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Background: Severe fever with thrombocytopenia syndrome (SFTS) has 
attracted attention due to the rising incidence and high severity and mortality 
rates. This study aims to construct a machine learning (ML) model to identify 
SFTS patients at high risk of death early in hospital admission, and to provide 
early intensive intervention with a view to reducing the risk of death.

Methods: Data of patients hospitalized for SFTS in two hospitals were collected 
as training and validation sets, respectively, and six ML methods were used to 
construct the models using the screened variables as features. The performance 
of the models was comprehensively evaluated and the best model was selected 
for interpretation and development of an online web calculator for application.

Results: A total of 483 participants were enrolled in the study and 96 (19.88%) 
patients died due to SFTS. After a comprehensive evaluation, the XGBoost-
based model performs best: the AUC scores for the training and validation sets 
are 0.962 and 0.997.

Conclusion: Using ML can be a good way to identify high risk individuals in SFTS 
patients. We can use this model to identify patients at high risk of death early in 
their admission and manage them intensively at an early stage.
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1 Introduction

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease 
caused by Dabie bandavirus (DBBV), which was first identified and reported in central and 
northeastern China in 2011 (Yu et al., 2011), and subsequently reported in South Korea, Japan, 
Vietnam (Kim et al., 2013; Takahashi et al., 2014; Tran et al., 2019). DBBV belongs to the genus 
bandavirus of the Phenuiviridae family (Casel et al., 2021), and was first discovered by Chinese 
scholars in 2009 from ticks (Yu et  al., 2011). SFTS is tick-borne and tick-to-human 
transmission is the main route of SFTS virus infection (Xu et al., 2011). In addition, studies 
have shown that SFTS virus may be transmitted from person to person through close contact 
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(Tang et al., 2013; Bao et al., 2011). Because of its wide distribution, 
SFTS has become a major public health risk not only in Chinese but 
also in other parts of the world (Liu et al., 2014).

The prognostic spectrum of SFTS is broad, with a variety of 
outcomes ranging from a self-limiting clinical course to life-
threatening or even death. Death, as the most devastating clinical 
outcome, is also the most talked about outcome, and relevant studies 
have shown that the mortality rates of SFTS are 12–50% (Yu et al., 
2011; Li et al., 2018; Gai et al., 2012; Zhang et al., 2012; Yang et al., 
2023). The clinical manifestations of SFTS were not specific at 
admission, and patients with similar symptoms may progress to 
different prognoses. The analysis of high-risk factors for death in SFTS 
is still in the exploratory stage at this stage. The aim of this study was 
to explore the high risk factors for death in SFTS and further construct 
a risk model for identifying patients at high risk of SFTS at the time of 
admission. So, it is crucial to identify the risk of death in SFTS patients 
at an early stage and to intervene in high-risk patients at an early stage.

Machine learning (ML) methods, a subfield of artificial 
intelligence, is an approach to implementing artificial intelligence that 
investigates how algorithms can enable computers to learn from data 
and make predictions or decisions (Marx, 2019), and is divided into 
categories such as supervised and unsupervised learning (Deo, 2015). 
ML methods are used in all aspects of modern society (Suwardi et al., 
2022; Moriwaki et  al., 2023; Bayer and Edwards, 2021), and have 
shown great potential in many medical fields (Deo et al., 2014). The 
greatest strength of ML methods is their great performance on many 
clinically relevant tasks. ML methods can evaluate real-world data, 
most real-world data are nonlinear, and ML methods can provide 
more intelligent optimization strategies by learning from historical 
data and experience to construct models that perform better than 
traditional linear prediction methods (Deo, 2015).

Given the current widespread application of artificial intelligence 
in medicine, the use of ML is expected to enable early identification 
of the risk of death in SFTS patients. The aim of this study is to explore 
the high-risk factors for death in SFTS patients and to further enable 
the prediction of the risk of death in SFTS patients based on ML.

2 Material and methodology

2.1 Data collection

In this study, patients who were discharged from Chaohu Hospital 
of Anhui Medical University from May 2016 to December 2023 and 
from Anhui Provincial Public Health Clinical Center (North District 
of the First Affiliated Hospital of Anhui Medical University) from 
April 2020 to December 2023 with a final diagnosis of SFTS were 
collected. Relevant medical records were extracted from the electronic 
medical record system. In conjunction with previous literature and 
related research, the general demographic characteristics, common 
chronic diseases, clinical characteristics and routine laboratory 
findings were extracted as our extracted variables, specifically: sex, 
age, days from onset to admission (DFOTA), hypertension, coronary 
heart disease (CHD), diabetes, cerebral infarction (CI), temperature, 
pulse rate (PR), respiration rate (RR), systolic blood pressure (SBP), 
diastolic blood pressure (DBP), myalgia, fatigue, nausea, emesis, 
diarrhea, abdominal pain (AP), cough, dyspnea, lymphadenopathy, 
hepatosplenomegaly, disturbance of consciousness (DOC), white 

blood cell count(WBC), platelet count (PLT), neutrophil count (N), 
lymphocyte count (L), monocyte count (M), hemoglobin (HB), 
alanine transaminase (ALT), aspartate transaminase (AST), albumin 
(ALB), globulin (GLO), potassium ions (K+), calcium ions (Ca+), 
glucose (GLU), blood urea nitrogen (BUN), creatinine (CRE), lactate 
dehydrogenase (LDH), creatine kinase (CK), creatine kinase 
isoenzyme (CK.MB), prothrombin time (PT), activated partial 
thromboplastin time (APTT), fibrinogen (FIB), thromboplastin time 
(TT), D-dimer (D-D). In this case, the laboratory tests were selected 
from the initial tests performed within 24 h of admission to the 
hospital. Death was the prognostic indicator studied in this study, and 
the survival status of the patients at the time of discharge was known 
through the medical record information in the electronic medical 
record system, and patients whose survival status at the time of 
discharge was doubtful were followed up by telephone using the 
telephone numbers of the patients or their family members retrieved 
from the electronic medical record system to find out whether they 
had died after discharge from the hospital.

Inclusion criteria for patients were: patients diagnosed with fever 
with at the time of discharge from the hospital [the diagnosis met the 
criteria of the Ministry of Health of the People’s Republic of China’s 
Guidelines for Prevention and Treatment of Severe Fever with 
Thrombocytopenia Syndrome (2010 or 2023 edition) (China 
MoHoPsRo, 2011; China MoHoPsRo, 2024)]. Exclusion criteria for 
patients were: 1. missing data >20%, 2. unclear prognosis (death), 3. 
laboratory-confirmed infections with other pathogens such as 
COVID-19, hantavirus, Orientia tsutsugamushi, and rickettsiae, and 
4. other major illnesses that severely affected prognosis.

The study was conducted in accordance with the principles of the 
Declaration of Helsinki. It was approved by the Ethics Review 
Committee of Chaohu Hospital of Anhui Medical University (Ethics 
No. KYXM202311006) and the Ethics Review Committee of Anhui 
Provincial Public Health Clinical Center (Ethics No. PJ-YX2024-027). 
This was a retrospective study and patients’ personal information was 
omitted from the analysis. A written informed consent waiver was 
obtained from the patients based on local policy.

2.2 Statistical analysis

First of all, in this study the data is preprocessed. Since the dataset 
in this study has missing data, we need to explore the features of the 
missing data and use multiple interpolation to recover the missing 
data, which is achieved by using the “mice” package (Zhang, 2016; van 
Buuren and Groothuis-Oudshoorn, 2011). In this study, 500 iterations 
of 5-fold interpolation technique is used to realize the interpolation of 
missing data, by comparing the distribution of the original data and 
the interpolation values, we choose the appropriate interpolation value 
as the final interpolation value to make the dataset complete.

Next, we  performed a one-way analysis of the death and 
non-death groups of the data from the training set, which was 
implemented using the “CBCgrps” package (Zhang et  al., 2017). 
Continuous variables were analyzed by the independent samples t-test 
or Mann–Whitney U. Continuous variables with normal distribution 
were expressed as mean ± standard deviation, and continuous rows of 
non-normally distributed variables were expressed as median 
(interquartile range). Categorical variables were analyzed according 
to distribution using the chi-square test, Wilcoxon rank-sum test, 
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Fisher test, and continuity correction, and were expressed as the 
number of cases and component ratios. For variables with p < 0.1 in 
the univariate analysis, we included them in the logistic regression 
model to perform multifactorial regression analysis to evaluate the 
risk factors for death in SFTS patients. For variables screened by 
multifactorial logistic regression, we will use restricted cubic spline 
plots (RCS) to further explore whether there is a nonlinear relationship 
between them and the outcomes.

2.3 Construction and validation of the 
prediction model

In this study, data from Chaohu Hospital of Anhui Medical 
University was used as the training set and data from Anhui Public 
Health Center was used as the external validation set. The training set 
was used to construct models using different methods and optimized 
to reduce prediction errors. Then, these models were validated on the 
validation set to check the robustness of the models. Correlation test 
is first performed on the screened variables to determine whether 
there is any multicollinearity among the variables. The correlation 
coefficient indicates the correlation of one predictor variable with 
other predictor variables in the data, with absolute values greater than 
0.7 indicating strong correlation between the variables, and heat maps 
were drawn to visualize the results. The filtered variables are 
incorporated into the machine learning model.

We use six different models of Gradient Boosting Machine 
(GBM), k-Nearest Neighbors (KNN), Logistic Regression (LR), 
Neural Network (NNet), Support Vector Machine (SVM), eXtreme 
Gradient Boosting (XGBoost). 10 times 10 fold cross validation 
technique is used to avoid comparison bias due to data selection. The 
area under the ROC curve (AUC), accuracy, recall, specificity, 
precision, Kappa value, Matthews correlation coefficient (MCC), F1 
score, and brier score are used for model discrimination. The Kappa 
value is used to evaluate the consistency between the predicted and 
actual values of the model, and the value range is [−1, 1]. Generally 
believed that K > 0.75 means better consistency, K between 0.40 and 
0.75 means medium and high consistency, K < 0.4 means poor 
consistency, the closer the K value is to 1, the better the consistency is. 
MCC is a balanced metric that not only indicates the correlation 
coefficient between predicted and true results, but also handles cases 
where the dataset is unbalanced. It produces high scores only when 
good results are obtained for all four categories in the confusion 
matrix: true positives, false negatives, true negatives and false 
positives. Due to the low incidence of positive events in this study, the 
MCC value provides a better measure of the accuracy of the 
multiclassification model under unbalanced distribution compared to 
other statistical indicators. It takes values in the range of [−1, 1], and 
the more the value is skewed towards 1, the better the prediction is. 
Greater than 0.7 indicates high accuracy (Baldi et al., 2000; Chicco and 
Jurman, 2020). F1 Score is the harmonic mean between precision and 
recall, which is used for evaluating the accuracy and robustness of the 
model. Its value ranges from [0, 1], the closer the value is to 1 the 
better the model accuracy is. Brier score is used to evaluate the 
calibration of the model, its value ranges from [0, 1], the closer the 
value is to 0 the better the model calibration is, brier score from 0.1 to 
0.25 indicates good calibration, brier score <0.1 indicates excellent 
calibration. Decision curve analysis (DCA) was used to evaluate the 

clinical utility of the models (Vickers et al., 2008). Various evaluation 
metrics were considered together to select the model with the best 
predictive performance. In addition, SHapleyAdditive exPlanation 
(SHAP) was used to interpret the decision-making ability of the 
selected models and an online web calculator was constructed to 
facilitate the use of the models (Hippisley-Cox et al., 2009). R software 
(version 4.3.2) was used for all statistical analyses, model construction 
and validation in this study.

3 Results

After screening based on inclusion and exclusion criteria, a total 
of 483 participants were finally enrolled and 96 (19.88%) patients died 
due to SFTS. In Chaohu Hospital of Anhui Medical University, 364 
patients were included in the study, of which 76 (20.88%) died, and in 
Anhui Public Health Center, 119 patients were included in the study, 
of which 20 (16.81%) died. The whole process of screening and 
analysis is shown in the flow chart (Figure  1). We  extracted 46 
variables from each patient, and the characterization of the missing 
data showed that the missing percentage of each variable was less than 
15% in the training set and less than 12% in the validation set (S1). 
Missing data were interpolated using 50 iterations of the 5-fold 
interpolation technique. By comparing the density maps of each 
interpolation with the density maps of the original data, finally, 
we chose the value of the 1st interpolation as the final interpolation 
value for the training set and the value of the 4th interpolation as the 
final interpolation value for the validation set (S1).

The median age of the patients in the training and validation sets 
was 70 years (interquartile range [IQR], 59–76) and 70 years (IQR, 
58.5–73.5), respectively; 212 (58.24%) and 61 (51.26%) patients were 
female, and the median time from onset of disease to admission was 
4 days (IQR, 3–6.25) and 5 days (IQR, 3–6.5), respectively. The 
probability of patients having hypertension, CHD, diabetes, and CI in 
the training set was 14.01% (51 patients), 1.92% (7 patients), 6.59% 
(24 patients), and 4.40% (16 patients), respectively; while in the 
validation set it was 31.09% (37 patients), 4.20% (5 patients), 8.40% 
(10 patients), and 9.24% (11 patients), respectively. The percentages of 
clinical symptoms of myalgia, fatigue, nausea, emesis, diarrhea, AP, 
cough, dyspnea, and DOC at the time of admission in the training set 
were 39.29% (143 cases), 60.44% (220 cases), 37.64% (137 cases), 
26.37% (96 cases), 35.99% (131 cases), 8.52% (31 cases), 18.96% (69 
cases), 1.65% (6 cases) and 20.60% (75 cases); while the validation set 
was 36.13% (43 cases), 83.19% (99 cases), 31.93% (38 cases), 28.57% 
(34 cases), 47.06% (56 cases), 7.56% (9 cases), 19.33% (23 cases), 
5.04% (6 cases), and 15.13% (18 cases). The patient characteristics of 
the training set are shown in Table 1.

In this study, variables with p < 0.1 were used as potential risk 
factors for mortality outcomes, and the results of the analysis of 
variance indicated that Age, DFOTA, Hypertension, CI, PR, Diarrhea, 
DOC, N, L, M, PLT, AST, K+, Ca2+, GLU, BUN, CRE, LDH, CK, 
CK.MB, PT, APTT, TT, and D.D were potential risk factors for death 
after the occurrence of SFTS. After including these variables in a 
multifactorial logistic regression model, the results showed that Age 
[p < 0.001, OR(95%CI) = 1.07 (1.04, 1.12)], DFOTA [p = 0.002, 
OR(95%CI) = 0.75 (0.62, 0.90)], CI [p = 0.006, OR(95%CI) = 7.06 (1.78, 
29.92)], Ca2+ [p = 0.046, OR(95%CI) = 0.1 (0.01, 0.95)], CRE [p = 0.035, 
OR(95%CI) = 1.01 (1.00, 1.02)], CK.MB [p = 0.041 OR(95%CI) = 1.02 
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(1.00, 1.05)] were risk factors for death after the occurrence of SFTS 
(Figure  2A). The heatmap of the correlation analysis (Figure  2B) 
shows that the correlations among the variables are less than 0.4, 
which indicates that there is no significant multicollinearity among 
the variables. The six variables, Age, DFOTA, CI, Ca2+, CRE, and 
CK.MB, do not interact with each other to cause problems such as 
instability of the model parameters and reduction of the model 
predictive ability, and thus all of them are used as the features of the 
machine learning model for constructing the model. In addition, 
we used RCS to explore the nonlinear relationship between variables 
and outcomes. Multivariate-adjusted RCS analysis showed that none 
of the five variables Age, DFOTA, Ca2+, CRE, and CK.MB had 
nonlinear relationships with death outcomes (Figure 3).

The performance of the models constructed by each algorithm 
was determined by ten ten-fold cross-validation. Figures 4A,B show 
the ROC performance on the training and validation sets using the six 
ML methods, GBM, KNN, LR, NNet, SVM, XGBoost, respectively 
and the AUC values were calculated based on the ROC curves 
(Table 2). The AUC values (95% CI) of GBM, KNN, LR, NNet, SVM, 
XGBoost in the training set (Figure 4A) are 0.887 (0.848, 0.927), 0.957 

(0.939, 0.975), 0.85 (0.805, 0.895), 0.88 (0.842, 0.919), 0.86 (0.812, 
0.908), and 0.962 (0.941, 0.982), respectively; AUC values (95% CI) in 
the validation set (Figure 4B) were 0.87 (0.785, 0.955), 0.978 (0.957, 
1), 0.788 (0.674, 0.903), 0.871 (0.779, 0.963), 0.93 (0.858, 1), and 0.997 
(0.993, 1), respectively. Table 2 shows the detailed performance results 
on the training and validation sets using these six ML methods. It 
includes accuracy, recall, specificity, precision, Kappa value, MCC 
value, F1 score, and brier score. The MCC values of GBM, KNN, LR, 
NNet, SVM, XGBoost in the training set are: 0.571, 0.775, 0.490, 0.527, 
0.539, 0.707; and in the validation set are: 0.464, 0.870, 0.636, 0.561, 
0.803, 0.919. The F1 score of GBM, KNN, LR, NNet, SVM, XGBoost 
in the training set are: 0.663, 0.813, 0.601, 0.629, 0.641, 0.766; in the 
validation set are: 0.537, 0.889, 0.621, 0.630, 0.837, 0.930. The brier 
score of GBM, KNN, LR, NNet, SVM, and XGBoost in the training 
set are: 0.104, 0.081, 0.121, 0.109, 0.113, and 0.063; and in the 
validation set are: 0.092, 0.059, 0.105, 0.093, 0.129, and 0.034, 
respectively. Both in the training set (Figure 4C) and the validation set 
(Figure 4D), the DCA curves are able to lie above the none line and 
the all line in a wide range of thresholds across the models, where the 
models have clinical utility. Combining the various model evaluation 

FIGURE 1

Flowchart of data screening and analysis.
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TABLE 1 Characteristics of patients in the training set.

Variables Total (n  =  364) 0 (n  =  288) 1 (n  =  76) p

Female 212 (58) 173 (60) 39 (51) 0.213

Age, Median (Q1, Q3) 70 (59, 76) 68 (57, 74) 75 (69.75, 79) <0.001

DFOTA, Median (Q1, Q3) 4 (3, 6.25) 4 (3, 7) 4 (2, 5) 0.025

Hypertension, n (%) 51 (14) 31 (11) 20 (26) 0.001

CHD, n (%) 7 (2) 5 (2) 2 (3) 0.639

Diabetes, n (%) 24 (7) 16 (6) 8 (11) 0.196

CI, n (%) 16 (4) 6 (2) 10 (13) <0.001

Temperature, Median (Q1, Q3) 37.6 (36.6, 38.4) 37.6 (36.6, 38.4) 37.6 (36.7, 38.23) 0.664

PR, Median (Q1, Q3) 82.5 (74, 93) 82 (73, 92) 85.5 (76, 100) 0.018

RR, Median (Q1, Q3) 20 (19, 21) 20 (19, 21) 20 (19, 21.25) 0.246

SBP, Median (Q1, Q3) 112.5 (100, 125.25) 112.5 (100, 125) 113.5 (99, 129) 0.634

DBP, Median (Q1, Q3) 70 (63, 78) 70 (63, 78) 72 (63.75, 80) 0.329

Myalgia, n (%) 143 (39) 113 (39) 30 (39) 1

Fatigue, n (%) 220 (60) 175 (61) 45 (59) 0.909

Nausea, n (%) 137 (38) 111 (39) 26 (34) 0.575

Emesis, n (%) 96 (26) 80 (28) 16 (21) 0.3

Diarrhea, n (%) 131 (36) 97 (34) 34 (45) 0.099

AP, n (%) 31 (9) 23 (8) 8 (11) 0.635

Cough, n (%) 69 (19) 53 (18) 16 (21) 0.719

Dyspnea, n (%) 6 (2) 5 (2) 1 (1) 1

DOC, n (%) 75 (21) 47 (16) 28 (37) <0.001

Lymphadenopathy, n (%) 141 (39) 115 (40) 26 (34) 0.436

Hepatosplenomegaly, n (%) 1 (0) 1 (0) 0 (0) 1

WBC, Median (Q1, Q3) 2.07 (1.46, 3.19) 2.06 (1.44, 3.23) 2.16 (1.56, 3.02) 0.821

N, Median (Q1, Q3) 1.29 (0.82, 2.13) 1.21 (0.79, 2.13) 1.56 (1.06, 2.13) 0.057

L, Median (Q1, Q3) 0.54 (0.38, 0.79) 0.56 (0.39, 0.83) 0.47 (0.31, 0.66) 0.009

M, Median (Q1, Q3) 0.12 (0.08, 0.21) 0.13 (0.08, 0.23) 0.09 (0.06, 0.17) 0.004

HB, Median (Q1, Q3) 123 (112, 135.25) 123 (112, 135) 124.5 (110.75, 139.25) 0.331

PLT, Median (Q1, Q3) 56.5 (40, 74) 60 (45, 76) 46.5 (33.25, 60.75) <0.001

ALT, Median (Q1, Q3) 53.5 (34, 93.75) 52 (33, 86.25) 55.5 (37.75, 113) 0.203

AST, Median (Q1, Q3) 132.5 (74, 261) 121 (71.75, 232) 171 (89.5, 432) 0.002

ALB, Median (Q1, Q3) 34.9 (31.5, 38) 35.1 (31.87, 38) 33.65 (31.08, 37.92) 0.189

GLO, Median (Q1, Q3) 28 (24.6, 31.7) 27.6 (24.5, 31.52) 29.25 (25.17, 32.12) 0.202

K+, Mean ± SD 3.68 ± 0.5 3.64 ± 0.48 3.86 ± 0.53 0.002

Ca2+, Median (Q1, Q3) 1.92 (1.85, 2.01) 1.94 (1.86, 2.02) 1.88 (1.81, 1.98) <0.001

GLU, Median (Q1, Q3) 6.35 (5.5, 7.9) 6.3 (5.5, 7.4) 6.85 (5.9, 9.43) 0.003

BUN, Median (Q1, Q3) 6.6 (4.88, 9.4) 6.1 (4.6, 8.3) 9 (6.12, 12.25) <0.001

CRE, Median (Q1, Q3) 76 (62, 100) 73 (61, 91) 101.5 (75.75, 140.5) <0.001

LDH, Median (Q1, Q3) 552 (365.75, 875) 503 (357.25, 809) 648 (409.5, 1364.5) 0.008

CK, Median (Q1, Q3) 360 (176.5, 947.25) 339.5 (162.75, 807) 505.5 (213.5, 1375.25) 0.01

CK.MB, Median (Q1, Q3) 13.9 (5, 25.4) 13.04 (4, 23.22) 18.9 (8, 50.17) 0.001

PT, Median (Q1, Q3) 12.1 (11.1, 12.7) 11.9 (11, 12.7) 12.4 (11.78, 13.12) <0.001

APTT, Median (Q1, Q3) 43.4 (37.8, 51.6) 42.4 (37.58, 49.7) 47.85 (41.27, 58.45) <0.001

FIB, Median (Q1, Q3) 2.54 (2.2, 2.9) 2.57 (2.23, 2.9) 2.44 (2.17, 2.85) 0.256

TT, Median (Q1, Q3) 22 (19.4, 26.52) 21.6 (19.28, 25.02) 23.65 (19.98, 34.82) 0.002

D.D, Median (Q1, Q3) 3.05 (1.55, 6.7) 2.56 (1.41, 5.43) 6.44 (3.05, 12.06) <0.001

DFOTA, days from onset to admission; CHD, coronary heart disease; CI, cerebral infarction; PR, pulse rate; RR, respiration rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; AP, 
abdominal pain; DOC, disturbance of consciousness; WBC, white blood cell count; PLT, platelet count; N, neutrophil count; L, lymphocyte count; M, monocyte count; HB, hemoglobin; ALT, 
alanine transaminase; AST, aspartate transaminase; ALB, albumin; GLO, globulin; K+, potassium ions; Ca2+, calcium ions; GLU, glucose; BUN, blood urea nitrogen; CRE, creatinine; LDH, 
lactate dehydrogenase; CK, creatine kinase; CK.MB, creatine kinase isoenzyme; PT, prothrombin time; APTT, activated partial thromboplastin time; FIB, fibrinogen; TT, thromboplastin time; 
D-D, D-dimer; Q1, the first quartile; Q3, the third quartile. 0: patients who survived, 1: patients who died.
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metrics, XGBoost showed the best discrimination among all six ML 
models. In addition, a summary plot of SHAP values (Figure 5A) was 
used to interpret the XGBoost model results, which showed that the 
importance to the model was in the order of CRE, Age, and 
CK.MB. Finally, we also constructed an online web calculator for the 
XGBoost-based model that has the best performance for ease of use 
(Figure 5B, https://qionghan1999.shinyapps.io/SFTS/).

4 Discussion

In this study, six variables Age, DFOTA, CI, Ca, CRE, and CK.MB 
were screened by using data from Chaohu Hospital of Anhui Medical 
University and Anhui Provincial Public Health Center based on the 
method of constructing a multifactorial regression model after 
variance analysis, and these six variables were included as features in 
the ML model. We used six ML methods, GBM, KNN, LR, NNet, 
SVM, and XGBoost, to construct a prediction model for early 
identification of the risk of death in SFTS patients. We plotted ROC 
curves and calculated AUC values based on them, combined accuracy, 
recall, specificity, precision, Kappa value, MCC value, F1 Score, Brier 
Score to comprehensively evaluate the model performance, and 
plotted DCA curves to evaluate the clinical benefit of the predictive 
model application. Among the six ML models considered, the 
XGBoost model has the best performance. The AUC values (95% CI) 
of the XGBoost model for the training set and validation set are 0.962 
(0.941, 0.982), 0.997 (0.993, 1), respectively, representing a good 
efficiency of the predictive model. For the unbalanced dataset in this 

study, the MCC values of the XGBoost model also showed good 
results in the training set (0.707) and validation set (0.919). F1 score 
of the XGBoost model in the training and validation sets were 0.766 
and 0.930, respectively, which reflected the higher accuracy and 
stability of the model. In terms of the calibration of the model, the 
Brier score is 0.063 and 0.034 in the training set and validation set, 
respectively, which makes the model of the XGBoost method show the 
best performance. In addition, we use SHAP values and an online web 
calculator to solve the two major dilemmas of “interpretability” and 
“usability” that are widely found in machine learning predictive 
modeling research.

In this study, six variables, Age, DFOTA, CI, Ca, CRE, and 
CK.MB, were found to be high risk factors for death in SFTS patients. 
Many current studies have identified age as a key risk factor for death 
in SFTS patients (Yang et al., 2023; Liang et al., 2023; Zu et al., 2022; 
Shin et al., 2015; Wang et al., 2020). According to our study, DFOTA 
is also associated with mortality in patients with SFTS. However, 
we need to view this result with caution. The course of a patient’s 
SFTS can be broadly categorized into a febrile phase (3–7 days), a 
critical phase (7–13 days), and a recovery phase (11–17 days) (Gai 
et al., 2012). This also means that the further the patient is admitted 
to the hospital, the more likely it is that the patient is less ill. Future 
separate studies of patients with different staging are warranted. A 
novel finding of this study is that CI is a useful predictor of mortality 
in patients with SFTS. CI has previously been shown to severely affect 
disease prognosis in a number of studies (Hasegawa et  al., 2014; 
Wasay et  al., 2018; Djaharuddin et  al., 2021). There are no 
corresponding studies examining the relationship between SFTS and 

FIGURE 2

Multifactor regression forest plots and correlation analysis hotspots. (A) Forest plot for multifactor logistic regression model. The left column shows the 
variables included in the multifactor logistic regression model, with 0 and 1 representing “No” or “Yes” for the 2-categorical variables. The middle 
column shows the graphical representation of the Odds ratio. The right-hand column contains the odds ratio values and their 95% confidence 
intervals, and the rightmost p-value. An OR value with a 95% confidence interval that does not contain a 1 or a p value <0.05 indicates that the variable 
was statistically significant for the outcome in the multifactorial model. (B) Heatmap of correlation analysis between variables. The variables on the 
diagonal of this heatmap indicate that the rows and columns in which they are located are representative of that variable. Above the diagonal the 
correlation coefficients are shown as sectors, with a whole circle representing the absolute value of the correlation coefficient as 1. Below the 
diagonal, correlation coefficients are shown in shades of color, with the darker the color, the closer the absolute value of the correlation coefficient is 
to 1. Red is a negative correlation and blue is a positive correlation.
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CI. Therefore, further relevant studies are needed to confirm this risk 
in the future. The results of multifactorial logistic regression suggest 
that low calcium is a high risk factor for death in SFTS patients, 
which is consistent with the results of a retrospective study by Zheng 
et al. that included 327 SFTS patients (Zheng et al., 2023). Ca2+ is an 
important substance for maintaining normal physiological functions 
of the human body and is an indispensable ion for all physiological 
activities of the body. Its main physiological functions include the 
following: bone and tooth formation, nerve conduction, muscle 
contraction, cell signaling, blood clotting, maintenance of cell 
membrane stability and cell differentiation, etc. Therefore, the proper 
maintenance of Ca2+ levels is essential to maintain the normal 
functioning of all body systems. When Ca2+ is too low, a series of 
adverse reactions can be  induced. Low levels of Ca2+ can lead to 
altered cell membrane potentials, which can affect the normal 
functioning of cardiac, nerve, and muscle cells, leading to cardiac 
insufficiency and neurological abnormalities, which may exacerbate 
the condition of SFTS patients. Ca2+ likewise plays an important role 
in the immune response as well, and low calcium levels may further 
exacerbate the inflammatory response, leading to worsening of the 
condition. Ca2+ is a key factor in the coagulation process, and low 
levels of Ca2+ can lead to coagulation dysfunction and an increased 
risk of bleeding. Patients with SFTS have inherent coagulation 

abnormalities, and hypocalcemia can further exacerbate the tendency 
to bleed and increase the risk of death. DBBV can cause damage to 
different organs, such as can invade the kidneys in the body (Guu 
et al., 2012). It is well known that CRE can be used to evaluate renal 
function. In this study, we found that CRE was an independent risk 
factor for death in SFTS patients, which is consistent with previous 
studies by Xu et al. (2018), Wang et al. (2017), and Liu et al. (2023). 
Similar to our findings, Gong et al. noted that SFTS patients who died 
exhibited elevated CK.MB early in the disease and that CK.MB was 
an independent early warning factor for death (Gong et al., 2021). In 
this study, the results of univariate analysis showed that both CK and 
CK-MB were potential risk factors for death in SFTS patients, while 
the results of multivariate regression analysis showed that only 
CK-MB was a risk factor for death in SFTS patients. Compared with 
CK, CK-MB has a higher sensitivity and specificity in determining 
myocardial injury, which is often associated with myocardial injury 
in patients with SFTS, and the level of CK-MB can more accurately 
reflect the myocardial injury of the patients. The results of the RCS 
analysis showed that the risk of death of the patients increased 
significantly with the elevation of the level of CK-MB. The results of 
RCS analysis showed that the risk of death increased significantly 
with the increase of CK-MB level, which also suggests that it is an 
important research direction for us to monitor the level of myocardial 

FIGURE 3

Restricted cubic spline for each continuous variable. (A) Restricted cubic spline for Age. (B) Restricted cubic spline for Ca. (C) Restricted cubic spline for 
CK.MB. (D) Restricted cubic spline for CRE. (E) Restricted cubic spline for DFOTA For each subplot, the horizontal coordinate represents the value of 
each variable and the vertical coordinate represents the ratio of the occurrence of the outcome event. The “nonlinear” in the upper left corner 
represents a test of nonlinearity between the variable and the outcome, which indicates a nonlinear relationship between the variable and the outcome 
when it is p  <  0.05.
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injury to determine the risk of death in SFTS patients. In addition, all 
previous risk factor studies have been based on linear relationships, 
which is not always the case in clinical settings between independent 
variables and outcomes. An important assumption of commonly 
used regression models is that the independent and dependent 
variables are linearly related. Therefore, nonlinear models are limited 
to fit with regression analysis. A better solution is to fit a nonlinear 
relationship between the independent and dependent variables. RCS 
is one of the most common methods for analyzing nonlinear 
relationships (Lee et al., 2018). In our study, RCS was used to explore 
nonlinear relationships. The correlation results in this study showed 

that none of the nonlinear relationships existed between Age, 
DFOTA, Ca2+, CRE, CK.MB, and mortality outcomes.

To the best of our knowledge, relevant studies are mainly in 
China at present. Prediction tools for predicting poor prognosis of 
death in SFTS have been developed by Qian et al. (2023), Wang et al. 
(2019), Zhang et al. (2023), and Li et al. (2023). The study by Qian 
et al. was a multicenter retrospective study that included 882 patients 
with SFTS and was characterized by a large sample size and different 
hospitals in different regions. A nomogram was constructed to 
predict the risk of death based on clinical characteristics and 
laboratory parameters, and the AUCs of the model were 0.898 and 

FIGURE 4

ROC curves and DCA curves for each model in the training and validation sets. (A) ROC curve in the training set. (B) ROC curve in the validation set. 
(C) DCA curve in the training set. (D) DCA curve in the validation set. The horizontal coordinates in graphs (A,B) are the false positive rates and the 
vertical coordinates are the true positive rates. Each curve of different color represents a different machine learning algorithm, and the machine 
learning algorithm corresponding to each color curve is labeled accordingly on the right side. The area enclosed by the curves and the horizontal and 
vertical coordinates can reflect the differentiation performance of the model, and the larger the area is, the better the differentiation performance of 
the model is. (C,D) are plotted with threshold probabilities in the horizontal and net clinical utility in the vertical. There are two straight lines in the 
graphs as reference lines, namely, the reference line where all samples are predicted to be positive (i.e., “all interventions”) and the reference line where 
all samples are predicted to be negative (i.e., “no interventions”), which are color-coded on the right side of the image. Each color curve corresponds 
to a corresponding machine learning algorithm, and the corresponding color of the algorithm is also marked on the right side of the image. Only if the 
model’s corresponding curve is above these two reference lines does the model achieve positive net clinical utility, with higher curves indicating 
greater clinical benefit from the predictions provided by the model at the corresponding thresholds.
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0.890 in the training and validation cohorts, respectively. Instead, our 
research has developed ML models that are characterized by their 
ability to efficiently process big data and intricate patterns, giving the 
models better performance. The studies by Zhang et al. and Li et al. 
were single-center retrospective studies and lacked external 
validation. Compared with their studies, our study with a larger 
sample size and external validation can somewhat overcome the 
study bias and systematic errors and make the results more realistic. 
All of the above studies are based on the nomogram constructed by 
the traditional linear model. There are few studies based on ML 
constructing models about the prediction of mortality risk in SFTS 

patients, and only Zheng et  al. built a model with the Reservoir 
Computing with Boosted Topology (RC-BT) method to predict the 
mortality of SFTS patients (Zheng et al., 2023). Ca2+, cholesterol, 
alcohol history, headache, field exposure, potassium, and dyspnea 
were identified as predictors of mortality in SFTS. Most of these 
indicators were retrospective variables and may be biased to some 
extent. Similar to our study, data were collected in a single center and 
validated with external data, and a more comprehensive performance 
evaluation of the model was performed: accuracy of 0.903, sensitivity 
of 0.913, specificity of 0.884, PPV of 0.809, NPV of 0.946, and AUC 
of 0.917. And in our study, the performance of the model was further 

TABLE 2 Evaluation metrics of the models constructed by each algorithm.

AUC ACC Recall SPE Precision KAPPA MCC F1-
score

Brier 
score

Train GBM 0.887 0.824 0.829 0.823 0.553 0.551 0.571 0.663 0.104

KNN 0.957 0.904 1 0.878 0.685 0.751 0.775 0.813 0.081

LR 0.85 0.777 0.803 0.771 0.48 0.46 0.490 0.601 0.121

NNet 0.88 0.799 0.816 0.795 0.512 0.502 0.527 0.629 0.109

SVM 0.86 0.819 0.776 0.83 0.546 0.525 0.539 0.641 0.113

XGBoost 0.962 0.885 0.908 0.878 0.663 0.692 0.707 0.766 0.063

Valid GBM 0.87 0.739 0.9 0.707 0.383 0.395 0.464 0.537 0.092

KNN 0.978 0.958 1 0.949 0.8 0.863 0.870 0.889 0.059

LR 0.788 0.908 0.45 1 1 0.577 0.636 0.621 0.105

NNet 0.871 0.832 0.85 0.828 0.5 0.53 0.561 0.630 0.093

SVM 0.93 0.941 0.9 0.949 0.783 0.802 0.803 0.837 0.129

XGBoost 0.997 0.975 1 0.97 0.87 0.915 0.919 0.930 0.034

Train, training set; valid, validation set; ACC, accuracy; SPE, specificity; MCC, Matthews correlation coefficient.

FIGURE 5

An online web calculator based on the XGBoost model and a summary plot of the SHAP values for the model. (A) Summary plot of SHAP values. The 
vertical coordinates are sorted in descending order of importance of the variables, with the higher up the scale the more important the variable is to 
the model. For horizontal positions, the “SHAP value” indicates whether the impact of the value is associated with a higher or lower predicted value. 
The color of each SHAP value point indicates whether the observation is high (purple) or low (yellow). (B) An online web calculator based on the 
XGBoost model.
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improved relative to it. The clinical utility of the model was further 
evaluated and an online web calculator was constructed, which 
facilitates visualization of the clinical utility of the model and ease of 
use of the model.

Our study also has some limitations. First, the present study is a 
retrospective study, which may be  subject to potential bias and 
confounding effects. Future prospective studies could largely avoid 
these biases. Second, although the sample size of this study could meet 
the minimum requirements for constructing a model (Moons et al., 
2014), the number of positive events was small which could 
be statistically biased. Therefore, subsequent studies with large sample 
sizes to validate the model are essential. In addition, the populations 
in this study were all from eastern China, and the model should 
be viewed with caution when applied to populations in other regions. 
Further external validation of the model using population datasets 
from other regions and ethnicities is essential.

5 Conclusion

In this study, six ML models were constructed and evaluated by 
using SFTS patients from Chaohu Hospital of Anhui Medical 
University as the training set and SFTS patients from Anhui Provincial 
Public Health Clinical Center as the validation set. The final model 
based on the XGBoost method characterized by the six variables Age, 
DFOTA, CI, Ca2+, CRE, and CK.MB had the best performance. The 
model was further interpreted using SHAP with results suggesting that 
CRE, Age, and CK.MB are the top three important risk factors for 
death in patients with SFTS. Future prospective studies are needed to 
confirm this result. An online web calculator was also constructed to 
facilitate model application.
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