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We reviewed research on SARS-CoV-2 and influenza virus detection on surfaces, 
their persistence under various conditions, and response to disinfectants. Viral 
contamination in community and healthcare settings was analyzed, emphasizing 
survival on surfaces influenced by temperature, pH, and material. Findings showed 
higher concentrations enhance survivability at room temperature, whereas 
stability increases at 4°C. Both viruses decline in low pH and high heat, with 
influenza affected by salinity. On various material surfaces, SARS-CoV-2 and 
influenza viruses demonstrate considerable variations in survival durations, and 
SARS-CoV-2 is more stable than influenza virus. On the skin, both virus types 
can persist for ≥2 h. Next, we delineated the virucidal efficacy of disinfectants 
against SARS-CoV-2 and influenza viruses. In daily life, exposure to ethanol (70%), 
isopropanol (70%), bleach (10%), or hydrogen peroxide (1–3%) for 15–30 min 
can effectively inactive various SARS-CoV-2 variants. Povidone-iodine (1 mg/mL, 
1 min) or cetylpyridinium chloride (0.1 mg/mL, 2 min) may be used to inactive 
different SARS-CoV-2 variants in the mouth. Chlorine disinfectants (500 mg/L) or 
ultraviolet light (222 nm) can effectively inhibit different SARS-CoV-2 variants in 
public spaces. In conclusion, our study provides a scientific basis and practical 
guidance for reduction of viral persistence (retention of infectivity) on surfaces 
and environmental cleanliness.
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1 Introduction

On December 31, 2019, the World Health Organization (WHO) 
issued an emergency alert in response to a cluster of unexplained 
pneumonia cases in Wuhan, China, signaling the rapid spread of 
pneumonia caused by severe acute respiratory syndrome (SARS) 
coronavirus 2 (SARS-CoV-2), a novel coronavirus, worldwide (Li 
C. et al., 2022; Riou and Althaus, 2020). As the epidemic evolved into 
a pandemic, on February 11, 2020, the WHO officially designated 
this new illness as coronavirus disease 2019 (COVID-19). 
Throughout the main phase of the COVID-19 pandemic, SARS-
CoV-2 disseminated globally, in the form of multiple variants; for 
instance, in December 2020, Alpha (B.1.1.7), Beta (B.1.351), and 
Gamma (P.1) variants were identified in the United  Kingdom, 
South  Africa, and Brazil, respectively (Sanches et  al., 2021). 
Moreover, the Delta variant, which was concurrently discovered in 
India, rapidly led to the second wave of the COVID-19 pandemic in 
India and precipitated numerous clusters of cases in various 
countries and regions including the United States, exacerbating the 
crisis (WHO, 2024a). In November 2021, the Omicron variant was 
initially detected at a surveillance laboratory in South Africa, which 
then rapidly disseminated to numerous countries worldwide (WHO, 
2024a). As of January 28, 2024, the WHO data indicate that the 
cumulative total cases of SARS-CoV-2 infections had increased to 
approximately 774 million, with the total number of deaths reaching 

approximately 7.0264 million (WHO, 2024a). Moreover, in January 
2024, the WHO reported approximately 500,000 new COVID-19 
cases and 10,000 COVID-19 deaths. These statistics highlight the 
severity of the COVID-19 pandemic, emphasizing the need for 
global prevention and control strategies, including strengthened 
vaccination efforts (WHO, 2024b).

Similar to the COVID-19 pandemic, that of influenza remains 
a major concern (Al-Qahtani, 2020; Ma et al., 2020; Zhang et al., 
2020). Both SARS-CoV-2 and influenza viruses demonstrate similar 
transmission modes: they mainly spread through aerosol 
transmission, via respiratory droplets from infected individuals 
(Nikitin et al., 2014). In particular, influenza virus particles circulate 
in the air; the higher the airborne virus concentrations, the higher 
is the influenza infection risk among humans. Nevertheless, on 
exposure to low virus particle concentrations, the immune system 
can aid healthy individuals in resisting influenza virus infections 
(Hall, 2007; Nikitin et al., 2014; Tellier, 2009). Influenza is a global 
occurrence, with estimated annual incidence rates of 5–10% in 
adults and 20–30% in children. A common complication of 
influenza is secondary bacterial pneumonia, particularly prevalent 
among older adults and individuals with chronic diseases, which can 
lead to further elevations in morbidity and mortality rates. The 
frequent recurrence of influenza (Behzadinasab et  al., 2020) 
indicates the significance of infectious disease prevention 
(WHO, 2024c).
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The airborne transmission of SARS-CoV-2 and influenza viruses 
is influenced by various factors, such as temperature, humidity, and 
solar ultraviolet (UV) radiation (Bandara et al., 2023). In addition to 
direct person-to-person transmission, these viruses can be transmitted 
indirectly through contact with contaminated surfaces. Although high 
temperature, low pH, or high salinity conditions may reduce virus 
stability, the potential for contact transmission via the skin should 
be considered (Brown et al., 2009; Kratzel et al., 2020; Paek et al., 2010; 
Sun et al., 2020). Thus, a comprehensive assessment of the stability and 
survival of SARS-CoV-2 and influenza viruses on various surfaces, 
along with the efficacy of disinfectants on these surfaces, is essential 
for evaluating the risk of contact transmission and formulating 
effective infection control strategies (Hirose et  al., 2020). Herein, 
we systematically review pertinent research on the environmental 
stability of SARS-CoV-2 and influenza viruses, examine the efficacy 
of various disinfectants against them, and provide evidence that may 
aid in protecting relevant personnel and guide future efforts to reduce 
the potential for virus spread and control.

2 SARS-COV-2 and influenza virus 
detection on contaminated surfaces 
of objects in various environments

2.1 Viral contamination in clinical 
environments

In the healthcare sector, viral contamination in clinical 
settings remains a major concern. However, this contamination 
extends beyond medical institutions, encompassing crowded 
public spaces such as schools, public transport, and shopping 
centers, harboring potential risks of virus transmission (Cai et al., 
2020; Donohue and Miller, 2020; Luo et al., 2020) (see Figure 1). 
This concern is particularly amplified during outbreaks, such as 
the COVID-19 pandemic and periods of heightened seasonal 
influenza virus activity, indicating the importance of 
understanding and managing viral contamination in the 
environment. Consequently, gaining insights into viral 
contamination in clinical settings can aid in devising effective 
preventive and control strategies for COVID-19 and influenza 
control. In this section, we  explore how SARS-CoV-2 and 
influenza viruses are detected in clinical environments.

In healthcare facilities. SARS-CoV-2 has been discovered on 
surfaces and in air to which patients and healthcare workers are 
exposed. During the peak of the COVID-19 pandemic, from July 2020 
to March 2021, Oksanen et al. (2022) collected 258 air and surface 
samples from hospitals and households. Moreover, Nagle et al. (2022) 
used reverse transcription quantitative polymerase chain reaction to 
assess the presence of SARS-CoV-2 RNA on various surfaces, 
implements, and air, excluding those in the intensive care unit, at 
Avicenne University Hospital, Assistance Publique-Hôpitaux de Paris, 
France, from January 22 to April 8, 2021. The authors detected SARS-
CoV-2 RNA on surfaces (34%), air (12%), patient masks (50%), and 
healthcare workers’ masks (10%). Similarly, Ye et al. (2020) detected 
SARS-CoV-2 RNA on 13.9% of all the tested commonly used hospital 
items and medical equipment. The contaminated objects mainly 
included hand sanitizer bottles (20.3%), self-service printers (20.0%), 
desktop computers and keyboards (16.8%), door handles (16.0%), 

gloves (15.4%), telephones (12.5%), walls and floors (5.6%), and 
goggles and face shields (1.7%) (see Figure 1).

Regarding influenza, Mese et al. (2016) conducted a single-
blind, cross-sectional study at nine different family medical 
centers in Istanbul, Türkiye. The study included a total of 238 
participants. Among these individuals, 72 (30%) were younger 
than 19 years, classifying them into the pediatric group. The mean 
age of adult participants was 42.4 years, while the average age for 
children was 10.2 years. Out of the 238 patients, 122 were found 
to be  positive for influenza RNA. The Veritor™ (BD Veritor) 
system demonstrated clinical sensitivity and specificity rates of 80 
and 94%, respectively, across all age groups. Additionally, the 
positive predictive value was 93%, and the negative predictive 
value was 81% A. Chamseddine et al. (2021) conducted a study in 
which they collected 51 air samples from the rooms of patients 
diagnosed with influenza. The findings revealed that 51% of these 
samples were positive for the influenza A virus (IAV) RNA. Among 
the patients who tested positive for IAV, 65% were classified as 
emitters (defined as having at least one positive air sample), 
indicating a notably higher risk of in-hospital transmission in 
comparison to non-emitters. However, objective data available on 
influenza virus contamination rates in clinical settings are 
relatively limited.

Taken together, these findings highlight SARS-CoV-2 
transmission risks in healthcare settings, underscoring the need for 
efficient management and cleaning of all surfaces and air in hospitals 
and clinics. These results have major implications for devising 
strategies that ensure safety in various medical environments.

2.2 Viral contamination in community 
environments and objects

In late 2019, a cluster of patients with unexplained pneumonia was 
linked to the South China Seafood Wholesale Market in Wuhan, 
Hubei, China. This market primarily trades in fruits, vegetables, 
seafood, and wild animals including hedgehogs (Li et al., 2020; World 
Health Organization, 2020). In June 2020, 335 confirmed cases were 
discovered at the Xinfadi Wholesale Market in Beijing, China; 
environmental samples and samples obtained from chopping boards 
used for imported salmon on the market were also positive for SARS-
CoV-2 RNA (Li S. et al., 2022; Caiyu, 2020). In July 2020, SARS-CoV-2 
(live) was detected on the surfaces of cold chain food packaging and 
containers in cities such as Dalian and Qingdao in China, as well as in 
various parts of South America (Liu et al., 2020). On August 12, 2020, 
local authorities in Shenzhen, Guangdong, China, detected nucleic 
acids on the packaging materials of frozen shrimp and surfaces of 
frozen chicken wings imported from Brazil, as well as inside their 
shipping containers; this was the first instance of SARS-CoV-2 
detection in food samples (Han et al., 2021). This series of events 
indicates that SARS-CoV-2 can survive in community environments, 
increasing COVID-19 transmission risk and highlighting the need to 
assess potential sources of infection in the food supply chain and 
implement environmental hygiene and food safety measures.

Since the onset of the COVID-19 outbreak, SARS-CoV-2 nucleic 
acid has been detected in residential areas and public spaces. In 
Tehran, Iran, researchers analyzed the air in various public places 
between June and July 2020. They detected SARS-CoV-2 RNA in 64% 

https://doi.org/10.3389/fmicb.2024.1463056
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2024.1463056

Frontiers in Microbiology 04 frontiersin.org

of the samples, with the positivity rates being 62 and 67% in public 
places and transportation, respectively. SARS-CoV-2-positive samples 
were obtained from various locations such as banks (33%), shopping 
malls (100%), government offices (50%), airports (80%), subway 
stations (50%), subway trains (100%), and buses (50%) (Hadei et al., 
2021) (see Figure 1). Guadalupe et al. (2021) assessed the presence of 
SARS-CoV-2 RNA on environmental surfaces during the outbreak 
and reported positivity rates of 11.11% (2/18), 10.17% (18/177), and 
9.52% (8/84) on samples collected from wood, metal, and plastic 
surfaces, respectively. In contrast, the authors detected no viral RNA 

on glass (0/17) and ceramic (0/4) surfaces. Thus, wood, metal, and 
plastic surfaces may be  relatively more prone to retaining SARS-
CoV-2 RNA. SARS-CoV-2 has been reported to be more stable on 
plastic and stainless steel surfaces, with viable particles being 
detectable even after 21–28 days of contact (Guadalupe et al., 2021; 
Suman et al., 2020; van Doremalen et al., 2020). Although glass and 
ceramic surfaces tested negative for SARS-CoV-2 RNA, these results 
may be biased due to sample size variations among different surfaces; 
as such, the potential involvement of these surfaces in transmitting 
COVID-19 cannot be ruled out (Guadalupe et al., 2021).

FIGURE 1

Overview of SARS-CoV-2 environmental distribution and preventive measures. (A) SARS-CoV-2 has been detected in clinical and living environments. 
(B) Showcased the positivity rates and pie charts of SARS-CoV-2 commonly used hospital items and medical equipment in hospitals and medical 
institutions; SARS-CoV-2 air positivity rate and bar chart in public places; The distribution of influenza and SARS-CoV-2 in different materials. 
(C) Multiple preventive measures. Created with https://app.biorender.com/gallery/illustrations.
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He et  al. (2015) monitored 1,488 poultry-related sites in 
Zhejiang, China, from March 2013 to February 2015. Positivity for 
the RNA of the H7N9 influenza virus did not differ significantly 
between urban and rural areas of the towns (33.7 and 31.0%, 
respectively; p = 0.543), sites (15.4 and 16.3%, respectively; p = 0.711), 
and environmental specimens (5.9 and 6.0%, respectively; p = 0.730). 
Furthermore, among the poultry-related sites, the H7N9 RNA was 
detected in drinking water samples (4.3%, 63/1482), sewage from 
poultry cleaning (8.6%, 105/1228), swabs from tables used for 
slaughtering or processing poultry (9.8%, 172/1760), and live 
poultry markets (8.8%, 785/8966). Moreover, 34 (3.7%) of the 
recruited 912 poultry-related workers tested positive for 
H7N9 antibodies.

These findings indicate that SARS-CoV-2 and influenza viruses 
can be detected (nucleic acid or infectious virus) in both community 
settings and on various surfaces, highlighting the need for efficient 
management and sanitation practices within these regions. Thus, to 
effectively mitigate the transmission of the epidemic caused by these 
viruses, a range of measures—including minimizing human traffic in 
public spaces, intensifying disinfection protocols for vehicles and food 
packaging surfaces, and enforcing mandatory mask usage—must 
be implemented (Liu et al., 2020).

3 SARS-COV-2 and influenza virus 
stability on environmental surfaces

3.1 Stability of SARS-CoV-2 and influenza 
viruses in varied environmental conditions

SARS-CoV-2 and influenza viruses remain the two major 
pathogen types globally. SARS-CoV-2 has spread worldwide and 
influenza viruses impose substantial health and economic burdens 
annually (de Francisco Shapovalova et al., 2015; Simonsen, 1999). In 
this section, we explore research findings concerning the survival of 
SARS-CoV-2 and influenza viruses under varied environmental 
conditions, including temperature, pH, and titer, and assess the 
importance and relevance of these findings in addressing pandemic-
level challenges.

In their study on the thermal stability of SARS-CoV-2, Chin et al. 
investigated the virus’s stability at various temperatures using a 
concentration of 106.8 50% tissue culture infectious dose (TCID50)/
mL (Chin et al., 2020). Their findings reveal that within the culture 
supernatant, the virus remained stable for up to 14 days at 4°C but 
survived for only 7 days at 22°C. At 70°C, the virus’s survival time 
decreased to only 5 min. Thus, SARS-CoV-2 retains infectious 
potential at cooler temperatures, whereas it is considerably vulnerable 
to heat (Chin et al., 2020). Subsequently, the authors analyzed the 
stability of SARS-CoV-2 (106.8 TCID50/mL) further at room 
temperature across various pH levels. Exposure of virus-containing 
surfaces to the various conditions for 1 h led to the virus concentration 
decreasing to 105.51–105.75 TCID50/mL within a pH range of 3–10, 
demonstrating that SARS-CoV-2 is relatively stable under weakly 
acidic to alkaline environments (Chin et  al., 2020). The authors 
measured SARS-CoV-2 survival rate of 1.2 × 103 plaque-forming units 
(PFU) of the virus after a 30-s treatment in acidic saline (pH 2.2) at 
60 min, which did not significantly affect the survival rate. The authors 
also reported that 1.2 × 103 PFU of SARS-CoV-2 could survive for 

3–4 days in a liquid medium or on a dry filter paper (Mese et al., 2016; 
Sun et al., 2020). This result further emphasizes that SARS-CoV-2 is 
relatively stable in a moist or dry environment, highlighting the 
importance of using disinfectants for sterilization and maintaining 
hand hygiene.

Poulson et  al. (2016) investigated the stability of six human 
influenza A virus (IAV) strains, including pandemic (H1N1) and 
nonpandemic strains, under various environmental conditions, 
including various temperatures, pH, and salinity, with the virus 
concentrations ranging between 106.5 and 107.9 TCID50/mL. This 
research provided critical insights into IAV’s adaptability to different 
environments. The authors initially assessed the stability of all IAV 
strains in aqueous solutions at a neutral (7.2) pH across a range of 
temperatures and noted that all six strains demonstrated a time to 90% 
reduction in concentration (Rt) of 30–160 days at 4°C and that of only 
0.9–4 days at 37°C. Notably, all strains demonstrated similar levels of 
environmental resilience, suggesting that they exhibit similar stability 
under similar conditions. Further analysis indicated that all strains 
were the most stable at 17°C and a pH of 7.2, with an Rt of 45 days. In 
contrast, a decrease in pH to 5.8 significantly shortened the Rt to 
<5 days on average. Finally, the authors investigated the impact of 
salinity on all six IAV strains and noted that at 17°C and a pH of 7.2, 
salinity led to a detrimental effect on the strains. In particular, at 0-ppt 
salinity in freshwater, all strains exhibited the highest Rt. As the 
salinity increased from 0 to 5 ppt, IAV stability declined rapidly, with 
an Rt of approximately 15 days.

Taken together, these results not only provide a new perspective 
on the survival mechanisms of SARS-CoV-2 and influenza viruses but 
also provide scientific bases for formulating the corresponding 
prevention and control strategies. Nevertheless, future studies should 
explore virus–environment interactions further.

3.2 SARS-CoV-2 stability on material 
surfaces

A series of studies have focused on SARS-CoV-2 stability across a 
diverse array of materials, including stainless steel, plastic, glass, 
various paper types (e.g., toilet paper, paper towels, printing paper, 
and banknotes), fabric, and wood, along with numerous types of 
protective equipment (Table 1). Chin et al. (2020) conducted one of 
the first studies evaluating the survivability of SARS-CoV-2 under 
various environmental conditions on substrates such as paper, toilet 
paper, wood, fabric, glass, banknotes, stainless steel, plastic, and face 
masks (inner and outer layers). Their findings revealed that at 22°C 
and 65% relative humidity, SARS-CoV-2 demonstrated differing 
survival durations on various materials, including glass and banknotes 
(2–4 days) and stainless steel and plastic (4–7 days). In contrast, the 
virus persisted for only 0.5–3 h on paper and toilet paper and 1–2 days 
on wood and fabric. These results suggest that surfaces of some 
materials, such as stainless steel and plastic, are potential vectors for 
SARS-CoV-2 transmission. Chin et al. (2020) also assessed SARS-
CoV-2 survival on various material surfaces under different 
temperatures and reported that at 4°C, the infectious titer of the virus 
decreased by only approximately 0.7 log units after 14 days. However, 
when the incubation temperature was increased to 70°C, virus 
inactivation occurred within 5 min. Therefore, low-temperature 
conditions favor virus survival on various material surfaces, whereas 
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high-temperature conditions enable significant and rapid virus 
inactivation on these surfaces (Tables 1–3). In another study, Chin 
et al. (2022) analyzed the survival characteristics of SARS-CoV-2, both 
the ancestral and Omicron BA.1 variants, on the surfaces of tissues, 
printing paper, plastic, glass, and stainless steel at 21°C–
22°C. Compared with ancestral SARS-CoV-2, the Omicron BA.1 
variant was more stable on each of the tested materials. Infectious 
ancestral SARS-CoV-2 was not detected on tissue and printing paper 
within 30 min of inoculation. Moreover, no infectious ancestral SARS-
CoV-2 was recovered from the surfaces of plastic, glass, and stainless 
steel, even 7 days after inoculation. In contrast, the Omicron BA.1 
variant remained detectable on the surfaces of plastic, glass, and 
stainless steel on the 7th inoculation day. These results suggest that the 
Omicron BA.1 variant has longer survival on these durable materials 
than ancestral SARS-CoV-2, and this enhanced survivability may 
increase the risk of transmission of the Omicron BA.1 variant (Chin 
et al., 2022; Eggink et al., 2022).

Hirose et al. (2022a) investigated SARS-CoV-2 persistence on 
plain paper (PP), inkjet paper (IP), and inkjet photo paper (IPP) at 
25°C under a viral load of 2.0 × 105 TCID50/mL and 40–50% relative 
humidity. Their results indicated that the virus persisted for 59.78, 
6.48, and 9.78 h on PP, IP, and IPP, respectively, with SARS-CoV-2 
exhibiting notably longer survival on PP than on IP and IPP. Hirose 
et al. also explored the drying duration of 2 μL of the culture medium 
Dulbecco’s modified Eagle’s medium (DMEM) and SARS-CoV-2-
inactivation timeframe on these paper types. The findings revealed 
that DMEM dried considerably faster on IP and IPP than on PP; this 
difference is attributable to the surface treatments of IP and IPP, which 
enhance rapid drying by preventing ink seepage. Consequently, SARS-
CoV-2 inactivation was more rapid on IP and IPP than on PP, leading 
to reduced virus survivability. Thus, IP and IPP may be considered 
safer for use in future epidemic mitigation efforts. Studies have also 
indicated that the virus remains viable on banknotes for ≥8 h at an 
elevated (37°C) temperature and typically for 2–5 days at 22°C. This 
result demonstrates that SARS-CoV-2 tends to be more stable on 
cooler, moister surfaces, whereas viral inactivation occurs more 
rapidly under drier conditions (Chin et al., 2020; Harbourt et al., 2020; 
Paton et al., 2021; Smither et al., 2020).

Viruses can remain stable on protective gear, including both 
masks and disposable gowns. In controlled environments at 22°C and 
65% relative humidity, SARS-CoV-2 remains stable for 4 days on the 
inner layer of masks; this duration can extend up to 7 days on its outer 
layer (Chin et al., 2020; Paton et al., 2021). Similarly, at 22°C and only 
45% relative humidity, disposable gowns can harbor the virus for 
≥7 days (Paton et al., 2021).

These findings highlight the major influence of material 
composition and structure on viral stability. In the routine utilization 
of protective gear, the potential contamination hazards posed by 
masks and disposable gowns should be diligently addressed, with 
adherence to rigorous standards for their selection, use, and disposal. 
Moreover, SARS-CoV-2 survivability varies across different material 
surfaces (Table 1); this finding offers insights critical for deciphering 
the virus’s transmission dynamics and formulating relevant effective 
preventive measures. Notably, evidence from numerous studies has 
indicated the extended viability of SARS-CoV-2 on surfaces such as 
glass, plastic, paper, and stainless steel. It emphasizes the importance 
of intensifying disinfection protocols for these materials and 
considering material characteristics when selecting protective 

equipment so as to limit the spread of viruses in future pandemics 
(Gidari et al., 2021; Xu et al., 2023; Marquès and Domingo, 2021).

3.3 Influenza virus stability on material 
surfaces

In the investigation of transmission pathways of infectious disease, 
the comprehension of pathogen survivability and transmissibility on 
various material surfaces is essential. Influenza is a pervasive 
respiratory infection; understanding the related transmission 
dynamics and viral stability is critical to managing influenza 
outbreaks. In this section, we focus on the stability of influenza viruses 
across diverse material surfaces. Here, we summarize the results of 
studies methodically examining the effects of various material surfaces 
on influenza virus stability to bridge the existing knowledge gap and 
furnish a scientific foundation for influenza prevention and 
outbreak management.

Thompson and Bennett (2017) evaluated the survival of five IAV 
(H1N1) strains on different surfaces (cotton, microfiber, and stainless 
steel). At 19.5°C and 55.3% relative humidity, the time required to 
reduce the viral titers by 99% was 17.7, 34.3, and 174.9 h on cotton, 
microfiber, and stainless steel, respectively. Moreover, Hirose et  al. 
(2022b) assessed the stability of IAV (H1N1) mixed with DMEM or 
upper respiratory tract mucus (hereafter, mucus) on material surfaces 
such as stainless steel, borosilicate glass, and polystyrene, and compared 
these results with those for SARS-CoV-2 (Table  4). The survival 
durations of the virus on stainless steel, borosilicate glass, and 
polystyrene were, respectively, 11.56, 10.61, 6.07, and 1.82 h when mixed 
with DMEM and 1.73, 1.73,and 1.96 h when mixed with mucus. 
Notably, IAV inactivation occurred faster in mucus than in 
DMEM. Moreover, SARS-CoV-2 was noted to survive approximately 
eight times longer on various material surfaces than IAV; as such, SARS-
CoV-2 may be more stable in the environment than IAVs. McDevitt 
et  al. (2010) assessed the survival duration of H1N1 under high-
temperature, high-humidity conditions on stainless steel. At 65°C and 
50 and 70% relative humidity, the influenza virus became inactivated 
within only 15 min. High temperatures can effectively inactivate 
influenza viruses. However, in practical operations, the inactivation time 
should be extended; because of the long time required for heating, the 
temperatures should also be increased as much as possible. This finding 
may facilitate practical applications of influenza virus inactivation.

Hirose et  al. (2022a) discovered that under a specific set of 
conditions (viral load = 2.0 × 105 focus-forming units (FFU), 
temperature = 25°C, and relative humidity = 40–50%), influenza virus 
H3N2 survived for 10.29, 1.75, and 3.32 h on PP, IP, and IPP, 
respectively. Moreover, the survival duration was considerably shorter 
on both IP and IPP than on PP. The authors also compared the stability 
of SARS-CoV-2 and IAVs on these paper surfaces and reported that 
the survival duration of SARS-CoV-2 was approximately sixfold that 
of IAVs, indicating that SARS-CoV-2 has higher environmental 
stability and potentially greater transmission risk. Thomas et al. (2008) 
assessed the longevity of influenza viruses H1N1, H3N2, and Type B 
on banknotes. Influenza viruses H1N1 and Type B survived for 1–3 h, 
whereas influenza virus H3N2 persisted for 1–4 days.

Bandou et al. (2022) reported that Avian IAV (H5N1) demonstrated 
notably higher stability and contact transmission risk compared with 
other IAV strains. At 25°C and under 45–55% relative humidity, each 
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TABLE 1 SARS-CoV-2 stability on material surfaces.

Material Strain Temperature 
(°C)

Relative 
humidity (%)

Virus titer Survival 
time

Half-life (95% CI) Reference

Paper \ 22 65 3.16 × 105 TCID50 0.5-3 h \ Chin et al. (2020)

Tissue paper \ 22 65 3.16 × 105 TCID50 0.5-3 h \ Chin et al. (2020)

Tissue paper Ancestral (A) 22 \ \ 15-30 min \ Chin et al. (2022)

Tissue paper Omicron (BA.1) 22 \ \ 30-60 min \ Chin et al. (2022)

Printer paper Ancestral (A) 22 \ \ 5-10 min \ Chin et al. (2022)

Printer paper Omicron (BA.1) 22 \ \ 30-60 min \ Chin et al. (2022)

Plain paper Ancestral (A) 25 40–50 2.00 × 105 TCID50 59.78 h 2.03 h* (1.82–2.27) Hirose et al. (2022a)

Inkjet paper Ancestral (A) 25 40–50 2.00 × 105 TCID50 6.48 h 0.22 h* (0.15–0.33) Hirose et al. (2022b)

Inkjet photo paper Ancestral (A) 25 40–50 2.00 × 105 TCID50 9.78 h 0.34 h* (0.24–0.51) Hirose et al. (2022a)

US$20 bills Ancestral (A) 37 50 3.20 × 104TCID50 8-24 h 0.2–0.6 h Baker and Gibson (2022)

Banknotes Ancestral (A) 21.5 45 4.00 × 105 TCID50 5d \ Paton et al. (2021)

Banknotes \ 22 65 3.16 × 105 TCID50 2-4d 0.9 h Chin et al. (2020)

Plastic \ 22 65 3.16 × 105 TCID50 4-7d 1.6 h Chin et al. (2020)

Plastic Ancestral (A) 22 \ \ 2-4d \ Chin et al. (2022)

Plastic Omicron (BA.1) 22 \ \ >7d \ Chin et al. (2022)

Glass \ 22 65 3.16 × 105 TCID50 2-4d 1.2 h Chin et al. (2020)

Glass Ancestral (A) 22 \ \ 4-7d \ Chin et al. (2022)

Glass Omicron (BA.1) 22 \ \ >7d \ Chin et al. (2022)

Stainless steel \ 22 65 3.16 × 105 TCID50 4-7d 0.3 h Chin et al. (2020)

Stainless steel Ancestral (A) 22 \ \ 2-4d \ Chin et al. (2022)

Stainless steel Omicron (BA.1) 22 \ \ >7d \ Chin et al. (2022)

Stainless steel Ancestral (A) 21.5 45 4.00 × 105 TCID50 7d \ Paton et al. (2021)

Stainless steel (DMEM) Ancestral (A) 25 45–55 1.00 × 105 TCID50 84.29 h 32.62 h (16.80–56.68) Hirose et al. (2020)

Glass and stainless steel Ancestral (A) 22 60–70 3.00× 105 TCID50 >1d \ Behzadinasab et al. (2020)

Stainless steel, polymer notes, paper notes, glass, and vinyl Ancestral (A) 20 50 3.38× 107 TCID50 >28d 1.8d, 2.06d, 2.74d, 1.90d, 1.91d Riddell et al. (2020)

Stainless steel, polymer notes, and glass Ancestral (A) 30 50 3.38× 107 TCID50 >7d 12.6 h, 14,7 h, 10.5 h, Riddell et al. (2020)

Stainless steel, polymer notes, paper notes, glass, cotton, and 

vinyl

Ancestral (A) 40 50 3.38× 107 TCID50 1\2d 1.5 h, 1.4 h, 1.6 h, 2.0 h, \, 3.0 h Riddell et al. (2020)

Cotton Ancestral (A) 20 50 3.38× 107 TCID50 7\14d 1.68d Riddell et al. (2020)

Cotton Ancestral (A) 30 50 3.38× 107 TCID50 2\3d 11.0 h Riddell et al. (2020)

(Continued)
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TABLE 1 (Continued)

Material Strain Temperature 
(°C)

Relative 
humidity (%)

Virus titer Survival 
time

Half-life (95% CI) Reference

Mask, outer layer \ 22 65 \ >7d 1.4 h Chin et al. (2020)

Mask, inner layer \ 22 65 \ 4-7d 1.0 h Chin et al. (2020)

Surgical mask Ancestral (A) 21.5 45 \ >7d \ Paton et al. (2021)

Wood \ 22 65 \ 1-2d \ Chin et al. (2020)

Cloth Ancestral (A) 22 65 \ 1-2d \ Chin et al. (2020)

Disposable gown Ancestral (A) 21.5 45 4.00 × 105 TCID50 7d \ Paton et al. (2021)

Polyester sports shirt Ancestral (A) 21.5 45 4.00 × 105 TCID50 1d \ Paton et al. (2021)

Cotton t-shirt Ancestral (A) 21.5 45 4.00 × 105 TCID50 5d \ Paton et al. (2021)

Borosilicate glass (DMEM) Ancestral (A) 25°C 45–55 1.00 × 105TCID50 85.74 h 33.24 h (17.59–56.49) Hirose et al. (2020)

*The concentration titer during half-life detection is 1.00 × 104 TCID50.

TABLE 2 Survival of SARS-CoV-2 and influenza viruses on the skin surface.

Material Strain name Temperature (°C) Relative humidity (%) Virus titer Survival time Reference

Skin (Swine) SARS-CoV-2 4 50 1.00 × 104.5TCID50 >336 h Baker and Gibson (2022) and Harbourt et al. (2020)

Skin (Swine) SARS-CoV-2 22 50 1.00 × 104.5TCID50 96-168 h Baker and Gibson (2022) and Harbourt et al. (2020)

Skin (Swine) SARS-CoV-2 37 50 1.00 × 104.5TCID50 8-24 h Baker and Gibson (2022) and Harbourt et al. (2020)

Skin (Human, DMEM) SARS-CoV-2 25 45–55 1.00 × 104.5TCID50 9.04 h Hirose et al. (2020)

Skin (Human, Mucus) SARS-CoV-2 25 45–55 1.00 × 104.5TCID50 11.09 h Hirose et al. (2020)

Skin (Human, DMEM) H1N1 25 45–55 1.00 × 104.5TCID50 1.82 h Hirose et al. (2020)

Skin (Human, Mucus) H1N1 25 45–55 1.00 × 104.5TCID50 1.69 h Hirose et al. (2020)

Skin (Human) H5N1 25 45–55 4.00 × 105TCID50 4.5 h

Skin (Human) H7N9, H5N3, H5N9, H3N2, 

H1N1

25 45–55 4.00 × 105TCID50 2 h Bandou et al. (2022)
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TABLE 3 Differences in environmental stability among different SARS-CoV-2 variants.

Material Strain Temperature (°C) Relative humidity (%) Virus titer Survival time Half-life (95% CI) Reference

Plastic Wuhan strain (A) 25 45–55 5.01 × 104TCID50 56 h 3.5 h* (2.0–5.7) Hirose et al. (2022a)

Plastic Alpha variant (B.1.1.7) 25 45–55 5.01 × 104TCID50 191.3 h 9.9 h* (7.9–12.7) Hirose et al. (2022b)

Plastic Beta variant (B.1.351) 25 45–55 5.01 × 104TCID50 156.6 h 8.3 h*(6.4–10.9) Hirose et al. (2022a)

Plastic Gamma variant (P.1) 25 45–55 5.01 × 104TCID50 59.3 h 3.9 h* (2.5–5.8) Hirose et al. (2022b)

Plastic Delta variant (B.1.617.2) 25 45–55 5.01 × 104TCID50 114 h 6.7 h *(5.1–8.7) Hirose et al. (2022a)

Plastic Omicron (BA.1) 25 45–55 5.01 × 104TCID50 193.5 h 10.0 h* (8.0–12.9) Hirose et al. (2022a)

Plastic Omicron (BA.2) 25 45–55 5.01 × 104TCID50 199.7 h 10.3 h* (8.4–12.7) Hirose et al. (2022b)

Skin Wuhan strain (A) 25 45–55 5.01 × 104TCID50 8.6 h 0.5 h* (0.3–0.7) Hirose et al. (2022a)

Skin Alpha variant (B.1.1.7) 25 45–55 5.01 × 104TCID50 19.6 h 1.1 h* (0.8–1.6) Hirose et al. (2022b)

Skin Beta variant (B.1.351) 25 45–55 5.01 × 104TCID50 19.1 h 1.2 h*(0.8–1.8) Hirose et al. (2022a)

Skin Gamma variant (P.1) 25 45–55 5.01 × 104TCID50 11 h 0.7 h* (0.5–1.1) Hirose et al. (2022b)

Skin Delta variant (B.1.617.2) 25 45–55 5.01 × 104TCID50 16.8 h 1.0 h* (0.8–1.4) Hirose et al. (2022a)

Skin Omicron (BA.1) 25 45–55 5.01 × 104TCID50 21.1 h 1.4 h* (1.0–2.0) Hirose et al. (2022a)

Skin Omicron (BA.2) 25 45–55 5.01 × 104TCID50 22.5 h 1.3 h* (0.9–2.0) Hirose et al. (2022b)

Paper carton Omicron (BA.1) 4 40 1.00 × 103TCID50 1-3d \ Wang et al. (2023)

Paper carton Omicron (BA.1) 25 40 1.00 × 103TCID50 <6 h \ Wang et al. (2023)

Paper carton Omicron (BA.1) 37 40 1.00 × 103TCID50 <6 h \ Wang et al. (2023)

Paper carton Omicron (BA.5) 4 40 1.00 × 103TCID50 1-3d \ Wang et al. (2023)

Paper carton Omicron (BA.5) 25 40 1.00 × 103TCID50 6-24 h \ Wang et al. (2023)

Paper carton Omicron (BA.5) 37 40 1.00 × 103TCID50 <6 h \ Wang et al. (2023)

PE packaging film Omicron (BA.1) 4 40 1.00 × 103TCID50 5-7d \ Wang et al. (2023)

PE packaging film Omicron (BA.1) 25 40 1.00 × 103TCID50 1-3d \ Wang et al. (2023)

PE packaging film Omicron (BA.1) 37 40 1.00 × 103TCID50 <6 h \ Wang et al. (2023)

PE packaging film Omicron (BA.5) 4 40 1.00 × 103TCID50 >7d \ Wang et al. (2023)

PE packaging film Omicron (BA.5) 25 40 1.00 × 103TCID50 1-3d \ Wang et al. (2023)

PE packaging film Omicron (BA.5) 37 40 1.00 × 103TCID50 <6 h \ Wang et al. (2023)

*The concentration titer during half-life detection is 1.00 × 103 TCID50.
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TABLE 4 Influenza virus stability on material surfaces.

Material Strain Temperature 
(°C)

Relative 
humidity 

(%)

Virus titer Survival 
time

Half-life (95% CI) Reference

Plain paper H3N2 25 40–50 2.00 × 105 TCID50 10.29 h 0.62 h***(0.51–0.77) Hirose et al. (2022a)

Inkjet paper H3N2 25 40–50 2.00 × 105 TCID50 1.75 h 0.11 h***(0.07–0.19) Hirose et al. (2022b)

Inkjet photo paper H3N2 25 40–50 2.00 × 105 TCID50 3.32 h 0.20 h***(0.14–0.28) Hirose et al. (2022a)

Cotton H1N1 19.5 55.3 1.30 × 108 TCID50 17.7 h \ Thompson and Bennett (2017)

Cloth H1N1 * ** \ 8 h \ Oxford et al. (2014)

Plastic H5N1 25 45-55 2.00 × 105 TCID50 26 h 0.20 h*** (0.18–0.23) Bandou et al. (2022)

Plastic H7N9, H5N3, H5N9, H3N2, 

H1N1

25 45–55 2.00 × 105 TCID50 <10 h 0.08 h***, 0.09 h***, 

0.09 h***, 0.09 h***, 

0.08 h***(0.08–0.10)

Bandou et al. (2022)

Formica (Plastic) H1N1 \ \ 2.94× 105TCID50 60 min \ Mukherjee et al. (2012)

Plastic H1N1 * ** \ 24 h \ Oxford et al. (2014)

Stainless steel H1N1 19.5 55.3 1.30 × 108 TCID50 174.9 h \ Thompson and Bennett (2017)

Stainless steel H1N1 \ \ 2.94× 105TCID50 15 min \ Mukherjee et al. (2012)

Stainless steel H1N1 25.2 55 1.00 × 103.8TCID50 1d \ Sakaguchi et al. (2010)

Stainless steel (DMEM) H1N1 25 45–55 1.00 × 103.8TCID50 11.56 h 6.78 h (5.84–7.97) Hirose et al. (2020)

Stainless steel (Mucus) H1N1 25 45–55 1.00 × 103.8TCID50 1.73 h \ Hirose et al. (2020)

Stainless steel H1N1 55 75 1.60 × 105TCID50 15 min \

Stainless steel H1N1 60 50 1.60 × 105TCID50 30 min \ McDevitt et al. (2010)

Stainless steel H1N1 65 50, 75 1.60 × 105TCID50 15 min \

Stainless steel H1N1 * ** \ 24 h \ Oxford et al. (2014)

Stainless steel and plastic H1N1 17–21 23–24 1.00 × 10 6TCID50 <9 h \ Greatorex et al. (2011)

Galvanized metal and plastic H5N1 21.9–23.4 32–38 5.01 x 107TCID50 1d \ Wood et al. (2010)

Galvanized metal and plastic H5N1 2.6–7.5 2.2–51.4 5.01 x 107TCID50 >13d \ Wood et al. (2010)

Surgical mask (nonwoven fabric) H1N1 25.2 55 6.30 x 103TCID50 1d \ Sakaguchi et al. (2010)

Banknotes H3N2 21–28 30–50 8.90 × 106TCID50 3-4d \ Thomas et al. (2008)

Banknotes H3N2 21–28 30–50 5.00 × 104TCID50 1-2d \ Thomas et al. (2008)

Banknotes H1N1 21–28 30–50 2.80 × 105TCID50 1-2 h \ Thomas et al. (2008)

Banknotes Yamagata 21–28 30–50 1.60 × 104TCID50 2-3 h \ Thomas et al. (2008)

Banknotes and respiratory secretions H3N2 21–28 30–50 8.90 × 106TCID50 17-20d \ Thomas et al. (2008)

Banknotes and respiratory secretions Yamagata 21–28 30–50 3.20 × 103TCID50 1-2d \ Thomas et al. (2008)

(Continued)
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TABLE 4 (Continued)

Material Strain Temperature 
(°C)

Relative 
humidity 

(%)

Virus titer Survival 
time

Half-life (95% CI) Reference

Coated wooden desk H1N1 25.2 55% 6.30 x 103TCID50 1d \ Sakaguchi et al. (2010)

Wood H1N1 * ** \ 48 h \ Oxford et al. (2014)

Topsoil H5N1 22.0–23.9 30–42 5.01 × 106–5.01 × 107 TCID50 2d \ Wood et al. (2010)

Facial tissue H1N1 \ \ 2.94 × 105TCID50 15 min \ Mukherjee et al. (2012)

Borosilicate glass (DMEM) H1N1 25 45–55 1.00 × 105TCID50 10.61 h 6.13 h (5.22–7.29) Hirose et al. (2020)

Borosilicate glass (Mucus) H1N1 25 45–55 1.00 × 105TCID50 1.73 h 0.85 h (0.76–0.96) Hirose et al. (2020)

Polystyrene (DMEM) H1N1 25 45–55 1.00 × 105TCID50 6.07 h 3.04 h (2.40–3.87) Hirose et al. (2020)

Polystyrene (Mucus) H1N1 25 45–55 1.00 × 105TCID50 1.96 h 0.91 h (0.80–1.04) Hirose et al. (2020)

Human skin (DMEM) H1N1 25 45–55 1.00 × 105TCID50 1.82 h 0.80 h (0.72–0.90) Hirose et al. (2020)

Human skin (Mucus) H1N1 25 45–55 1.00 × 105TCID50 1.69 h 0.77 h (0.71–0.84) Hirose et al. (2020)

Microfiber H1N1 19.5 55.3 1.30 × 108TCID50 34.3 h \ Thompson and Bennett (2017)

Telephone handsets (plastic) and 

computer keyboards

H1N1 17–21 23–24 1.00 × 106TCID50 <4 h \ Greatorex et al. (2011)

Window glass, aluminum, pine 

(unsealed), and varnished and 

unvarnished oak

H1N1 17–21 23–24 1.00 × 106TCID50 <4 h \ Greatorex et al. (2011)

Silver-containing fabrics and soft 

toys

H1N1 17–21 23–24 1.00 × 106TCID50 4-9 h \ Greatorex et al. (2011)

*Home temperature; **household humidity; ***the concentration titer during half-life detection is 1.00 × 104 TCID50.
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strain demonstrated a viral titer of 2.0 × 105 FFU. On plastic surfaces, 
the survival durations of H7N9, H5N3, H5N9, H3N2, and H1N1 did 
not exceed 10 h; in contrast, H5N1 survived for a maximum of 26 h 
(Bandou et al., 2022). These findings highlight the superior stability of 
H5N1 on plastic surfaces and its high potential for contact transmission, 
indicating that this strain is a major public health concern.

In summary, influenza virus survival varies depending on material 
surface type, temperature and virus strain. This insight may aid in 
developing public health guidelines and strategies for influenza 
mitigation and control.

3.4 SARS-CoV-2 and influenza virus survival 
on skin surface

Contact transmission, particularly through direct human skin 
contact, is a major pathway for SARS-CoV-2 and influenza virus 
dissemination (Brankston et al., 2007). However, virus-infected skin is 
one of the typical sites for contact transmission (La Rosa et al., 2013; 
Louten, 2016). Therefore, evaluating the stability and survival of SARS-
CoV-2 and influenza viruses on human skin is pivotal. This evaluation 
can not only increase the current understanding of potential risks 
associated with contact transmission but also provide crucial insights for 
development of additional efficacious infection control strategies (Hirose 
et al., 2020, 2021a). In addition to that on material surfaces, researchers 
have explored the survival duration of SARS-CoV-2 and influenza on 
skin surfaces (Table 2). Harbourt et al. (2020) revealed that at a viral titer 
of 4.5 log10PFU/mL, SARS-CoV-2 remained stable on porcine skin for 
≥336, ≥96, and ≥ 8 h at 4°C, 22°C, and 37°C, respectively.

Bandou et al. (2022) investigated the stability of various influenza 
virus strains (4.0 × 105 FFU) on human skin at 25°C with 45–55% 
relative humidity. The authors reported that all strains, except H5N1, 
survived for approximately 2 h (the time until virus on the surface is 
no longer detected). In contrast, H5N1 survived for approximately 
4.5 h, which is 2.5 times longer than that of other strains. Moreover, 
H5N1 demonstrated a longer survival duration and stronger resistance 
to environmental conditions than other strains. As such, influenza 
virus H5N1 may be associated with a higher contact transmission risk 
than other influenza virus strains.

In summary, the survival duration of IAVs on the skin is shorter 
than that of SARS-CoV-2. Although the infectivity of IAVs decreases 
gradually over time, the viruses may pose a contact transmission risk 
for ≥2 h. Notably, in cold winter or similar low-temperature 
environments, SARS-CoV-2 demonstrates higher stability, extending 
its period of infectivity. Therefore, strict adherence to appropriate 
hand hygiene measures and social distancing guidelines is crucial 
during outbreaks of SARS-CoV-2 and influenza.

3.5 Differences in environmental stability 
among different SARS-CoV-2 variants

During the COVID-19 pandemic, several variants of concern of 
SARS-CoV-2 spread globally (Thye et al., 2021). The environmental 
stability of the Wuhan (ancestral) strain is higher compared to 
influenza viruses (Hirose et al., 2021b; Hirose et al., 2020). Considering 
its infectiousness, SARS-CoV-2 can not only be a major global public 
health concern but also inflict severe economic damage. For instance, 

previously emerged variants, such as B.1.1.7 and the subsequent 
Omicron variant, have presented significant public health challenges 
because of their high transmissibility (Bálint et  al., 2022; Lyngse 
et al., 2021).

Hirose et al. (2022b) conducted compared the survival of SARS-
CoV-2 variants, including the Wuhan strain (A), Alpha, Beta, 
Gamma, Delta, Omicron BA.1, and Omicron BA.2, on plastic and 
human skin surfaces under the following conditions: viral titer = 104.7 
TCID50, temperature = 25°C, and relative humidity = 45–55% 
(Table 3). Notably, the results demonstrated that the Alpha, Beta, 
Delta, and Omicron variants exhibited longer survival on both plastic 
and human skin surfaces—more than twice as long as the Wuhan 
strain (A). Notably, the survival durations of the Omicron BA.1 and 
BA.2 variants on plastic surfaces were 193.5 and 199.7 h, respectively, 
confirming that they had environmental stability similar to, or even 
higher than, that reported previously. Similarly, Wang et al. (2023) 
compared the environmental stability of Omicron BA.1 and BA.5 on 
different packaging materials under the following conditions: viral 
titer = 103 TCID50, relative humidity = 40%, and 
temperature = 25°C. The results demonstrated that the Omicron BA.1 
variant exhibited shorter survival than the Omicron BA.5 variant (≤6 
vs. 6–24 h; Table 3). However, on box surfaces at 4°C and under 40% 
relative humidity and protectively equipment packaging material use, 
the Omicron BA.1 variant survived for 5–7 days, whereas the 
Omicron BA.5 variant survived for ≥7 days. As such, the Omicron 
BA.5 variant has slightly higher environmental stability than the 
Omicron BA.1 variant; however, variations in initial viral titers may 
have influenced these results. Therefore, Omicron strains of SARS-
CoV-2 may be  associated with an increase in transmission risks 
(Bálint et al., 2022; Ji et al., 2022).

4 Decontamination and disinfection of 
SARS-CoV-2 and influenza viruses in 
the environment

4.1 In vitro surface inactivation of 
SARS-CoV-2 and influenza viruses

Before the reports concerning SARS-CoV-2 inactivation 
emerged, Kampf et  al. (2020) conducted the first in-depth 
examination of the effects of disinfectants on SARScoronavirus 1, 
SARS-CoV-2, and endemic human coronavirus. Their research 
revealed that, within 1 min, 62–71% ethanol, 0.5% hydrogen 
peroxide, or 0.1% sodium hypochlorite effectively inactived these 
viruses. However, other biocides, 0.05–0.2% benzalkonium chloride 
(BAC) or 0.02% chlorhexidine gluconate (CHG), demonstrated 
relatively inadequate efficacy (Kampf et al., 2020). As such, various 
disinfectants demonstrate varying coronavirus inactivation effects; 
this inference may aid in selecting appropriate prevention and 
control strategies.

With the emergence of the COVID-19 pandemic, research focus 
progressively shifted toward assessing the efficacy of disinfectants 
against various viruses, particularly SARS-CoV-2 and influenza viruses. 
Most studies were aimed at both addressing the pandemic and assessing 
the potential applicability of the disinfectants to a wide variety of 
respiratory viruses, including influenza viruses, so as to formulate 
comprehensive epidemic prevention strategies with broad applicability. 
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In this section, we review the efficacy of common disinfectants for 
inactivating SARS-CoV-2 and influenza viruses (Table 5).

The findings of Hirose et al. (2021a) and Bandou et al. (2022) 
concerning SARS-CoV-2 and various strains of influenza viruses 
merit attention. Hirose et al. (2021a) indicated that in vitro exposure 
to ethanol (40, 60%, or 80%) and isopropanol (70%) for >5 s can 
effectively inactive SARS-CoV-2 and influenza viruses (>4.1 
log10TCID50). However, at a concentration of <40%, the SARS-
CoV-2- and influenza virus-inactivating efficacy of ethanol 
diminishes significantly. For instance, 1-min exposure to 20% ethanol 
reduced SARS-CoV-2 and influenza virus titers by 0.33 ± 0.14 and 
0.06 ± 0.07 log10TCID50, respectively; moreover, 15-s exposure to 
34% ethanol reduced influenza virus titers by 1.46–1.60 log10TCID50. 
Bandou et al. (2022) reported that all influenza virus strains, except 
H5N1, were swiftly neutralized by 36% ethanol within 15 s, resulting 
in titer reductions of >4 log10TCID50. However, 36% ethanol 
demonstrated low inactivity efficacy against H5N1-Ky and H5N1-Eg, 
with titer reductions ranging from 1.77 to 2.57 log10TCID50. 
Therefore, compared with other strains, H5N1 may be more resistant 
to ethanol activity. This increases the risk of H5N1 transmission via 
contact relative to other influenza virus strains.

Hirose et al. (2021a) also focused on object surface disinfection 
and reported that >15-s exposure to 0.2% BAC demonstrated high 
SARS-CoV-2 disinfection efficacy (reduction by >2.96 log10TCID50). 
However, the effectiveness of 1% CHG remained suboptimal. In a 
study on reducing virus transmission during surgery, preoperative 
oral rinsing with 1% povidone-iodine (PVP-I) resulted in complete 
SARS-CoV-2 inactivation within only 15 s. Furthermore, in studies 
targeting oral hygiene, notable effectiveness was observed with 
disinfectants like PVP-I (1 mg/mL for 1 min) or cetylpyridinium 
chloride (0.1 mg/mL for 2 min). In a clinical trial, compared with 
CHG, PVP-I led to significant staining reduction and thus was 
preferred by patients (Fine, 1985). Moreover, at low concentrations, 
PVP-I demonstrates effective virucidal activity against SARS-CoV-2 
and thus may aid in preventing future novel viral respiratory infections 
and offering new prospects for enhancing dental care (Eggers et al., 
2018). In general, the aforementioned disinfectants can effectively 
inactivate SARS-CoV-2 and influenza viruses on the surfaces of 
various materials and could be part of future endeavors for combating 
transmission of emerging viruses.

4.2 Inactivation of SARS-CoV-2 and 
influenza virus (H3N2) on skin surface

SARS-CoV-2 and influenza virus H3N2 can be  inactivated by 
disinfectants on human skin (Table  6). In particular, exposure to 
ethanol (35, 40, 60, 70%, or 80%) or isopropanol (70%) for >5 s 
considerably reduces the viral titers by >4.0 log10TCID50. However, 
20% ethanol demonstrates considerably lower virus inactivation 
efficacy. At prescribed concentrations, ethanol can significantly 
mitigate activity of both SARS-CoV-2 and H3N2 (Zhu et al., 2020). 
Moreover, 1-min exposure to CHG (1%) or BAC (0.2%) can effectively 
neutralize these viruses (Chin et al., 2020). Exposure to substances 
such as PVP-I and hand sanitizers for >5 min also demonstrates 
effective SARS-CoV-2 and H3N2 inactivation. Thus, when used for 
disinfection of the skin, selecting appropriate concentrations of 
disinfectants and extending contact time accordingly is crucial.

4.3 Inactivation of SARS-CoV-2 and 
influenza viruses with ultraviolet radiation 
and ozone

Transmission of SARS-CoV-2 and influenza viruses is a major 
factor affecting global security and socioeconomic stability. Despite 
the advent of various preventive vaccines, environmental disinfection, 
along with personal protective measures, remains crucial during 
epidemic outbreaks. At present, numerous broad-spectrum 
disinfection strategies, including methods based on ultraviolet 
radiation and ozone, have emerged (She et al., 2020).

Ultraviolet radiation can be  divided into short-wave (UVC; 
200–280 nm), medium-wave (UVB; 280–320 nm), long-wave (UVA; 
320–400 nm), and vacuum (UVD) types based on wavelength 
(Ploydaeng et al., 2021; Wang et al., 2013; Yin et al., 2013). Prolonged 
exposure to 254- and 275-nm ultraviolet radiation can cause harm to 
organic matter, as well as injure human and animal skin or eyes. Single 
irradiation with high doses of 222-nm UVC does not induce 
mutagenesis or cytotoxic DNA damage in mammalian cells (Narita 
et al., 2018). Consequently, 222-nm UVC is considered safer than 254- 
and 275-nm UVC.

Numerous studies have explored the impact of ultraviolet 
radiation on SARS-CoV-2 and influenza viruses (Table 7). Song et al. 
(2023) reported that ultraviolet radiation can effectively inactivate 
SARS-CoV-2 under 222-nm UVC (d = 50 mm, 2.5 mJ/cm2) or 275-nm 
UVC (d = 50 mm, 275 mJ/cm2) for 30 s, with a decrease in viral titer of 
>4.4 log10TCID50. Criscuolo et al. (2021) inactivated >94.4% of SARS-
CoV-2 by irradiating surfaces of various materials, including glass, 
plastic, gauze, and wool, with 254-nm ultraviolet radiation 
(d = 200 mm, 1.8 mW/cm) for 15 min. Moreover, exposure to either 
222-nm UVC (d = 300 mm, 48 mJ/cm2) for >10 min or UVB for 14 h 
(90 μW/cm) has been noted to effectively inactivate influenza viruses 
(Sutton et al., 2013; Welch et al., 2018; Xie et al., 2022).

Ozone is recognized by the WHO as a potent oxidant and one of 
the most effective disinfectants against microorganisms. It is 
extensively utilized for viral deactivation in aerosols (Clavo et al., 
2020). Ozone can efficaciously inactive several pathogens including 
enteroviruses and mouse coronaviruses (Dubuis et al., 2020; Lin et al., 
2007). Next, we will discuss the inactivation effect of ozone on SARS-
CoV-2 and influenza virus in the air. Exposure to ozone at a lower 
concentration (0.2 ppm) for 30 min inactives 82.2–99.9% of SARS-
CoV-2, whereas that at a higher concentration (4 ppm) for 120 min 
inactives 90–99.8% of the virus (Sutton et al., 2013). Variations in 
surface characteristics may, influence efficacy. Dubuis et al. (2021) 
demonstrated that subjecting influenza virus H1N1 to 1.70 ± 0.19 ppm 
ozone at 76% relative humidity for 80 min reduced the virus’s 
infectivity by four orders of magnitude. Moreover, exposure to 20 ppm 
ozone at 65% relative humidity for 150 min led to complete H1N1 
deactivation, with a viral titer decrease of 4–5 log10TCID50. Similarly, 
Tanaka et al. (2009) reported that exposure to 20 ppm ozone at 65% 
relative humidity for 150 min completely inactivated H1N1, again 
resulting in a viral titer decrease of 4–5 log10TCID50 in viral titer. 
Notably, conventional gas-based chemical disinfectants such as 
chlorine dioxide and chlorine gas are effective against influenza 
viruses (Ibáñez-Cervantes et al., 2020; Lénès et al., 2010).

In summary, ultraviolet radiation (222, 254, or 275 nm), ozone, 
and chlorine dioxide can be effectively used for air disinfection against 
SARS-CoV-2 and influenza viruses.
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TABLE 5 Inactivation of SARS-CoV-2 and influenza viruses using different disinfectants on material surfaces.

Environment Virus Disinfectant Concentration 
(%)

Action time Supplier Country or 
region

Virus titer decrease 
(log10TCID50) or 
percentage (%)

References

\ SARS-CoV-2 EA 75 1 min VWR Chemicals BDH USA ≥1.83 ± 0.29 Chan et al. (2020)

\ SARS-CoV-2 EA 75 5 min VWR Chemicals BDH USA ≥2.00 ± 0.29 Chan et al. (2020)

\ SARS-CoV-2 H2O2 3.0% 1.5 15 s United States Pharmacopeia USA 1.33 Bidra et al. (2020)

\ SARS-CoV-2 H2O2 6.0% 3 15 s United States Pharmacopeia USA 1.00 Bidra et al. (2020)

\ SARS-CoV-2 Bleach 10 1 min Kao Japan ≥3.25 ± 0.00 Chan et al. (2020)

\ SARS-CoV-2 Hand wash - 1 min Walch Germany ≥0.83 ± 0.29 Chan et al. (2020)

\ SARS-CoV-2 Hand wash - 5 min Walch Germany ≥0.92 ± 0.14 Chan et al. (2020)

\ SARS-CoV-2 Advanced hand 

sanitizer

- 1 min Purell USA ≥2.50 ± 0.0 Chan et al. (2020)

\ SARS-CoV-2 Liquid hand soap 

(Funchem)

- 5 min Funchem HKSAR ≥2.50 ± 0.0 Chan et al. (2020)

\ SARS-CoV-2 Liquid hand soap 

(Funchem)

- 1 min Funchem HKSAR ≥2.00 ± 1.56 Chan et al. (2020)

\ SARS-CoV-2 Formalin 10 1 min Thermo fisher USA ≥1.25 ± 0.00 Chan et al. (2020)

In Vitro SARS-CoV-2 EA 40, 60, 80 5 s Nacalai Tesque Kyoto >4.50 Hirose et al. (2021a)

In Vitro SARS-CoV-2 EA 20 60s Nacalai Tesque Kyoto 0.33 ± 0.14 Hirose et al. (2021a)

In Vitro SARS-CoV-2 IPA 70 5 s Nacalai Tesque Kyoto >4.50 Hirose et al. (2021a)

In Vitro SARS-CoV-2 CHG 0.2; 1 60s Saraya Kyoto 0.58 ± 0.14; 1.83 ± 0.29 Hirose et al. (2021a)

In Vitro SARS-CoV-2 BAC 0.05; 0.2 60s Yakuhan Pharmaceutical Japan 2.17 ± 0.29; 3.00 ± 0.43 Hirose et al. (2021a)

\ SARS-CoV-2 PVP-I 1.0% Oral Rinse 1 15 s Veloce BioPharma Fort Lauderdale >4.33 Bidra et al. (2020)

\ SARS-CoV-2 PVP-I 2.5% Oral Rinse 1.25 15 s Veloce BioPharma Fort Lauderdale >4.33 Bidra et al. (2020)

\ SARS-CoV-2 PVP-I 3.0% Oral Rinse 1.5 15 s Veloce BioPharma Fort Lauderdale >4.33 Bidra et al. (2020)

\ SARS-CoV-2 oral disinfectant PVP-I 1 1 min \ \ >4.00 Wang et al. (2021)

\ SARS-CoV-2 oral disinfectant PVP-I 1 1 min Veloce BioPharma Fort Lauderdale >4.00 Wang et al. (2021)

\ SARS-CoV-2 Hexadecyl Pyridine 

Chloride

0.1 2 min \ \ >5.00

In Vitro H3N2 EA 40, 60, 80 5 s Nacalai Tesque Kyoto >4.10 Hirose et al. (2021a)

In Vitro H3N2 EA 20 60s Nacalai Tesque Kyoto 0.06 ± 0.07 Hirose et al. (2021a)

In Vitro H5N1, H7N9, H5N3, 

H5N9, H3N2, H1N1

EA 40, 60, 80 15 s Nacalai Tesque Kyoto >4.00 Bandou et al. (2022)

(Continued)
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5 Conclusion

Comprehensive research thus far has indicated that SARS-CoV-2 
is more resilient and stable in the environment than influenza viruses. 
Under standard room temperature (20–25°C) and relative humidity 
(40–80%), the survival duration of both virus types on various 
surfaces is correlated with their titers: the higher the titer, the longer 
the survival. In particular, SARS-CoV-2 persists on the surface of 
materials such as stainless steel, plastic, and glass for 2–7 days; in 
contrast, under similar conditions, influenza viruses survive on 
stainless steel, plastic, and glass for 1–7 days, 1 day, and 1 day, 
respectively. On paper-based materials such as tissue paper, paper 
towels, and printing paper, SARS-CoV-2 persists for 1–3 h; in 
contrast, it persists for 2–3 days, 6 h, and 9 h on PP, IP, and IPP, 
respectively. Influenza viruses persist for 10, 1.75, and 3.32 h on PP, 
IP, and IPP, respectively. SARS-CoV-2 also survives on the outer layer 
of surgical masks for 7 days. Notably, SARS-CoV-2 and influenza 
viruses remain stable at lower temperatures (4°C), whereas they 
become inactive under acidic (pH < 2.2 for SARS-CoV-2; pH < 5.8 for 
influenza viruses) and high-temperature environments. Salinity also 
affects influenza viruses adversely. Both SARS-CoV-2 and influenza 
viruses exhibit relatively poor stability on human skin surfaces; 
nevertheless, they can survive for ≥2 h. Recent studies have suggested 
that the Omicron variant may demonstrate increased stability on 
material and skin surfaces, providing valuable insights for future 
epidemic control. As such, understanding the environmental stability 
and survival duration of both SARS-CoV-2 and influenza viruses, 
along with assessing the efficacy of disinfectants against these viruses 
on surfaces, is pivotal for formulating more effective infection 
control strategies.

In this review, we  identified four primary limitations. First, 
influenza viruses remain prevalent in healthcare settings; however, 
detailed data regarding hospital contamination by influenza viruses 
are highly lacking. Influenza viruses exhibit transmission modes and 
characteristics different from those of SARS-CoV-2: SARS-CoV-2 
infections consistently lead to high mortality because the mutations 
in the receptor-binding domain of SARS-CoV-2 enhance its 
transmissibility and lethality (Li C. et  al., 2022). Consequently, 
researchers tend to prioritize the study of SARS-CoV-2 transmission 
and infectivity, and relatively few studies focus on influenza viruses 
in hospital environments. Therefore, future studies should focus on 
influenza virus contamination rates in hospitals to fill the 
aforementioned research gap and achieve a more comprehensive 
understanding of the behavioral characteristics of different viruses in 
the environment. Second, we  primarily focused on early major 
variants of SARS-CoV-2, such as the ancestral (A) and Omicron 
variants (BA.1, and BA.5). However, with the continuous mutation 
and evolution of the virus, new variants such as XBB, XBB.1.5, 
XBB.1.16, BF.7, and BQ.1 continue to emerge. These variants may 
possess different stability and transmission abilities, increasing the 
complexity of viral mutations. The study of newer mutant strains is 
essential because it may aid in improving the current understanding 
of virus evolution and transmission. The third limitation is related to 
experimental conditions; all the included studies conducted 
experiments on the stability of SARS-CoV-2 and influenza viruses in 
the environment. However, they investigated the effectiveness of 
disinfection under controlled laboratory conditions, without entirely 
simulating complex factors in actual environments, such as different E
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TABLE 6 Inactivation of SARS-CoV-2 and influenza virus (H3N2) using disinfectants on skin surface.

Medium Virus Disinfectant Concentration 
(%)

Action 
time

Supplier Country 
or 
region

Virus titer 
decrease 

(log10TCID50) 
or 

percentage 
(%)

Reference

Skin 

(Human)

Wuhan strain (A), alpha variant (B.1.1.7), gamma variant (P.1), delta 

variant (B.1.617.2), omicron (BA.1), omicron (BA.2)

EA 35 15 s Nacalai Tesque Kyoto >4.00 Hirose et al. (2022b)

Skin 

(Human)

Wuhan strain (A), alpha variant (B.1.1.7), gamma variant (P.1), delta 

variant (B.1.617.2), omicron (BA.1), omicron (BA.2)

EA 20 15 s Nacalai Tesque Kyoto 0.21–1.07 Hirose et al. (2022a)

Skin 

(Human)

SARS-CoV-2 EA 40, 60, 80 5 s Nacalai Tesque Kyoto >4.19 Hirose et al. (2021a)

Skin (\) SARS-CoV-2 EA 70 5 min U Chin et al. (2020)

Skin 

(Human)

SARS-CoV-2 IPA 70 5 s Nacalai Tesque Kyoto >4.19 Hirose et al. (2021a)

Skin 

(Human)

SARS-CoV-2 CHG 0.2, 1 60s Saraya Kyoto 2.42 ± 0.18; 

3.17 ± 0.33

Hirose et al. (2021a)

Skin 

(Human)

SARS-CoV-2 BAC 0.05, 0.2 60s Yakuhan 

Pharmaceutical

Japan 2.36 ± 0.38; 

3.19 ± 0.21

Hirose et al. (2021a)

Skin (\) SARS-CoV-2 Household bleach 1 5 min \ \ U Chin et al. (2020)

Skin (\) SARS-CoV-2 Hand soap 

solution

2 15 min \ \ U Chin et al. (2020)

Skin (\) SARS-CoV-2 PVP-I 7.5 5 min \ \ U Chin et al. (2020)

Skin (\) SARS-CoV-2 Chlorhexidine 0.05 5 min \ \ U Chin et al. (2020)

Skin (\) SARS-CoV-2 BAC 0.1 5 min \ \ U Chin et al. (2020)

Skin 

(Human)

H3N2 EA 40, 60, 80 5 s Nacalai Tesque Kyoto >4.12 Hirose et al. (2021a)

Skin 

(Human)

H3N2 IPA 70 5 s Nacalai Tesque Kyoto >4.12 Hirose et al. (2021a)

Skin 

(Human)

H3N2 CHG 0.2, 1 60s Saraya Kyoto 1.02 ± 0.14; 

3.39 ± 0.55

Hirose et al. (2021a)

Skin 

(Human)

H3N2 BAC 0.05, 0.2 60s Yakuhan 

Pharmaceutical

Japan 1.23 ± 0.60; 

3.24 ± 0.81

Hirose et al. (2021a)

EA, ethanol; IPA, isopropanol; CHG, chlorhexidine gluconate; BAC, benzalkonium chloride; PVP-I, povidone-iodine; U, undetectable.
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TABLE 7 Inactivation of SARS-CoV-2 and influenza viruses using ultraviolet radiation, ozone, and other methods.

Medium Virus Disinfectant Concentration (%) Action 
time

Virus titer decrease 
(log10TCID50) or percentage 
(%)

Reference

Liquid SARS-CoV-2 Ultraviolet Radiation (222 nm, d = 50 mm) 2.5 mJ/cm2/s 30s 4.40 Song et al. (2023)

Fabric SARS-CoV-2 Ultraviolet Radiation (222 nm, d = 50 mm) 2.5 mJ/cm2/s 30s 4.72 Song et al. (2023)

Liquid SARS-CoV-2 Ultraviolet Radiation (222 nm, d = 50 mm) 2.5 mJ/cm2/s 60s U Song et al. (2023)

Fabric SARS-CoV-2 Ultraviolet Radiation (222 nm, d = 50 mm) 2.5 mJ/cm2/s 60s U Song et al. (2023)

Plastic, Stainless steel SARS-CoV-2 Ultraviolet Radiation (254 nm) 20.06 mJ/cm2 \ ≥4.00 Gidari et al. (2021)

Glass, plastic, gauze, and wool SARS-CoV-2 UV-C (254 nm, d = 20 cm) 1.62 J/cm2 \ >99.9, >99.9, >99.9, 94.4%, Criscuolo et al. (2021)

Liquid SARS-CoV-2 Ultraviolet Radiation (275 nm, d = 50 mm) 275 mJ/cm2/s 10s U Song et al. (2023)

Fabric SARS-CoV-2 Ultraviolet Radiation (275 nm, d = 50 mm) 275 mJ/cm2/s 10s U Song et al. (2023)

Glass H1N1 UV-C (222 nm) 4.8 mJ/cm2/min 10 min 99.56% Xie et al. (2022)

Glass H3N2 UV-C (222 nm) 4.8 mJ/cm2/min 10 min 99.72% Xie et al. (2022)

Steel H1N1 UV-C (222 nm) 4.8 mJ/cm2/min 10 min 99.86% Xie et al. (2022)

Steel H3N2 UV-C (222 nm) 4.8 mJ/cm2/min 10 min 99.84% Xie et al. (2022)

Air H1N1 UV-C (222 nm) 2 mJ/cm2 \ >95% Welch et al. (2018)

\ H3N2 UV-C (253.7 nm) 12.5 μW/cm2 3 min >6.00

Water H5N1 UV-C (254 nm) 25, 40, 60 mJ/cm2 \ >5.50 Lénès et al. (2010)

Filtering facepiece respirator H5N1 Ultraviolet Germicidal Irradiation 1.6–2.2 mW/cm2; 18 kJ/m2 15 min >4.00 Lore et al. (2012)

Phosphate-buffered saline H5N1 UV-B 90 μW/cm2 14 h >5.20 Sutton et al. (2013)

Phosphate-buffered saline H7N1 UV-B 90 μW/cm2 14 h >5.50 Sutton et al. (2013)

Glass, plastic, gauze, wood, and wool SARS-CoV-2 Ozone 0.2 ppm 120 min 90%; 82.2%; 96.8%; 93.3%;>99.9% Criscuolo et al. (2021)

Glass, plastic, gauze, wood, and wool SARS-CoV-2 Ozone 4 ppm 120 min 94.4%; 90%; 99.8%; 93.3%;99.7% Criscuolo et al. (2021)

Plastic culture dish H1N1 Ozone 20 ppm 150 min 4.00–5.00 Tanaka et al. (2009)

Plastic culture dish H1N1 Ozone 10 ppm 210 min 4.00–5.00 Tanaka et al. (2009)

Water H5N1, H1N1 Ozone 0.5, 1 mg/L 10 min >4.00 Lénès et al. (2010)

Fetal bovine serum (0.5% or 5%) H7N1 ClO2 (liquid state) 10 ppm 15 s >4.58 Kadota et al. (2023)

Fetal bovine serum (0.5% or 5%) IBV ClO2 (liquid state) 10 ppm 15 s >3.71 KADOTA et al. (2023)

Fetal bovine serum (0.5% or 5%) IBV ClO2 (Gaseous state) 1,500 to 2,000 ppb 3.5 min >94.2% Kadota et al. (2023)

Water H5N1 Chlorine Chlorine residual 0.3, 1, 1.5 mg/L 5 min >4.00 Lénès et al. (2010)

Plastic microplates H1N1 Dry fogging of hypochlorous acid solution 250 ppm 17 min >3.00 Urushidani et al. (2022)

Plastic microplates H1N1 Dry fogging of H2O2 11,280 ppm 17 min >2.50 Urushidani et al. (2022)

U, undetectable.
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seasons, humidity, sunlight exposure, population density, air 
circulation, and cleanliness. These factors could affect the survival 
and transmission of viruses in the environment. Fourthly, during the 
paper review process, the sample collection conditions for each 
research group of each literature are different, and the data results are 
also absolutely different. Therefore, future studies must focus on 
overcoming these limitations to comprehensively and accurately 
understand the behavioral characteristics of viruses in the 
environment. Their results may provide an effective scientific basis 
for epidemic prevention and environmental cleanliness and improve 
the research results’ reliability and generalizability, providing more 
effective guidance for disease prevention and control.

Our review underscores the significance of eliminating viral 
contamination, which may minimize the risks of both SARS-CoV-2 
and influenza virus contamination on material and skin surfaces 
and mitigate covert transmission of epidemics. Initially, when 
encountering potentially contaminated surfaces of pertinent objects 
(e.g., goods during logistical transportation, public vehicles, and 
medical facilities), proactive adoption of personal protective 
measures is imperative, including wearing masks and gloves and 
using disposable protective clothing when necessary. After a 
surgical procedure is completed, protective equipment should 
be removed promptly according to the specifications and disposed 
of as contaminated waste. When using places and objects potentially 
contaminated by viruses, taking effective disinfection measures is 
crucial. The use of ethanol (70%), isopropanol (70%), bleach (10%), 
or hydrogen peroxide (1–3%) applied through spraying or wiping 
should be prioritized to ensure sufficient disinfectant contact and 
15–30-min exposure. Disinfectants such as PVP-I (1 mg/mL for 
1 min) or cetylpyridinium chloride (0.1 mg/mL for 2 min) can 
be used for maintaining oral hygiene (Chen et al., 2023; Wang et al., 
2021). In environments possibly contaminated by viruses (e.g., 
operating rooms in medical facilities or public places in disease 
outbreak areas), chlorine-containing disinfectants (500 mg/L) or 
hydrogen peroxide gas should be used for comprehensive terminal 
disinfection. On valuable items or special materials that cannot 
withstand chemical disinfectants or in public places, ultraviolet 
irradiation (at 222 nm) may be  used. In combination with 
ventilation systems, ultraviolet radiation can ensure effective air 
purification. The comprehensive implementation of these measures 
may aid in minimizing viral infection spread and risk (Eslami and 
Jalili, 2020; Tang et al., 2020).
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