AUC value of 0.974 for the output results (Figure 2). 
After optimization, setting the MaxEnt model parameters to FC = lp 
and RM = 2.6 resulted in an AUC value of 0.950. The omission rate was 
0.073%, and delta AICc was 0. The optimized MaxEnt model 
demonstrated high predictive performance, indicating that these 
optimized parameters can be  used to predict the distribution of 
C. acutatum suitable habitats.

3.2 Relationships between the distribution 
of Colletotrichum acutatum and 
bioclimatic variables

In these nine environmental variables, Bio15, Bio09, and Bio12 
contributed significantly to the MaxEnt model predictions, with a 
cumulative contribution of 73.9% (Table 3). Among them, Bio15 had 
the highest contribution at 33.1%. The jackknife test (Figure  3) 
indicated that Bio15, Bio12, Bio09, and Bio19 had a substantial impact 
on the distribution of C. acutatum. Therefore, among the 
environmental factors, precipitation emerged as the primary factor 
influencing the survival of C. acutatum, with significant contributions 
from Bio15, Bio12, and Bio19.

According to the response curves, areas suitable for C. acutatum 
survival exhibit seasonal variation in precipitation (Bio15) below 
36.36 mm. Additionally, suitable environmental conditions for 
C. acutatum occurred when the precipitation of the coldest quarter 
(Bio19) exceeded 304.36 mm, annual precipitation (Bio12) exceeded 
1283.76 mm, and the mean temperature of the driest quarter (Bio09) 
exceeded 11.12°C (Figure 4).

3.3 Potentially suitable distribution areas of 
Colletotrichum acutatum under current 
climate

Currently, potential suitable habitats for this fungus have been 
divided into four grades: high suitability, medium suitability, low 
suitability, and unsuitable areas. The Figure  5 illustrated the global 
potential distribution of C. acutatum based on current environmental 
variables. The results indicated that, except for Antarctica, suitable 
habitats for C. acutatum were distributed across all other continents. The 
species’ primary habitats were located in Western Europe, the terrestrial 
regions of Oceania, Central Africa, coastal areas of South America, the 
southeastern coast of North America, and Eastern Asia. In Europe, areas 
suitable for C. acutatum were mainly found in southwestern Germany, 
the western coastal regions of the UK, most of the western coastal regions 
of France, and the southwestern coastal regions of Italy. In Oceania, 
suitable habitats were primarily distributed along the southern coast of 
Australia and in New Zealand. In South America, the species’ suitable 
habitats were mainly in southern Brazil, Uruguay, southern Chile, the 
western coastal regions of Peru, as well as northwestern Ecuador and 
Colombia. In North America, C. acutatum was predominantly found 
along the western and eastern coasts of the southeastern United States. 
In Asia, its distribution was mainly in southern China, Japan, areas 
bordering India and Myanmar, and coastal regions of Indonesia.

The total suitable habitat area was the sum of regions classified as 
highly suitable, moderately suitable, and lowly suitable. In Asia, the 
largest suitable habitat for C. acutatum was in China, covering 
259.52 × 104 km2 (Table  4). Specifically, the highly suitability area 
covered 16.60 × 104 km2, the medium suitability area covered 
121.77 × 104 km2, and the low suitability area covered 121.16 × 104 km2. 

FIGURE 2

Receiver operating characteristic (ROC) curve generated by the MaxEnt model.
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The highly suitable areas were primarily distributed along the coastal 
regions south of 30°N, covering relatively small areas, including 
Zhejiang Province, northern Jiangxi Province, eastern coastal Fujian 
Province, southern Anhui Province, northeastern Hunan Province, 
southern coastal Guangdong Province, northeastern Taiwan, and other 
regions. The medium suitability area was larger and primarily situated 
south of the Qinling-Huaihe Line. This line in China represented the 
800 mm annual precipitation line and the 0°C January isotherm.

3.4 Change in potentially suitable 
distribution areas of Colletotrichum 
acutatum under the future climate

In the future climate scenarios of SSP1-2.6, SSP3-7.0, and SSP5-
8.5, the distribution of suitable habitats for C. acutatum in the 2050s 
and 2070s was predicted. Globally, the suitable habitat for C. acutatum 
was generally expanding inland. In North America, the suitable 
habitat in the southeastern United  States was extending 
northwestward. In South America, low-suitability areas in the central 
part of the continent were becoming unsuitable, showing significant 

change. In Europe, the suitable habitat was gradually expanding 
towards the higher latitudes in the north. In Asia, the low-suitability 
areas in Russia were continuously expanding eastward (Figure 6).

In China, under most future climate emission scenarios, the area 
of suitable habitats for C. acutatum was expected to increase (Figure 7). 
Only in the SSP1-2.6 scenario for the 2070s did the total suitable 
habitat area decrease, although the high suitability habitat area 
increased from 16.60 × 104 km2 to 28.28 × 104 km2 (Table 4). Under the 
SSP5-8.5 emission scenario, this species’ total suitable habitat area 
increased the most. In the 2050s, the total suitable habitat area 
expanded to 287.19 × 104 km2, an increase of 10.66%. The high 
suitability habitat area and low suitability habitat area also increased 
significantly, by 65.22 and 22.69%, respectively. By the 2070s, the total 
suitable habitat area had expanded by 10.92%, with the high suitability 
habitat area expanding by 44.32%.

In future climate scenarios, C. acutatum showed a trend of shifting 
towards higher latitudes in northern regions. From the map, it can 
be  observed that the Sanjiang Plain and the Junggar Basin will 
transition from unsuitable areas to low-suitability areas. The high 
suitability habitat for this species expanded from the southeast coastal 
areas inland. Northeastern Jiangxi Province, northeastern Hunan 
Province, southern Anhui Province, southern Guangdong Province, 
southeastern Guangxi Zhuang Autonomous Region, and western 
Zhejiang Province became high suitability habitats for C. acutatum. 
Inner Mongolia Autonomous Region, Qinghai Province, Hebei 
Province, Ningxia Hui Autonomous Region, Tianjin Municipality, and 
Beijing Municipality remained unsuitable areas for this species.

3.5 Centroid changes in potential 
distribution

In this study, the movement of the distribution centroid of the 
high suitability habitat of C. acutatum under different climate 
scenarios was illustrated (Figure  8). Currently, under present 
conditions, the distribution centroid of the high suitability habitat for 
C. acutatum was located in Chongren County, Fuzhou City, Jiangxi 
Province (116°10′46″E, 27°42′33″N). In future scenarios, the centroid 

TABLE 3 Contribution and permutation importance estimation of climate 
variables in the MaxEnt model of Colletotrichum acutatum.

Variable Percent 
contribution (%)

Permutation 
importance (%)

Bio15 33.1 3.9

Bio09 21.4 24.6

Bio12 19.4 9.8

Bio03 9.9 18.5

Bio08 5.7 30.9

Elev 5.3 3.6

Bio19 3.0 5.8

Bio02 2.1 3.0

Slope 0.1 0.0

FIGURE 3

Jackknife test of variable importance for the MaxEnt model of C. acutatum distribution.
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FIGURE 4

Response curves of nine environmental variables.
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of this high suitability habitat generally shifted southwestward, 
indicating the gradual inland expansion of C. acutatum’s distribution 
in China. Under SSP1-2.6 and SSP3-7.0 scenarios, the centroid of the 
high suitability habitat for C. acutatum initially shifted northwestward. 
Interestingly, for these two emission scenarios, there was a segment of 
the centroid’s shifting trajectory that overlaps. In the SSP1-2.6 
scenario, by the 2070s, the centroid shifted southwestward and reaches 

Jishui County, Ji’an City, Jiangxi Province (115°9′42″E, 27°8′56″N). 
Under the SSP5-8.5 scenario, the centroid of the high suitability 
habitat for C. acutatum showed the greatest degree of displacement. 
Initially, it shifted northeastward to Guixi City, Yingtan City, Jiangxi 
Province (116°10′46″E, 27°42′33″N), and then southwestward to 
Liuyang City, Changsha City, Hunan Province (113°53′40″E, 
28°5′58″N).

FIGURE 5

Potential distribution of C. acutatum under current climate scenario by MaxEnt. (A) Global habitat suitability map. (B) Potential habitat suitability map in 
China.
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4 Discussion

Species distribution modeling is a model tool based on species 
occurrence data and environmental variables to predict the potential 
geographic distribution of species under specific spatiotemporal 
conditions. It is a hot topic in current biological research. The 
relationship between species distribution and the environment is 
intricate and complex (Zhao et  al., 2022). For different research 
objectives, ensuring the accuracy of results requires selecting 
appropriate models and parameters. The main goal of this study is to 
predict the current and future potential distribution of a species using 
known species occurrence points.

In recent years, the MaxEnt model has gained popularity as a 
robust ecological niche model capable of accurately predicting species 
distributions. When predicting the range of species distributions, this 
model assumes that species exist in all areas where environmental 
conditions are suitable and do not exist in unsuitable areas (Li et al., 
2020). The research indicates that under known conditions, the larger 
the entropy of a species, the closer the predicted results are to reality 
(Steven et al., 2006). The default parameters of MaxEnt were initially 
derived by developers through testing known species distribution 
points and distribution areas (Steven and Miroslav, 2008). Researchers 
test optimal model parameters through extensive species distribution 
data and experimental designs to simplify the settings of the MaxEnt 
model to the greatest extent possible. The accuracy of MaxEnt’s default 
parameters can be  evaluated by comparing the predicted results 
obtained through software computations with actual observations 
(Hirzel et al., 2006). However, when used to predict future species 
distribution ranges, these results cannot be verified. Moreover, using 
only default parameters for computation can lead to overfitting and 
reduce the accuracy of the model results (Aleksandar and Robert, 
2014). Therefore, when using the MaxEnt model to predict species’ 
future distributions, it is necessary to reduce the model’s omission rate 
to improve prediction accuracy (Muscarella et al., 2014). In this study, 
based on occurrence data and environmental variables of C. acutatum, 
the parameters of the MaxEnt model were adjusted. After adjustment, 
the model’s omission rate was 0.073%, which is less than 5%, and the 
delta AICc was 0. These adjusted parameters are suitable for predicting 
the current and future distribution of C. acutatum.

The predictions of the MaxEnt model depend not only on its 
parameter settings but also on the selection of species distribution and 
environmental factors. Therefore, to ensure the accuracy of the 
MaxEnt model input data, species distribution data are collected as 
extensively as possible. This helps to avoid sample bias caused by 
insufficient species occurrence points. Generally, the selected species 
distribution points should adequately cover the species’ distribution 
range while avoiding biases caused by overfitting (Wisz et al., 2008). 
Therefore, in this study, the distribution data of this species were 
filtered to retain only one distribution point per grid. Using ArcGIS 
software, the distribution range of these points was validated, and only 
the valid distribution points were retained. Secondly, environmental 
factors were selected using VIF, Pearson correlation coefficients, and 
contribution rates, resulting in nine environmental factors being 
included in the MaxEnt model construction. In this research, AICc 
values were used to select the optimal combination of feature types 
and regularization multipliers, thereby reducing the model’s 
complexity. AUC is an important model evaluation metric in machine 
learning, widely used to assess the accuracy of MaxEnt model results. T
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The AUC value in this MaxEnt model was 0.95, indicating reliable 
predictive results. Huercha et al. used the MaxEnt model to predict the 
distribution of Dermacentor marginatus and found the prediction 
results to be reliable (Huercha et al., 2020). In this study, relying on 
bioclimatic variables, the current and future potential distribution of 
C. acutatum was predicted. This research identifies potential risk areas 
for future invasion of C. acutatum using the MaxEnt model in the 
2050s and 2070s.

C. acutatum is a globally widespread plant pathogenic fungus. It 
is primarily distributed in coastal areas between 20°N-70°N and 30°S-
60°S. These regions are mainly characterized by temperate oceanic 
climates, subtropical monsoons, humid subtropical climates, and 
temperate continental climates. The abundant rainfall and relatively 
high temperatures in these areas create favorable conditions for the 
reproduction and survival of C. acutatum. The main regions in China 

where anthracnose disease occurs are concentrated in the middle and 
lower reaches of the Yangtze River Plain and the southeastern hills, 
which is consistent with the predictions of this study (Huanhuan, 
2023). Our results indicated that precipitation played a crucial role in 
forming suitable habitats for C. acutatum, and the mean temperature 
of the driest quarter was also an important influencing factor. In 
China, the Qinling-Huaihe Line is a geographical boundary in China 
that distinguishes the northern and southern regions. There are 
significant differences in climate characteristics, geographical 
landscapes, and other aspects on both sides of this line. This line 
separates the humid and semi-humid areas, temperate and subtropical 
zones, and subtropical monsoon climate and temperate monsoon 
climate. In winter, south of the Qinling-Huaihe Line is mild and less 
rainy, while north of the line is cold and dry (Sunan and Chengyuan, 
2024). According to the predictions, the suitable habitat of C. acutatum 

FIGURE 6

Global potential distribution map for C. acutatum under the future climate scenario. (A) ssp126 in the year 2050; (B) ssp370 in the year 2050; 
(C) ssp585 in the year 2050; (D) ssp126 in the year 2070; (E) ssp370 in the year 2070; (F) ssp585 in the year 2070.
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was distributed south of the Qinling-Huaihe Line, where the annual 
precipitation exceeds 800 mm, winter temperatures are relatively high, 
and there is minimal freezing. Research indicated that rainfall 
contributed to the reproduction and spread of C. acutatum, increasing 
both the infection rate and the amount of infection in plants (Mckay 
et al., 2014). Therefore, this MaxEnt model accurately predicted the 
environmental factors that affect the survival of C. acutatum.

This study demonstrated that future climate change conditions 
favored the survival of C. acutatum. The spread of C. acutatum in 
its distribution areas will pose extensive risks to crops and fruit 

trees. This study predicted the distribution of C. acutatum under 
three socioeconomic pathways until the 2070s, providing more 
scenarios than previous research. In China, C. acutatum was mainly 
distributed in southeastern coastal regions such as Zhejiang, 
Jiangxi, Guangdong, Taiwan, Anhui, and others. These provinces 
are characterized by flat terrain, proximity to the ocean, high 
summer temperatures with humidity, significant precipitation, and 
short duration of low winter temperatures, which meet the 
environmental requirements for C. acutatum habitat. Under future 
environmental conditions, there was a trend for C. acutatum habitat 

FIGURE 7

Potential distribution map for C. acutatum in China under the future climate scenario. (A) ssp126 in the year 2050; (B) ssp370 in the year 2050; 
(C) ssp585 in the year 2050; (D) ssp126 in the year 2070; (E) ssp370 in the year 2070; (F) ssp585 in the year 2070.
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to shift inland in China, with the greatest movement observed 
under the SSP5-8.5 scenario. This indicated a significant impact of 
high carbon emissions on C. acutatum. Within a certain range, 
higher future carbon dioxide emissions will increasingly favor the 
survival of this species. Studies have shown that as the global 
climate warms, the atmosphere’s ability to hold water increases, 
leading to a continued strengthening of the global water cycle, 
primarily expressed in the increase in total precipitation and the 
intensification of precipitation extremes (Zhang et al., 2021). These 
extreme weather changes will lead to an increase in plant disease 
rates and facilitate the spread of C. acutatum.

The southern regions of China are generally suitable for the 
survival of C. acutatum, so enhancing its prevention and control is 
of utmost importance. First and foremost, it is crucial to strengthen 
the prevention and control system, increase publicity on the damage 
caused by anthracnose and control measures, raise awareness 
among relevant personnel, and promptly detect and treat the 
disease. Secondly, optimize cultivation management by selecting 
suitable sites and trees, and timely prune dead branches and leaves 
to maintain good ventilation between plants (de los Santos Garcı ́a 
de Paredes and Romero Muñoz, 2002). Choosing disease-resistant 
varieties can help reduce the risk of fungal infection to some extent. 
Upon discovering C. acutatum infection in plants, immediately 
prune and burn the infected parts to prevent the spread and 
dissemination of the pathogen. Lastly, when the disease becomes 
severe, chemical control is often effective. When using chemical 
control methods, it is advisable to alternate the use of fungicidal 
pesticides to prevent the development of resistance in the pathogens 
(Peres et al., 2002).

5 Conclusion

In summary, globally, under future climate conditions, the suitable 
habitat for C. acutatum expanded further inland, with rainfall and 
temperature being the main environmental factors limiting its distribution. 
In China, according to the prediction results, areas south of the Qinling 
Mountains and east of the Huai River were likely to become suitable 
habitats for this fungus. Given its wide distribution and ease of spread, 
C. acutatum poses significant challenges to the control of anthracnose. 
Therefore, relevant authorities should increase their attention to the 
prevention and control of C. acutatum, enhance monitoring efforts, and 
implement measures to mitigate its impact on agricultural development.
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