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Improvements in sequencing quality, availability, speed and costs results in an 
increased presence of genomics in infectious disease applications. Nevertheless, 
there are still hurdles in regard to the optimal use of WGS for public health 
purposes. Here, we discuss the current state (“status quo”) and future directions 
(“quo vadis”) based on literature regarding the use of genomics in surveillance, 
hazard characterization and source attribution of foodborne pathogens. The 
future directions include the application of new techniques, such as machine 
learning and network approaches that may overcome the current shortcomings. 
These include the use of fixed genomic distances in cluster delineation, 
disentangling similarity or lack thereof in source attribution, and difficulties 
ascertaining function in hazard characterization. Although, the aforementioned 
methods can relatively easily be applied technically, an overarching challenge 
is the inference and biological/epidemiological interpretation of these large 
amounts of high-resolution data. Understanding the context in terms of bacterial 
isolate and host diversity allows to assess the level of representativeness in 
regard to sources and isolates in the dataset, which in turn defines the level of 
certainty associated with defining clusters, sources and risks. This also marks the 
importance of metadata (clinical, epidemiological, and biological) when using 
genomics for public health purposes.
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1 Introduction

Public health infectious disease surveillance entails the systematic collection, analysis, 
and interpretation of data related to the occurrence and spread of infectious diseases. In 
this way, trends can be analyzed and outbreaks can be detected. An outbreak is defined 
as an unusually large number of patients with a specific disease, pathogen or strain linked 
to each other and/or to a common source of infection. The detection of these outbreaks 
includes the subsequent identification and characterization (for example antimicrobial 
resistance or virulence patterns) of pathogens. In the case of zoonoses, and foodborne 
zoonoses in particular, genomic surveillance and monitoring data from the human and 
animal domains provide the opportunity to closely monitor the characteristics of 
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circulating strains and infer risks, sources, and transmission 
routes. In this regard, genomic surveillance is a pivotal means of 
protecting public health, by taking proactive measures to 
identify hazards.

Historically, a variety of phenotyping and genotyping 
approaches have been applied to perform surveillance of foodborne 
infections (for a review on the detection of different foodborne 
pathogens, see Aladhadh, 2023). However, in recent years, whole-
genome sequencing (WGS) has turned into a standard for 
surveillance where available resources allow it. WGS has been 
shown to be  a “one-size fits all” superior typing method for 
surveillance but also for closely related tasks, such as source 
attribution and hazard characterization (a discipline rooted in 
microbial risk assessment) (den Bakker et al., 2014; Dallman et al., 
2015). This is due to the increased resolution as compared to 
previously used molecular typing techniques. This is not to say that 
WGS does not have limitations.

In order to characterize the data, however, the isolates need to go 
through a genomics pipeline, which includes a library preparation, 
sequencing and post-sequence processing.

Many of the sequenced genomes consist of short-reads. 
Consequently, there are gaps where low sequence diversity, regions 
filled with repeats and low coverage is present. Within these 
uncaptured sequences a variety of genes may be present. For example, 
incorporated phage DNA is often flanked by low sequence diversity 
regions and consequently difficult to map. In addition, sorting out 
plasmids may be difficult due to repetitive regions and inversions, 
while important genes may be present on plasmids. For example, the 
spv operon may be  plasmid-encoded on Salmonella increasing 
invasiveness and host cytotoxicity (Guiney and Fierer, 2011). Long-
read sequencing offers an alternative able to overcome these problems, 
but has not been widely implemented yet in current 
surveillance systems.

The widespread application of WGS data for foodborne pathogen 
surveillance in general only became possible due to a decrease in 
sequencing costs and time, increased computational capacity and 
radical improvements in the accuracy of WGS (Franz et al., 2016). 
WGS is able to discover links between seemingly isolated incidents 
where less discerning methodologies cannot. Therefore, many 
surveillance systems currently implemented WGS as the norm (Brown 
et al., 2019). Nevertheless, there are still hurdles in regards to the 
optimal use of WGS analysis for public health purposes. Here, 
we discuss the current state (“status quo”) and future directions (“quo 
vadis”) of these new techniques to improve cluster/outbreak detection, 
hazard characterization and source attribution of foodborne 
pathogens (Figure 1; Table 1).

2 Clustering and outbreak detection

A variety of techniques is used for public health surveillance of 
foodborne diseases. Most widely applied is case-based passive 
surveillance, meaning that a certain fraction (i.e., the more severe) of 
symptomatic cases are microbiologically diagnosed and centrally 
reported. Frequently, the isolated pathogen is further typed and 
characterized. Here, a strong shift has been made from phenotypic 
(for example serotyping using antisera) and low-resolution molecular 
methods [for example, 7-locus multi-locus sequence typing (MLST), 
Pulsed-field Gel Electrophoresis (PFGE), and multiple locus variable-
number tandem repeat analysis (MLVA) typing] (Maiden et al., 1998; 
van Belkum et al., 1997; Swaminathan et al., 2001) toward whole-
genome-sequencing (Atxaerandio-Landa et al., 2022). Traditionally, 
outbreak detection was based on the observed number of cases with 
a certain pathogen (or subtype/serotype based on the lower-resolution 
typing methods) in relation to the expected number based on time-
series analysis of the surveillance history. With the high-resolution 
power of WGS, this has shifted toward the detection of clusters of 
cases with closely genetically related strains (defined by a threshold in 
genomic difference). In genomic surveillance of foodborne diseases, 
the assumption is that such clusters of high similar strains share a 
common source that it aims to investigate and eliminate. These 
clusters can occur without exceeding the total number of (expected) 
cases of specific pathogen or subtype/serotype in a specific timeframe.

When focusing purely on genetic relatedness, other genomic 
features defining a strain are ignored. To illustrate, within a healthcare 
setting plasmids and antimicrobial resistance genes are routinely 
monitored and evaluated to trace specific strains. In a paper by Joseph 
et al. (2020), during a Campylobacter outbreak strains were defined by 
analysis of both alleles and antimicrobial resistance genes. However, 
not in all settings is additional experimental information available.

The commonly applied methods for detecting these clusters based 
on WGS are core-genome multi-locus sequence-typing (cgMLST) and 
single nucleotide polymorphisms (SNP) typing. However, there exist 
other techniques based on genomics data, such as whole-genome 
MLST (wgMLST) and kmer approaches. The cgMLST approach 
utilizes a large set of core genes, common to every isolate of the 
samples, where sequence diversity within this set of genes (“alleles”) 
provides the basis for comparison of strains (Mellmann et al., 2011). 
wgMLST includes, besides the core loci, a large repertoire of accessory 
loci, which are not common to all isolates (Sheppard et al., 2012). In 
contrast to these allelic approaches, SNP typing uses individual 
nucleotide differences to discern isolates from one another. A core of 
positions can be considered as well, which is covered by all query 
genomes, called the core SNP (Uelze et al., 2020). Lastly, K-mer based 

FIGURE 1

Workflow of the analysis to detect and characterize foodborne pathogens.
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approaches divide genomic data into parts of equal length called 
K-mers (Compeau et al., 2011). As such, K-mers are not necessarily 
limited by reliance on references, such as the abovementioned typing 
approaches excluding SNP (Harris, 2018).

All these approaches have become possible with the advent of 
WGS, but differ primarily in resolution. There is no consensus on 
preferred use, and this may differ per country or institute. For 
example, the Netherlands and Denmark commonly apply allelic 
approaches, such as cgMLST, while France and the United Kingdom 
favor a nucleotide approach (SNP) (Dallman et al., 2015; Schjørring 
et al., 2017; Coipan et al., 2022). However, allele-based approaches are 
the preferred analysis for foodborne pathogens in Europe. To illustrate, 
for Salmonella, allele-based approaches were used by 82% of the 
member states in a study, whereas only 18% applied a nucleotide-
based approach (Van Den Beld et al., 2023). In addition, there is a 
considerable diversity and lack of standardization regarding 
sequencing platforms and post sequencing data handling pipelines. 
Altogether, it may be  expected that these differences hamper a 
uniform assessment of surveillance and outbreak data (for example 
placing cases in or outside clusters). However, it has been 
demonstrated that the resulting clustering is surprisingly robust 
(Pearce et al., 2018; Coipan et al., 2020; Szarvas et al., 2021). This is 
relevant for situations, which require cross-border cooperation such 
as international outbreaks.

An illustration of the benefit of harmonized multi-nation 
corporation, is the large-scale Salmonella enterica serovar Enteritidis 
outbreak related to the consumption of eggs originating from Poland, 
which could only be  related back to its’ origin of contamination 
through outbreaks in multiple countries and the subsequent transfer 
of important information including harmonized WGS data and 
analysis (Pijnacker et al., 2019).

Surveillance and outbreak detection is performed through cluster 
analysis of WGS data, which is based on genomic distances between 
isolates. Phylogenetic methods show the genetic relationship between 
isolates, where bootstrap values in branches indicate the statistical 
support for the accuracy of that branch. Generally, clustering is 
performed either on allele-level or nucleotide-level, for which a 
distance matrix or profile is constructed.

In practice, institutes that apply nucleotide/allele-based clustering 
apply some form of genomic-distance cut-off to identify clusters, 
where clusters are made up of isolates with fewer nucleotide/allele 
differences between them than the cut-off.

2.1 Overcoming the nucleotide/
allele-threshold

There are problems with setting a fixed threshold, since doing so 
disregards the nature of the pathogen and outbreak in question. High 
heterogeneity among characteristics in both pathogens and the 
epidemiology alters the cluster composition (Duval et  al., 2023). 
Pathogen characteristics hampering correct cluster detection include 
horizontal gene transfer (HGT) (Arnold et al., 2022) and high levels 
of genome plasticity (Woodcock et al., 2017), but also the existence of 
thoroughly conserved genomes. Thus, the context of the pathogen 
population structure is an important aspect in defining thresholds. 
Currently, historically proven epidemiological related cases are used 
to optimize thresholds. In reality, pathogen behavior can differ greatly 
between strains/serovars/subspecies through space and time, 
potentially complicating the retrospective use of confirmed outbreaks 
to set a cut-off threshold. For example, mutation, substitution, and 
recombination rates may vary vastly due to differences in ecology and 
population biology (Barrick and Lenski, 2013). These characteristics 
can also be  dynamic in place and time due to different and/or 
changing selection pressures that are encountered by the same 
pathogen species (or serovar/serotype) in different niches. 
Combinations where both the number of SNPs/alleles and the 
bootstrapping values determine SNP/alleles cut-offs within groups 
(Pightling et al., 2018) or variable SNP/allele thresholds through time 
(Payne et al., 2021) mitigate part of the problem. However, they do not 
fully account for the evolutionary dynamics underpinning the 
threshold, such as horizontal gene-transfer and within-host/farm 
evolution. All in all, a non-variable cut-off rate may not be the best 
approach to surveillance.

Several modeling approaches have been suggested and/or applied 
to overcome the problems associated with fixed genomic distance 

TABLE 1 Comparison of the virtues and pitfalls of using whole genome sequencing methods.

Virtues Pitfalls

Increased resolution/accuracy compared to molecular typing techniques.

Requires tags to sequence, which requires knowing about the isolate prior to 

sequencing.

Metagenomics allowed culture-independent sequencing. Short read sequencing may not be able to resolve low sequence diversity regions.

Long read sequencing may be able to partially resolve low sequence diversity regions.

Long read sequencing until recently not accurate enough, as such not widely 

implemented yet.

Lack standardization does not seem to significantly impact resulting outbreak clusters.

Lack standardization regarding sequencing platforms and post sequencing data 

handling pipelines.

Allows production quantitative amounts of data on which a variety of analyses can 

be performed. Quantitative data may form a bottleneck in further analyses.

Metagenomics can capture community level compositions. Metagenomics approaches disregard individual pathogens.

Easier comparability between labs, reanalysis and storage compared to culture-based 

antibiotic tests.

Individual pathogens must be present in high enough numbers to be able to 

be detected through metagenomics.

Larger amounts of quantitative data allow for stronger inferences about associations 

with GWAS.
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threshold for cluster definition. Other approaches predict the SNP/
allele cut-off for a particular pathogen (Coll et al., 2020; Dallman 
et al., 2021).

In recent years, a number of modeling studies have incorporated 
the mutational rate and time to more realistically capture changes in 
the number of SNP differences between those isolates within the 
outbreak clusters and outside of the cluster. For example, Octavia et al. 
(2015) incorporated the mutational rate of a Salmonella enterica 
serovar Typhimurium type, using differences in MLVA (Octavia et al., 
2015). The study included short-lived point-source outbreaks, but this 
may not always reflect reality. Inclusion of a parameter of time would 
further allow specifying the amount of acquired mutations.

In a modeling study by Duval et  al. (2023), they realize the 
incorporation of time by defining the duration of the outbreak in 
addition to specific mutation rates. In this way, the study simulates 
bacterial evolution to estimate the various genetic distance thresholds 
of strains for point-source single-strain food or environmental 
outbreaks (Duval et al., 2023). In practice, the initial onset of the 
outbreak is often uncertain. The benefit of a model is that the time 
since source contamination can be estimated, besides the estimation 
of the mutational rate, thus filling in these knowledge gaps.

In essence, Duval et al. (2023) and Octavia et al. (2015) overcome 
problems related to the fixed threshold by creating dynamic 
thresholds, but require the use of data to create a model for this 
purpose. Another approach was taken by Payne et al., whom applied 
two different cluster definitions, one including a stringent SNP cut-off, 
while the other included all samples falling within the maximum 
number of SNPs differences as observed within a 4-week period. This 
is aimed at keeping sensitivity and specificity high, without sacrificing 
one for the other. However, in reality the length of an outbreak can 
differ considerably, some persisting for long periods of time. Therefore, 
a rigid time cut-off may not be the best approach.

All in all, though the previously mentioned approaches provide 
means to overcome problems associated with clustering, the extra data 
or metadata necessary for these methods to work may not be present. 
In such cases, the threshold approach provides the best pragmatic way.

2.2 Machine learning approaches for 
surveillance

Machine learning (ML) is able to “learn” to recognize patterns 
within large datasets, using the information within the patterns to 
predict other sets of data. There is a large number of different machine 
learning approaches, such as random forest (Tin Kam, 1995), neural 
networks, support vector machines, and clustering techniques. These 
can broadly be subdivided into unsupervised and supervised machine 
learning methods. Unsupervised models cluster together similar 
isolates, without knowledge about their class. Whereas, supervised 
models “learn” on a training set by classifying the input features 
(allelic/nucleotides) based on a predetermined class (host source). 
After the training phase, a test set can be used to determine the ability 
of the model to correctly predict a class for a sample. From this, the 
probabilities of each isolate belonging to a particular class of pathogens 
(e.g., cluster or clade etc.) is retrieved (this concerns categorical ML, 
not regression). Supervised ML thus differs in how models are 
constructed and how classification is performed. The idea behind 
using ML methods for clustering is that they help uncover patterns, 

which are not readily apparent to the naked eye, of genes/mutations 
associated with a particular class. From the constructed model, feature 
importance can be  retrieved. Furthermore, the time required to 
perform ML is considerably less than uncovering these patterns 
manually. Notwithstanding the benefits of ML, during this process 
many things need to be taken into account. Among others, overfitting, 
dataset imbalances, the dimensional space (for this feature reduction 
may be applied, through dimension reduction, dissimilarity analysis 
and Boruta functions) (Munck et al., 2020), but also method-related 
hurdles, such as scalability to increasing amounts of data.

Whole-genome sequencing data can be used as input data, either 
through SNP or kmer frequencies, cgMLST or wgMLST. The 
application of unsupervised ML for cluster delineation has been 
evaluated for Salmonella Enteritidis in a paper by Coipan et al. (2020). 
They found that clusters of isolates concordant to one another could 
be found using unsupervised ML (Coipan et al., 2020). Nevertheless, 
clusters are determined through stringency, which in the end is based 
on a predefined number of clusters. This requires prior knowledge 
about the population structure, transmissions and the number of 
outbreak clusters.

2.3 Network analyses

Network approaches allow for another alternative (Sanaa et al., 
2019; Cori et  al., 2018) for identifying clusters. The genetic link 
between isolates could be represented through the genetic relatedness 
being shown as a weighted link. Similar genomes have smaller 
distance values, so cluster coherence of outbreak clusters together with 
the driving forces of parameters in the formation of clusters, can 
be  evaluated. GenomeGraphR, a web-application for foodborne 
pathogen WGS data analysis is able to construct a graph linking 
isolates together (Sanaa et al., 2019). Nevertheless, the connectivity is 
based on a SNP threshold. Additionally, it is assumed that the entirety 
of the population is sampled, although this is rarely the case. As such, 
bias is introduced, which some network approaches attempt to 
circumvent through the introduction of an unknown fraction 
(Merlotti et al., 2020).

3 Source attribution

Source attribution consists of partitioning human cases caused by 
foodborne pathogens to their putative source of infection. The sources 
these cases are subdivided into denote not only reservoirs, such as 
animals, but may also include transmission pathways (e.g., food, the 
environment, contact with animals, etc.), exposure (e.g., meat, eggs, 
water, etc.), and risk (e.g., consumption of raw meat, swimming in 
surface water, petting a dog, etc.) (Mughini-Gras et  al., 2019). 
Genotypic information of isolates retrieved from humans and 
(animal/food/environmental) sources is compared in order to infer 
their (most likely) origins. The overlap and differences in data are 
therefore critical in discovering the relationship between isolates 
retrieved from humans to a potential source. Since similarities or the 
lack thereof in sequence data carry informational data, which may 
hint to relatedness between two isolate genomes.

Genotypic separation of isolates or lack thereof, however, often 
provides difficulties for source attribution. This is due to the pathogen 
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behaviors and evolutionary dynamic forces shaping genomic changes, 
and mutability of the genomes themselves. For example, a specialist 
lifestyle conforms to evolutionary pressures to adapt specifically to that 
single host, whereas a generalist may benefit from higher amounts of 
mutability to quickly adapt to changing hosts. In general, host switching 
behavior and its frequency can erode specific genomic signals, which 
can make surveillance and source attribution more difficult (Dearlove 
et al., 2016; Woodcock et al., 2017). Other pathogen characteristics may 
also play a role, such as genome plasticity (Woodcock et al., 2017), host 
range (Sheppard et al., 2014), pathogen population sizes and structure 
(Pightling et al., 2018), and horizontal gene transfer (Arnold et al., 
2022). Various other aspects, such as the ability of a host to contribute 
to human infection, and lack of inclusion of spatio-temporal patterns, 
can contribute to the erosion of genomic signals as well (Smid et al., 
2013). Therefore, disentangling the overabundance or absence of 
differences within the genomic isolates, to extract information relating 
to the attribution of these isolates to a specific host is the primary 
difficulty currently faced while performing source attribution.

In order to improve separation of pathogen isolates originating 
from different sources, a more complete capture of genome differences 
is ideal. However, current sequencing is primarily done with short-
read sequencing, which is unable to capture low sequence diversity, 
regions containing repeats, and low coverage areas. The continuous 
improvement of long-read sequencing will undoubtedly in the future 
allow for more correct nucleotide calling, with an acceptable number 
of errors (Amarasinghe et al., 2020). The additional information may 
help elucidate patterns of information, e.g., through differences in 
number of repeats and through capture of cases of horizontal gene 
transfer, which are flanked by regions of low sequence diversity.

3.1 Machine learning approaches for 
source attribution

In recent years, the application of ML for source attribution has 
been widespread, making use of many techniques, and even 
comparing different methodologies (Arning et al., 2021; Lupolova 
et al., 2019; Munck et al., 2020; Brinch et al., 2023; Tanui et al., 2022). 
Overall, ML algorithms are able to discern differences within the data, 
where classical typing approaches have not. Nevertheless, where 
strains are ubiquitous across sources, ML techniques struggle.

Unsupervised ML methods consist of various clustering and 
dimension reduction techniques. Both clustering and dimension 
reduction try to group the data. During dimension reduction, the 
number of features are thereby compressed, while this is not the case 
in clustering (Lupolova et al., 2019). Generally, the performance of 
unsupervised ML methods is negligible compared to supervised ML 
approaches. This is due to supervised ML being guided by class toward 
relevant patterns of information, whereas unsupervised ML is not. 
However, this requires predefined classes. Therefore, the existence of 
an undetermined class could cause a faulty model.

Among the supervised ML methods, one of the more commonly 
applied methods for source attribution is random forest (Fu et al., 
2022; Zhang et al., 2019). Random forest (RF) consists of an assembly 
of decision trees. Where every tree makes a decision determining the 
source of the isolate. RF requires little tuning. In addition, the ease of 
extraction of relevant features and comparatively good performance 
has propelled its popularity.

However, the ensemble of decision trees can improve only through 
chance on previous iteration, and categorizes samples based on 
majority voting. Therefore, a gradient boosting assembly method may 
be the preferential choice, as the local topography of any given tree is 
explored, to see if a better performance can be  achieved (Mason 
et al., 1999).

Moreover, the underlying nature of the input features needs to 
be considered. To illustrate the underlying nature, host range is one 
of the issues plaguing correct attribution. A generalist lifestyle 
generally means that source-specific signals associated with a 
particular host are mostly absent. Without high resolution, this 
makes attribution more difficult. Meaning that segregation might 
be  considerably less, complicating source predictions (Arning 
et al., 2021). This is especially the case when the dimensional space 
is less.

Most techniques primarily consider the cgMLST (Tanui et al., 
2022; Munck et al., 2020); however, kmer frequencies are also applied 
(Arning et  al., 2021; Brinch et  al., 2023). Studies comparing ML 
approaches, consistently find gradient boosting approaches to be the 
best predictors (Arning et al., 2021). This seems to be coupled to the 
use of cgMLST, where there is a lower resolution and consequently a 
lower dimensional space. Therefore, the explorative nature of these 
studies seems only relevant when considering the cgMLST genotyping 
approach and cannot be extrapolated to higher dimensional datasets. 
In case of wgMLST, where a larger feature space is involved, there have 
only been limited attempts made to perform machine learning (Gu 
et  al., 2023). Meaning that studies exploring the performance in 
combination with wgMLST or the entirety of the genome, where a 
larger feature space is involved, are required. Nevertheless, in cases of 
host-restricted pathogens with very conserved genomes, and where a 
good cgMLST scheme is known, cgMLST approaches may 
be sufficient.

Feature space and sample size need to be considered, e.g., support 
vector machine (SVM) perform well in low and high dimensional 
spaces, but become overshadowed by other techniques when moving 
toward a higher amount of data (Ghaddar and Naoum-Sawaya, 2017). 
This is primarily due to memory intensity of the algorithm. Deep 
learners, using neural networks (NNs), on the other hand, generally 
improve when the complexity within the data becomes bigger 
(Hopfield, 1982). The move toward long-read sequencing and higher 
resolution genotyping or nucleotide schemes, with the increases in 
dataset sizes, may thus facilitate a move toward the use of 
these algorithms.

Nevertheless, NNs are seen as somewhat of a “blackbox.” This 
means that relevant features within the data are not readily apparent. 
While the extraction of these features is more difficult, it may 
be required when the feature space needs to be shrunk. For example, 
the feature space is shrunk in order to boost predictions with the use 
of more specific relevant features. Feature importance is essential for 
this, but other techniques, such as removing redundant features/
identical strains and dimension reduction may also be  applied. 
Besides, feature reduction may be  done by another ML approach 
before inputting a reduced set into the NN.

In addition to combinatorial approaches, hierarchical approaches 
can also be used to increase scrutinization and consequently source 
separation. A study by Bayliss et al. (2023), used hierarchical ML 
classifier to determine the geographical origin of different isolates, on 
a variety of different spatial levels (such as continent, region, and 
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country). A similar approach could be taken in source attribution, 
attributing on different strata, such as on the species, population and 
subpopulation levels. Indeed, a hierarchical random forest has 
previously been used to make a preselection of features relevant to 
specific countries to enhance correct source attribution predictions 
(Duarte et al., 2020). As discussed in the metadata section, metadata 
can be  used to split data on. This may help alleviate problems 
regarding the separation of data wherein the cluster coherence of 
certain classes is low.

Stratification may also work to subdivide pathogens, which have 
differently behaving strains. Previous studies have noted that there 
exists host restricted and broad host range Salmonella enterica serovar 
Typhimurium groups (Rabsch et  al., 2002; Parsons et  al., 2013; 
Kingsley et al., 2013). Lupolova et al. (2019) attempted to separate the 
data of S. enterica serovar Typhimurium based on a classification of 
generalists and specialists, which was based on host range. Such a 
separation, may be applicable to any hierarchical ML approach.

3.2 Metadata

The presence of strains with a wide host range within different 
hosts often makes the separation of data difficult. This makes a definite 
assignment precarious, and consequently probability-based 
assignments are the standard choice. Nevertheless, source separation 
may be reached through the inclusion of additional dimensionality to 
separate data on. This may be done through the addition of filters, 
features, weights, constraints, etc.

Spatial data, for instance, may enhance within source cluster 
variance. This is due to the potentiality of geographically separated 
populations to evolve independently from one another despite 
similarities in niches (Lupolova et  al., 2019). Consequently, the 
geographical scope of sampling reflects the capture of finer or less-
distinct data patterns. Nevertheless, if factors like travel and trade have 
not been accounted for, they can obfuscate these patterns (Smid et al., 
2013; Bayliss et al., 2023).

A complicating factor that should also be  considered is the 
difference in the ranging behavior of hosts, which may influence the 
impact of a spatial dimension on source attribution between sources 
(Griekspoor et al., 2013). In this manner, genomic diversity within the 
same genus, species and between strains may be enhanced. A larger 
ranging habitat means a less distinct geographical pattern.

The incorporation of a temporal dimension may help separate 
pathogen sources as well. After all, fast genomic changes can cause 
changes within pathogen populations on a short temporal scale (Smid 
et al., 2013), and lead to a drift within a between strains, genus and 
species on a spatial–temporal scale. The assignment of a new isolate 
to a previously categorized source may therefore simply be convergent 
evolution, or incidental similarities. To prevent the introduction of 
temporal biases, the temporal aspect should not be ignored.

As such, periodic surveillance is a necessity to guarantee source 
and patient isolate completeness. However, surveillance is time-
consuming and costly. Therefore, studies need to be performed to 
ascertain the maximum time past between data acquisitions for 
relevant sources, which will allow deriving ancestry of retrieved 
patient isolates. This may differ between pathogens based on how 
conserved their genome is. Moreover, even between populations or 
subpopulations of pathogens this may differ radically.

There also exist seasonal patterns of disease and source 
composition. In part this may be due to the population dynamics of 
pathogens, changes in the presence and ranging behavior of animals, 
and shifts in human behavior throughout the year. Bayliss et al. (2023) 
noted that the infection rates of Salmonella Enteritidis were highly 
seasonal in both Europe and Asia, with the highest rates of infection 
occurring during summer. Other papers corroborate the same link 
between seasonality or climate and infections (Lin et al., 2016; Dhimal 
et al., 2022; John et al., 2022).

With more complete and larger volumes of captured data different 
methods of separating data, for example through metadata will more 
pertinent. For cgMLST, this directly impacts the size of the core 
genome, shrinking it as the dataset grows. A way to address this is by 
including a selected set of representative isolates. A study from 2021 
by Abram et al. (2021), stratified E. coli into different phylogroups. 
Introducing a reference genome in such a manner, from foodborne 
pathogens, will make identification and genome assembly more 
robust, and the link between ecological differences found in 
pathogroups may be  reflected in the makeup of the phylogroups. 
Alternatively, pangenomes could potentially be used to function as 
representative isolates (Svahn et al., 2023).

Another potential problem to be kept in mind is the transient 
presence of a pathogen within a host, which may lead to wrong 
assignment of the source (Dearlove et  al., 2016). For example, an 
animal may be a short layover before switching again, or the pathogen 
might have very recently infected the host species. Since the direction 
of infection is unknown, this transient presence is a complicating 
factor. In part, rapid host switching allows for the genetic exchange 
between strains on a more frequent basis, thus a less clear separation 
between sources and strains, which further complicates assignment 
(Dearlove et al., 2016).

Despite this, the poor characterization of metadata within most 
data, it could serve as a strong means of filtering, separating or 
clustering data on.

3.3 Metagenomics

Metagenomics offers a culture-independent approach to source 
attribution, allowing for the potential characterization of all pathogens 
within an environment through sequencing. Additionally, 
metagenomics gives an indication of the population structure of the 
sequenced environment (e.g., gut, sewage, etc.) (Tyson et al., 2004).

Regarding source attribution, metagenomics is a barely explored 
direction. It is notable that characterization of specific pathogens is 
difficult; however, the community layout can be captured (Ko et al., 
2022). This allows for the exploration of a wide variety of samples, e.g., 
wastewater surveillance, for the attribution of AMR from diverse 
sources. Therefore, metagenomics can be used to determine temporal 
and spatial shifts in population makeup. In addition, a study by Duarte 
et al. (2020), has performed comparisons of metagenomes of humans 
and sources, through specific markers, thus allowing source 
attribution based on community level compositions. Specifically, they 
used the antimicrobial resistance (AMR) composition of different 
sources to infer the likely source of human metagenomic samples. 
Based on the assumption that the AMR abundances are determined 
in part by HGT and are specific to the fecal resistome, they were able 
to attribute metagenomic samples to sources.
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However, metagenomic approaches disregard individual 
pathogens and particular contributions of specific pathogens within 
samples. In addition, pathogens must be  present in high enough 
numbers to be able to be detected through metagenomics (Escobar-
Zepeda et al., 2016). Since the community composition where disease 
is manifested can differ radically from the community composition of 
asymptomatic or unaffected hosts, there exists an uncertainty whether 
a pathogen is simply absent or present in far too low numbers within 
the host. This is further aggravated by lower levels of resolution for 
pathogens in metagenomic samples as opposed to sequenced isolates. 
As part of surveillance, source attribution serves a role in partially 
characterizing the pathogenic entity; therefore, genomics approaches 
might be preferred.

3.4 Network approaches

Network approaches are a feasible option for source attribution, 
based on the conceptional consideration of a relation existing between 
the human and source isolates. This forms a bipartite system, which is 
represented through the genetic relatedness being shown as a weighted 
link. If two genomes are derived from the same source, the expectation 
would be  a smaller distance value. As such, cluster coherence of 
reservoirs, together with the driving forces of parameters in the 
formation of clusters, can be evaluated. In this manner, networks of 
communities can be retrieved (Wainaina et al., 2022). To date, not 
many studies have been performed using network approaches. 
However, Merlotti et al. (2020) and Wainaina et al. (2022) performed 
preliminary investigations on Salmonella enterica serovar 
Typhimurium and Campylobacter spp. respectively. Both papers were 
able to attribute sources to human pathogen isolates. Nevertheless, the 
coherence of the clusters was markedly less in Campylobacter, which 
might be  due to the high genome diversity as compared to 
Salmonella Typhimurium.

One of the benefits of network approaches is that clustering is not 
necessarily bound to a particular source, rather to clusters, which may 
contain different sources (links are represented as pairwise distances). 
This is meant to reflect the distribution of particular pathogen 
populations through the sources. However, it may just as well indicate 
problematics concerning the separation of sources. The clustering of 
human isolates with clusters composed of other sources is therefore 
portrayed in probabilities reflecting this uncertainty.

On the other hand, a potential problem is the under- or over-
representation of clusters. This is especially true when dealing with 
high interspecies genetic diversity, unclear source separation, or 
uncertainties within the metadata.

4 Hazard characterization

4.1 Current approaches and breadth

Besides cluster and outbreak detection, the characterization of 
strains is a crucial aspect in infectious disease surveillance in order to 
assess the risk of strains, for individual patients or public health, 
encountered during surveillance and to keep track of their circulation. 
For foodborne pathogens, this mainly involves using genes or 
genomic elements to investigate specific antimicrobial resistance 

profiles and virulence profiles affecting humans. It may also involve 
characteristics involved in transmissibility and immune evasion. 
When using WGS for surveillance, hazard characterization can 
be conducted relatively easily once the targets are known. Standard 
approaches to hazard characterization of pathogens using WGS data 
concerns the evaluation of sequence data. A variety of tools exist to 
characterize virulence genes (Ren et al., 2017; Malberg Tetzschner 
et al., 2020), AMR markers (Bortolaia et al., 2020; Feldgarden et al., 
2019; Zankari et al., 2017; Alcock et al., 2020), and other genetic 
factors (Carattoli and Hasman, 2020; Siguier et al., 2006; Camacho 
et al., 2009; Yoon et al., 2014). Some tools are tailored toward specific 
species. In addition, WGS holds promise in the point-of-care 
conditions of patients by alleviating the dependency on culture-based 
antibiotic tests. WGS would resolve complications regarding 
comparability between different labs and samples, reanalysis and 
storage (Verschuuren et al., 2022). Furthermore, if sequencing can 
be uncoupled from the need to cultivate the pathogen, through for 
example metagenomics, then the time required for sequencing could 
be  measurable less as compared to culture-based antibiotics tests 
(Deurenberg et al., 2017).

However, identifying useful targets is a difficult process and may 
be  performed with a plethora of techniques. Difficulties are 
exacerbated by a variety of problems. Firstly, a majority of proteins is 
uncharacterized or lack a close functional homolog with a sequence 
identity above 60%. The less the isolate sequences share in similarity 
with the nearest characterized sequence, the more uncertain the 
derived function becomes. Rapid evolution leading to high sequence 
divergence may thus obscure homology. Alternatively, the gene may 
encode an unknown function or may be a novel gene. In these cases, 
a variety of tools may help determine gene function. By leveraging 
information about amino acid interactions to determine structural 
information of the proteins, a variety of tools can give an indication of 
function (Yang et al., 2023; van Kempen et al., 2024; Jumper et al., 
2021; Jin et al., 2021). Nevertheless, high similarity does not confirm 
similar functions. This necessitates laboratory experiments, where 
bioinformatics tools are not able to validate the function of a protein. 
Secondly, the genomic data are often uncoupled from epidemiological 
case/control data, which would allow for further evaluation of the 
hazard. Thirdly, limitations in sequencing technologies, uncertainty 
in regard to inferred function, biases associated with applied 
methodology, and problems specific to these methodologies 
exacerbate the difficulty of identifying targets. Methods can be rooted 
in genomics, such as Genome-wide association studies (GWAS) 
(Dutilh et  al., 2013), ML approaches (Wheeler et  al., 2018), and 
approaches involving metagenomics (Duarte et al., 2020). All in all 
patterns of genes associated with risk, regions of the genomes, or 
specific mutations can be  uncovered relevant for 
hazard characterization.

4.2 Approaches to characterize new targets

4.2.1 Genome-wide association studies
Genome-wide association studies (GWAS) refer to studies, which 

look at genetic variants within a genome-wide context to discover 
gene (kmer/SNP) variants related to a particular phenotypic trait. To 
find variants, a “test” and “control” group are compared to spot genetic 
variation associated with the trait under scrutiny. Shortly, a reference 
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genome is used to align the genome. Then a cut-off can be calculated 
from the allele/genetic frequencies above which an association 
between genotype and phenotype is highly likely (Uffelmann et al., 
2021). Alternatively, reference free GWAS may be performed with 
associations made between k-mers (Mehrab et al., 2020). Nevertheless, 
at the core of GWAS is the hypothesis stating a plethora of variants 
exist with a low effect that together can form complex inheritance 
patterns, causing genetic and phenotypic heterogeneity (Power 
et al., 2017).

In order to make strong inferences about associations with GWAS, 
a substantial amount of data is required. Consequently, the epoch of 
next-generation sequencing (especially WGS), with its’ multitudes of 
generated data, has allowed GWAS to be  considered as a tool in 
bacterial genomics (Dutilh et al., 2013). In fact, many studies have 
been performed relating to hazard characterization (Chaguza et al., 
2022; Sephton-Clark et  al., 2022). Even within the context of 
foodborne disease, the number of studies performed is increasing 
(Tiwari et al., 2023; Epping et al., 2021; Buchanan et al., 2017).

However, there is still a diverse array of problems with regard to 
applying GWAS to microbial genomics. Some are general to GWAS, 
whereas others are rooted in the behavior and character of bacterial 
pathogen populations. Specific to GWAS, sample size and effect sizes 
(and distribution of effect sizes) are the dominant drivers of the power 
of GWAS associations (Saber and Shapiro, 2020). The effect sizes within 
bacterial genomes tend to grow, since these often resulted from recent 
selection (Duchen et al., 2023). Other relevant bacterial specific effects 
causing complications are linkage disequilibriums interrupted by 
homologous recombinations and strong population structures resulting 
from clonal expansion. The prevalence of the linkage disequilibrium in 
bacterial genomes may cause wrong associations to effects (Saber and 
Shapiro, 2020). Meanwhile, clonal expansion can cause associations 
based on ancestry (Saber and Shapiro, 2020; Power et al., 2017).

In a study by Saber and Shapiro (2020), various approaches to 
correct for population structure and linkage disequilibrium were 
evaluated. The study modeled evolutionary parameters to simulate 
various bacterial behaviors, varying sample size, causal variant effect 
size and linkage disequilibrium, to find the optimal parameters and 
approach. They found that larger samples sizes and effect sizes 
perform best. Nevertheless, they do not account for variable 
mutational rates, which are largely influenced by pathogen behavior.

Disease severity may not be linked completely to the pathogen, 
because also varieties in hosts play a part in the pathogen-disease 
interplay, such as susceptibility, immune reactions, genome variations 
in these hosts etc. (Power et al., 2017). In addition, subtypes may differ 
in phenotypes, thus correct classification of lineages may proof 
important to link effect to SNPs or k-mers (Power et  al., 2017). 
Moreover, a correct choice of control subject needs to be  made to 
circumvent selection biases predicated on environmental exposure 
(Duchen et al., 2023). These complications may hinder GWAS. To the 
extent of correcting for these various problems encountered during 
bacterial GWAS there exist a variety of tools. TreeWAS (Collins and 
Didelot, 2018) and Hogwash (Saund and Snitkin, 2020) exist to correct 
for the population structure, whereas PowerBacGWAS (Coll et al., 2022) 
helps figure out the required sample size to be able to infer associations.

At present, the availability of genomes with phenotypic 
information known is much smaller compared to human 
GWAS. Nevertheless, many studies have found success, perhaps 
because of the large effect size of microbes. With time, the number of 

available sequences is sure to grow, thus increasing the statistical 
power of GWAS; however, the effects of heterogeneity within a dataset 
must be categorized in order to be able to say with certainty GWAS is 
applied correctly and discriminatingly (Power et al., 2017).

4.2.2 Machine learning approaches for hazard 
characterization

Aforementioned ML techniques, mentioned in the source 
attribution section, find a variety of utilities within the field of hazard 
characterization, such as in the prediction of antibiotic resistance 
(Moradigaravand et al., 2018). Gathered metadata may be used as class 
data, in combination with available nucleotide/allele schemes to 
predict disease severity or pathogenicity. In theory, the algorithm 
should train on patterns of occurring allele/nucleotide profiles 
associated with a particular class. The extraction of relevant features 
responsible for a particular class assignment could then be used to find 
genes of interest related to, e.g., disease severity.

Previous studies have already applied ML models to these ends. 
One study sought to differentiate pathogenic from non-pathogenic 
STEC (Im et al., 2021), based on the assumption that clinical isolates 
and those from known sources, such as cows, are pathogenic, whereas 
environmental isolates are not. Whereas, another study was able to 
apply RF to identify patterns of adaptation associated with disease 
caused by Salmonella enterica (Wheeler et al., 2018).

Similarly, genomic differences can be  recognized through 
methodologies such as convolutional neural networks (Ciresan et al., 
2011; Quang and Xie, 2016), which can be  trained to recognize 
differences within DNA sequences. For example, pathogenicity 
islands, transposons, and mobile genetic elements differ in genetic 
makeup from the surrounding sequences and as such can 
be  differentiated (Lu and Leong, 2016). Nevertheless, long-read 
sequencing may be able to resolve the full genetic structure of the 
genome from the different sequence reads.

As such, many forays into ML applications for hazard 
characterization are feasible and have proven fruitful (Wheeler et al., 
2018; Im et  al., 2021). However, comparisons between different 
methodologies ought to be made for providing the best predictions. 
Therefore, different ML approaches should be benchmarked in order 
to uncover the relevance and applicability solitarily or in combination 
with other approaches.

4.2.3 Large language models
Large language models (LLMs) have seen popular implementation 

in applications such as ChatGPT and for the translation of hitherto 
unknown ancient languages (Luo et  al., 2019); however, their 
implications for the field of biology are also apparent. For example, 
LLMs could be used for the translation of DNA to proteins, but more 
interestingly for predicting evolutionary changes within DNA.

A study from 2022 by Zvyagin et al. (2022) sought to uncover the 
evolutionary dynamics of SARS-CoV-2 by training a LLM on 
prokaryotic gene sequences (110 million in total) and fine-tuning 
these based on SARS-CoV-2 sequences (1.5 million genomes in total).

However, the implementation of such a model in surveillance 
would require access to enormous volumes of data, which are 
currently unavailable for foodborne bacteria. Nevertheless, since 
we are dealing with increasingly larger amounts of quantitative data, 
the potential role of LLMs in surveillance should be kept in the back 
of our minds.
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4.2.4 Network approaches
Network approaches have been used to predict pathogen evolution 

in the context of surveillance (Cliff et al., 2020; Chang et al., 2023). For 
example, to the extent of modeling genetic diversity in comparison to 
the evolutionary niche and the relation to disease outbreaks (Chang 
et al., 2023). Another example is about mapping the prevalence and 
spread of pathogens together with evolutionary pathways to examine 
possible trends across the spatial–temporal axis (Cliff et al., 2020). In 
this way, these models provide us an understanding of the evolutionary 
dynamics, which define surveillance practices. Nonetheless, many 
avenues of research are still left. The dynamics of these networks, their 
structures, and the implications of changes within these networks need 
to be evaluated. Furthermore, the utility of network approaches for the 
modeling of AMR, pathogenicity, and host switching could be evaluated.

4.2.5 Metagenomics and other-omics approaches
Since the different -omics approaches strictly fall outside the 

confines of this review, we will only briefly touch upon the utility of 
-omics approaches. These approaches have proven especially relevant in 
the field of microbial risk assessment, where the phenotypic and 
genotypic response may be very different and the association of genes to 
a phenotypic response is not always understood. AMR genes have been 
exhaustively described in literature, however, the phenotypic response 
for other virulence-related genes is often not as clear (Leekitcharoenphon 
et  al., 2021). In fact, using -omics approaches concomitantly with 
genomics may help provide links between the phenotypic response and 
presence absence of genes or SNPs. For instance, transcriptomics and 
proteomics can be employed for assessing virulence, pathogenicity, and 
AMR (for an in-depth review, see Haddad et al., 2018 and Bergholz 
et al., 2014). Based on the relative expressions of RNAs and proteins, 
more insight can be gained into differences in disease severity, immune 
system evasion, AMR and other phenotypic traits. For example, a 
mutation may cause weaker binding of polymerases, and consequently 
the production of less proteins, which for instance may be related to 
pathogenicity. Information about how pathways are modulated and 
regulated, and how this may be  tweaked to our benefit can thus 
be obtained (Bergholz et al., 2014). The utility of metabolomics in the 
field of microbial risk assessment is shown through the ability to capture 
AMR profiles (Ma et al., 2021). Nevertheless, it must be noted that for 
many -omics approaches the availability of large datasets is limited.

Metagenomics, likewise, can be  exploited for hazard 
characterization. For example, the entirety of the pathogen reservoir 
captured within a sample can be  observed using metagenomics. 
Characterization of the AMR, virulence genes, pathogenic genes, stress-
related genes, or gene variants (Duarte et al., 2020; Jaudou et al., 2022; 
Díaz-Palafox et  al., 2023), for instance may allow us to estimate 
associated risk. HGT between different pathogen subtypes, may radically 
change the disease expression of said pathogen. After all, the effect size 
of genetic changes in microbes is rather large. Therefore, metagenomics 
allows for population scale hazard characterization of various factors 
implicated herein. In addition, through co-occurrence or exclusion of 
species in presence of one another, the risk at a community level can 
be assessed (Alessandria et al., 2016). Thereby, metagenomics may reveal 
a core community within an environment as well (Chaillou et al., 2015).

However, disentangling sequences of individual isolates from the 
population is a complex and time-consuming task. A second problem 
related to the need for pathogens to be present in high enough numbers 
to be able to be detected through metagenomics (Escobar-Zepeda et al., 

2016). Therefore, where characterization of distinct strains, species or 
subspecies is concerned WGS is preferred (Table 2).

5 Conclusion

Improvements in sequencing quality, availability, speed, and costs 
results in an increased presence of genomics in infectious disease 
applications, such as surveillance, source attribution, and hazard 
characterization. We  provided an overview of existing and new 
approaches to use for WGS data. Highlighting the benefits, downsides, 
and current hurdles to overcome in order to improve hazard 
characterization, source attribution and clustering/outbreak detection 
in the future. Among the applications, we especially highlighted ML 
and network analysis as non-traditional approaches for cluster 
definition, determining the relative importance of sources and 
reservoirs, and to identify pathogen traits associated with increased 
risk. It should be stressed that no universal analysis or approach exists 
and the best method to apply depends on the goal and data availability.

Although these methods can relatively easily be  applied, an 
overarching challenge is the inference and biological/epidemiological 
interpretation of these large amounts of high resolution data. Maybe 
more than ever context is crucial. Especially understanding the 
genomic diversity of the pathogen population studied is pivotal for 
assessing cluster identification in surveillance, performing source 
attribution studies and conducting hazard characterization of isolates. 
Understanding the context in terms of diversity allows to assess the 
level of representativeness of the dataset, which in turn defines the 
level of certainty associated with defining clusters, sources and risks. 
This also marks the importance of metadata (clinical, epidemiological, 
and biological) when using genomics for public health purposes. Here 
metadata provides a manner to classify relatedness and diversity based 
on additional data, such as spatial–temporality and disease outcome.

The quantitative increase in sequencing data may yet support 
more elaborate and data “heavy” analyses. Concomitantly, data are 
increasingly an amalgamation of various points and places in time. 
Therefore, thought needs to be put into the spatial–temporality aspect 
of the data. Complete captures of all sources, temporal effects on 
pathogen behavior, the spatial spread of clusters, transmission 
pathways, temporal effects on spatiality, and the temporal effect on 
cluster cohesion present uncertainties in regard to larger scale research 
combining data on a larger spatial-temporal axis. Continued and 
consistent recurrent surveillance may help answer these questions.

In the same vein, understanding of population dynamics can 
be gleaned from the use of metagenomics, but the method is largely 
restricted to a community level view. The ability to disentangle 
individual strains from the community composition would be favorable.

Meanwhile, larger datasets require more due consideration for the 
choice of reference to construct the typing scheme on. The typing 
scheme and resultingly resolution may be limited by the sequencing 
approach applied and the volume of data. Improvement of long-read 
sequencing may help capture previously uncaptured regions, but too 
many details may cause over-discrimination where unnecessary. In 
certain cases, a more concise and inclusive dataset may take 
precedence over a large more generative dataset. Again, context needs 
to be considered for both strains and the dataset being inquired.

Within the right context hazard characterization, source attribution 
and clustering for outbreak detection can be utilized to great effect, but 
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are still hampered by methodological considerations. The designation 
of a cluster requires a cut-off, which in turn require inferring this 
cut-off. Similarly, probabilistic methods do not give a definite 
assignment and uncertainty regarding pathogen behavior or population 
may hinder correct assignment. GWAS is subject to uncertainty about 
lineages, linkage of effects to genes and other biases. Whereas, inference 
based on a database may be  subject to bias. Therefore, different 
approaches (in combination) need to be benchmarked not for their 
general application, but rather for their specific use-cases.

Finally, the approaches, methods and studies discussed within this 
paper are all limited by and adapt to the scope of the information 
available. Typing method and approach to analysis should be chosen in 
accordance. However, external information regarding the pathogen 
studied should be taken into consideration. Pathogen diversity in terms 
of behavior and clustering can heavily bias the resulting research. In 
addition, the composition of the data needs to be considered as well. 
Resultingly, different methods should be benchmarked to uncover the 
relevance and applicability for pathogen strains through space and 
time. In addition, resolving uncertainties regarding sources, spread and 
evolutionary dynamics of pathogen strains will be key in understanding 
the drivers for hazard characterization, source assignment and cluster 
formation. These drivers need to be  put within their biological/
epidemiological imperative in order for the methodological approaches 
to make sense. Continued and more ubiquitous surveillance together 

with a move toward long-read sequencing may therefore be key in 
resolving these issues. However, caution needs to be taken regarding 
the growing amounts of data, such that due to the numerous trees 
we do not lose sight of the forest.
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TABLE 2 Comparison analysis approaches in clustering/outbreak detection, source attribution, and hazard characterization.

Clustering & Outbreak 
detection

Source Attribution Hazard Characterization

Threshold

Easily applicable based on historical 

data, however do not reflect 

differences between isolates/strains/

species.

Unsupervised machine learning could be applied, 

herein the clusters represent the source groups, and 

however, uncertainty about the number of sources 

exists. Similarly supervised machine learning can 

be applied where the predictions are the different 

sources.

Predict disease severity, pathogenicity, which may 

then be used to extract relevant features. In 

addition, machine learning may be used to 

recognize different genetical elements.

Modeling & 

Dynamic thresholds

Require metadata, but allow dynamic 

changes in parameters to more 

closely reflect different cut-offs 

between clusters.

Genetic relatedness shown as weighted links. Closely 

linked isolates are expected to be derived from the 

same cluster. In particular clustering is not necessarily 

bound to a particular source, but clusters containing 

different sources reflecting source uncertainty.

Predict pathogen evolution in context of 

surveillance.

Machine learning

Unsupervised machine learning can 

be used to clustering, however 

requires a pre-determined number of 

clusters, therefore prior knowledge is 

required.

Allows source attribution based on community level 

composition, however, individual isolates are often 

disregarded as are particular contributions of specific 

pathogens within the samples.

Estimate associated risk on a community scale 

level. Thereby, metagenomics may reveal a core 

community within an environment as well.

Network analyses

Network with connectivity between 

isolates showing clustering.

Looks at genetic variants within a genome-wide 

context to discover gene variants related to a 

particular phenotypic trait.

Metagenomics

Not enough data yet, but could in the future 

be used to predict evolutionary changes.

GWAS

Together with genomics approaches may provide a 

link between phenotypic and genotypic response.

LLM

Future potential for predicting evolutionary 

changes in DNA sequences.

Other—omics 

approaches

In combination with WGS allow for linking of 

phenotype and genotype response.
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