Skip to main content

ORIGINAL RESEARCH article

Front. Microbiol.
Sec. Terrestrial Microbiology
Volume 15 - 2024 | doi: 10.3389/fmicb.2024.1458777
This article is part of the Research Topic Climate Change and Soil Microbial Control of Carbon Sequestration View all 9 articles

Climate warming affects soil microbial communities during restoration of the desert steppe in Inner Mongolian

Provisionally accepted
Jirong Qiao Jirong Qiao Jiahua Zheng Jiahua Zheng Li Shaoyu Li Shaoyu Feng Zhang Feng Zhang Bin Zhang Bin Zhang Mengli Zhao Mengli Zhao *
  • Inner Mongolia Agricultural University, Hohhot, China

The final, formatted version of the article will be published soon.

    Grazer exclosure is widely regarded as an effective measure for restoring degraded grasslands, having positive effects on soil microbial diversity. The Intergovernmental Panel on Climate Change (IPCC) predicts that global surface temperatures will increase by 1.5 to 4.5°C by the end of the 21st century, which may affect restoration practices for degraded grasslands. This inevitability highlights the urgent need to study the effect of temperature on grassland soil microbial communities, given their critical ecological functions. Here, we assessed the effects of heavy grazing (control), grazer exclosure, and grazer exclosure plus warming by 1.5°C on soil microbial community diversity and network properties as well as their relationships to soil physicochemical properties. Our results showed that grazer closure increased soil microbial richness relative to heavy grazing controls. Specifically, bacterial richness increased by 7.9%, fungal richness increased by 20.2%, and the number of fungal network nodes and edges increased without altering network complexity and stability. By contrast, grazer exclosure plus warming decreased bacterial richness by 9.2% and network complexity by 12.4% compared to heavy grazing controls, while increasing fungal network complexity by 25.8%. Grazer exclosure without warming increased soil ammonium nitrogen content, while warming increased soil nitrate nitrogen content. Soil pH and organic carbon were not affected by either exclosure strategy, but nitrate nitrogen was the dominant soil factor explaining changes in bacterial communities. Our findings show that grazer exclosure increases soil microbial diversity which are effective soil restoration measures for degraded desert steppe, but this effect is weakened under warming conditions. Thus, global climate change should be considered when formulating restoration measures for degraded grasslands.

    Keywords: Climate Change, degraded grassland restoration, Soil microbial diversity, microbial network complexity, microbial network stability

    Received: 03 Jul 2024; Accepted: 23 Aug 2024.

    Copyright: © 2024 Qiao, Zheng, Shaoyu, Zhang, Zhang and Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Mengli Zhao, Inner Mongolia Agricultural University, Hohhot, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.