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Glycoconjugate vaccines are a vital category of effective and safe commercial 
vaccines that have significantly reduced the global prevalence of drug-resistant 
bacterial infections. These vaccines are synthesized by covalently linking bacterial 
polysaccharide antigens to a carrier protein. Given that they produce a stronger 
and longer-lasting immune response than pure polysaccharides that activate 
only B cells, glycoconjugate vaccines have become one of the most promising 
vaccine types. However, the chemical synthesis of glycoconjugate vaccines is 
complex, costly, and labor-intensive. Therefore, the efficient preparation of 
biosynthetic glycoconjugates using microbial cell factories has emerged as a 
highly desirable manufacturing alternative. This review focuses on advancements 
in the recombinant microbial biosynthesis of glycoconjugate vaccines and 
summarizes various strategies to optimize their production. It is based on three 
key aspects: the selection of oligosaccharyltransferase (OST), the use of different 
vaccine carrier proteins, and the enhancement of key concentrations in the 
uridine diphosphate (UDP)-sugar supply. Finally, the review highlights technical 
challenges and discusses future directions for the recombinant synthesis of 
glycoconjugate vaccines.
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1 Introduction

Drug-resistant bacteria are on the rise and pose a major threat, highlighting the urgent 
need for effective vaccines to prevent infections and save lives (O’Neil, 2014; Pai and Memish, 
2016; Micoli et al., 2021; Zhou et al., 2023). Capsular polysaccharides (CPS) or O-antigen 
polysaccharides (OPSs) are key components of bacterial cells and play significant roles in 
various biological processes, including inflammation, cellular adhesion, molecular recognition, 
catalysis, pathogenic infections, and signal transduction events (Figure  1). Given their 
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prominent biological roles, bacterial polysaccharides are promising 
candidates for use in vaccines. However, pure polysaccharide vaccines 
can only induce B cells to produce low-affinity IgM, thereby making 
them ineffective in infants and elderly individuals with 
immunodeficiencies (Pon and Jennings, 2009; Avci et  al., 2011). 
Glycoconjugate vaccines link a glycan to a protein, resulting in 
multiple immune system triggers that create long-term immunological 
memory and increase vaccine stability (Pace, 2013; Micoli et  al., 
2018b; Xu et  al., 2019). In particular, the implementation of fully 
licensed glycoconjugate vaccines for Haemophilus influenzae type b 
(Hib) (Ladhani, 2012; Perrett et  al., 2013), Neisseria meningitidis 
(McCarthy et al., 2018), and some strains of Streptococcus pneumoniae 
(Grijalva et  al., 2007) has significantly reduced the occurrence of 
bacterial meningitis and pneumonia worldwide. In addition, they have 
contributed to a decrease in the prevalence of antibiotic-resistant 
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Overview of the glycoconjugate vaccine synthesis technologies. a,b. Chemical approach for synthesizing glycoconjugate vaccines. a. Extraction and 
purification of the LPS/glycan and protein backbone from the bacterium; b. Chemical linkage of the OPS to the protein backbone; c–g. Biosynthesis of 
glycoconjugate vaccines. c. Biosynthesis of glycoconjugate vaccines using N-linked glycosylation; d. Biosynthesis of glycoconjugate vaccines using 
O-linked glycosylation; e. Alternative therapeutic conjugates targeting bacterial pathogens; f. Application of different carrier proteins in glycoconjugate 
vaccines; g. Strategies to optimize the UDP-sugar supply.

FIGURE 1

Schematic diagram of the OPS, LPS, and CPS structures in bacteria.
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infections. Glycoconjugate vaccines provide a significant benefit 
because they can be effectively and safely administered to a wide range 
of age groups, including infants and the elderly (Rappuoli, 2018). As 
a result of the increasing demand for such versatile vaccines, the global 
glycoconjugate vaccine market was projected to reach approximately 
US$10 billion by 2020 (Kay et al., 2019).

Global vaccination rates for conjugate vaccines in children are still 
approximately 30%, with limited access and insufficient immunization 
coverage contributing to most of the ongoing disease burdens (Wahl et al., 
2018). In recent years, the demand for therapeutic and diagnostic 
glycoconjugates—such as those based on polysaccharides used for 
pneumonia and meningitis—has significantly increased. However, 
progress in their development and distribution has been slow due to the 
complex and expensive nature of their production. The conventional 
process for producing conjugate vaccines involves chemically linking 
carrier proteins to polysaccharide antigens, which are extracted from 
extensive cultures of pathogenic bacteria. The production of OPS-based 
glycoconjugates involves several detailed steps (Wang et al., 2023b): (i) 
extraction of both the LPS/glycan and the protein backbone from the 
bacterial source; (ii) thorough purification of the protein backbone 
alongside the LPS; (iii) detoxification of the LPS through the chemical 
removal of lipid A, isolating the OPS; and (iv) chemical conjugation of the 
isolated OPS to the protein backbone. However, there are several 
drawbacks to large-scale fermentative production. The isolation of 
polysaccharides from the corresponding pathogenic bacterial serovars 
always involves safety concerns. Each step of the process incurs 
considerable losses and is time-consuming, which greatly increases the 
cost of glycoconjugates and limits their application in developing 
countries. Moreover, each glycoconjugate synthesis presents unique 
challenges, requiring a specific conjugation method and an individually 
designed synthetic scheme for each glycoconjugate.

Following the discovery of glycoconjugate synthesis in bacteria 
and the successful transfer of glycosylation pathways across species, 
Escherichia coli (E. coli) has emerged as a practical model for exploring 
glycosylation, decoding the glycan structures of living cells, and 
producing therapeutic glycoconjugates (Merritt et al., 2013). The use 
of recombinant E. coli as a host for glycoconjugate production has 
shown considerable promise, with significant developments (Jaffé 
et al., 2014). Therefore, the biosynthesis of glycoconjugate vaccines is 
often of interest to synthetic biologists.

Here, we review the promising field of biosynthetic glycoconjugate 
vaccines, focusing on optimizing strategies for the production of 
polysaccharide-based glycoconjugate vaccines.

2 Advances in the biosynthesis of 
polysaccharide-based 
glycoconjugates

In recent years, there has been a growing interest in developing 
bacterial species as hosts for glycoengineering applications involving 
the biosynthesis of structurally diverse polysaccharides, which can 
be produced as free glycans or as conjugates to carrier proteins (Reid 
and Szymanski, 2010; Kightlinger et  al., 2020). The most obvious 
advantage of this approach is the much simpler and cheaper culturing 
conditions required for the maintenance of bacterial cells compared 
to eukaryotic cell cultures (Schmidt, 2004; Waegeman and Soetaert, 
2011; Guarino, 2013). Bacteria carry N- and O-glycosylation systems 

that are mediated by oligosaccharyltransferase (OST). In 
OST-dependent glycosylation mechanisms, an oligosaccharide is 
synthesized on a lipid carrier and subsequently transferred to proteins 
en bloc by OST. Multiple proteins are glycosylated using this 
mechanism (Eichwald, 1865; O’Connor and Imperiali, 1996; Wacker 
et al., 2002). Some unconjugated polysaccharides and glycoconjugates 
are being biosynthesized as vaccines using microbial cell factories and 
are currently in the clinical trial phase (Riddle et al., 2016; Huttner 
et al., 2017). Figure 2 shows the key steps in the history of vaccine 
technologies and their evolution.

2.1 Prokaryotic 
oligosaccharyltransferase-catalyzed in vivo 
glycosylation of proteins

OST selection is a critical consideration in glycosylation, 
particularly when designing and producing glycoconjugate vaccines 
and other (Szymanski et al., 1999; Schwarz and Aebi, 2011; Harding 
and Feldman, 2019; Yakovlieva et al., 2021; Bagdonaite et al., 2022). 
OST is an enzyme complex responsible for transferring a 
pre-assembled glycan to specific amino acid residues of nascent 
proteins (Iwashkiw et  al., 2013; Valguarnera et  al., 2016). The 
integration of prokaryotic OST-catalyzed in vivo glycosylation into the 
production pipeline of glycoconjugate vaccines represents a powerful 
tool for facilitating a critical step in the pathway to generate more 
effective and accessible vaccines (Figure 3).

2.1.1 Advances in the biosynthesis of 
polysaccharide-based glycoconjugates using 
N-linked glycosylation

For many years, it was believed that protein N-glycosylation 
occurred exclusively in eukaryotic systems. However, this perception 
shifted in 1999, when it was discovered that Campylobacter jejuni (C.
jejuni), a Gram-negative bacterium and a pathogen in the human gut 
mucosa, has a protein N-glycosylation apparatus. Subsequent studies 
found that an OST named CjPglB (PglB from C. jejuni) was 
responsible for glycan transfer to the asparagine side chain in a 
consensus N-X-S/T sequence of the acceptor protein (Szymanski 
et  al., 1999; Szymanski et  al., 2003; Larsen et  al., 2004). Notably, 
CjPglB, a single-subunit protein, was found to be  homologous to 
STT3, the catalytic domain of the multi-subunit eukaryotic OST 
(Matsumoto et al., 2012).

In 2002, Aebi et al. first reported a bottom-up glycoengineering 
method using PglB-catalyzed glycosylation to produce glycoconjugate 
vaccines in E. coli (Wacker et al., 2002). Following this concept, several 
bacterial glycoconjugate vaccines have been biosynthesized using the 
N-linked glycosylation system in E. coli, and some of these vaccines 
have been successfully applied in clinical trials. Table 1 summarizes the 
glycoconjugate vaccine candidates generated and tested to date. In 
2010, Ihssen et al. designed a glycoconjugate vaccine against Shigella 
dysenteriae, which was recently applied in a phase I clinical trial (Ihssen 
et  al., 2010). Urinary tract infections (UTIs) are among the most 
common bacterial infections in humans. In over 80% of acute, 
uncomplicated cystitis cases, uropathogenic E. coli (UPEC) is the 
responsible pathogen (Kot, 2019). Indeed, the generation of antibodies 
targeting the O-antigen has proven to be  effective in providing 
protection against recurrent UTIs caused by E. coli. Consequently, a 
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FIGURE 2

Timeline of key glycoconjugate vaccine technologies and their evolution.

FIGURE 3

Glycoengineering approach to the production of glycoconjugate vaccines. An E. coli cell is engineered with three plasmids to generate glycoconjugate 
vaccines through a process called Protein Glycan Coupling Technology (PGCT), which unfolds in three distinct stages: polysaccharide expression, 
carrier protein design and expression, and coupling. Initially, the polysaccharide is synthesized on an undecaprenol pyrophosphate lipid anchor 
(represented by a blue/black circle) in the cytoplasm. It is then transported to the periplasmic space, where the enzyme PglB recognizes the lipid-
linked reducing-end sugar. PglB then transfers the polysaccharide en bloc to an acceptor sequon (D/E-X-N-X-S/T) located on the carrier protein, 
culminating in the production of the glycoconjugate vaccines. IM refers to the inner membrane, and OM to the outer membrane.
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vaccine targeting this antigen is promising due to its demonstrated 
safety and effectiveness. The promising glycoconjugate vaccine 
ExPEC4V, which contains O-antigens from UPEC serotypes O1A, O2, 
O6A, and O25B, was produced and showed positive results in phase II 
human clinical trials (Huttner et al., 2017). The EXPEC9V vaccine, 
another conjugate vaccine currently in a phase 3 clinical trial, has also 
shown promise against UPEC (Saade et al., 2020). In addition, the 
decavalent conjugate vaccine known as EXPEC10V, which targets a 
broad spectrum of serotypes (O1, O2, O4, O6, O8, O15, O16, O18, 
O25B, and O75), demonstrated high effectiveness against invasive 
extraintestinal E. coli in phase 1 clinical trials (Fierro et al., 2023). 
Hence, recombinant production of glycoconjugates in E. coli appears 
to be  a promising alternative to traditional methods used for 
biomanufacturing conjugate vaccines. Although bacterial-linked OST 
can transfer a broader array of glycan structures, they still require 
acetylation at the C2 position of the reducing sugar, which limits the 
transfer of some glycans (Izquierdo et al., 2009; Ramírez et al., 2017; 
Napiórkowska et al., 2018).

2.1.2 Advances in the biosynthesis of 
polysaccharide-based glycoconjugates using 
O-linked glycosylation

Over the last decade, in addition to the bacterial N-glycosylation 
mechanism mentioned above, O-linked glycosylation that led to the 
modification of serine or threonine residues has been identified in 
several bacterial species (Iwashkiw et al., 2013). In contrast to the 
N-linked oligosaccharyltransferase (OST), the O-linked OST typically 
demonstrates more relaxed specificities for glycans while maintaining 
stricter specificities for acceptor molecules. Four types of bacterial 
O-linked OST such as PilO, PglL, PglS, and TfpM have been utilized 
in glycobiology. These were first identified in Pseudomonas aeruginosa, 
Neisseria meningitidis, Acinetobacter baylyi, and Moraxella osloensis, 
respectively (Iwashkiw et al., 2013; Harding and Feldman, 2019; Knoot 
et  al., 2023). In P. aeruginosa, PilA has been identified as being 
modified with a glycan, a modification catalyzed by the 
glycosyltransferase PilO (Castric, 1995). A similar machinery was 
found in N. meningitidis, where PglL was responsible for the 

TABLE 1 Summary of biosynthetic vaccine candidates using various glycosyltransferases in this review, with the potential to prevent bacterial infectious 
diseases.

Glycosyltransferase Organism Carrier protein Status

PglB Shigella dysenteriae type 1 rEPA Phase I clinical trials (Ihssen et al., 2010)

Shigella flexneri 2a rEPA Phase I clinical trials (Ravenscroft et al., 2019)

Francisella tularensis rEPA Laboratory phase (Marshall et al., 2018)

Burkholderia pseudomallei AcrA Laboratory phase (Garcia-Quintanilla et al., 2014)

Staphylococcus aureus rEPA/Hla Laboratory phase (Wacker et al., 2014)

Streptococcus pneumoniae AcrA Laboratory phase (Herbert et al., 2018)

Streptococcus pneumoniae PiuA Laboratory phase (Reglinski et al., 2018)

Escherichia coli O1, O2, O6, and 

O25a

rEPA Phase I/II clinical trials (Van den Dobbelsteen et al., 2016)

Escherichia coli O1A, O2, O4, O6A, 

O15, O16, O18A, O25B, and O75

rEPA Phase III clinical trials (Saade et al., 2020)

Escherichia coli O1A, O2, O4, O6A, 

O8, O15, O16, O18A, O25B, and O75

rEPA Phase I/II clinical trials (Fierro et al., 2023)

Escherichia coli O157 MBP Laboratory phase (Ma et al., 2014)

PglL Shigella flexneri CTB Laboratory phase (Pan et al., 2016a)

Salmonella para-typhi A CTB Laboratory phase (Sun et al., 2018)

Brucella abortus CTB Laboratory phase (Li et al., 2023)

Salmonella Typhimurium rEPA Laboratory phase (Shah, 2009)

Escherichia coli O4, O5, O7. and O21 CTB Laboratory phase (Jiang et al., 2021; Wang et al., 2023a; Wang 

et al., 2023b)

Klebsiella pneumoniae CTB Laboratory phase (Liu et al., 2023b)

PglS Streptococcus pneumoniae 8, 9 V, and 

14

rEPA Laboratory phase (Harding et al., 2019)

Klebsiella pneumoniae K1 and K2 rEPA Laboratory phase (Feldman et al., 2019)

Group B Streptococcus type Ia, IIb, 

and III

rEPA Laboratory phase (Duke et al., 2021)

TfpM Escherichia coli O16 rEPA Laboratory phase (Knoot et al., 2023)

Klebsiella pneumoniae O2a rEPA Laboratory phase (Knoot et al., 2023)

Group B Streptococcus type III rEPA Laboratory phase (Knoot et al., 2023)

Salmonella enteritidis LT2 rEPA Laboratory phase (Lanzilao et al., 2015)
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attachment of a carbohydrate moiety to the protein PilE, generating a 
glycoconjugate (Power et al., 2006). Both PilO and PglL proteins can 
recognize Und-PP-linked glycans as substrate and tag proteins, 
demonstrating a promising application of these proteins in the 
development of glycoconjugate vaccines containing O-linked sugars 
(Table 2).

However, both native PilO and PglL proteins were found to 
transfer only a single O-antigen subunit rather than longer 
polysaccharides, which limited their further application. This issue 
appears to have been recently solved by Pan et al., who elucidated and 
optimized an O-linked “glycosylation tag” as a recognition motif, 
known as MOOR, for the O-glycosyltransferase PglL (Pan et al., 2016). 
In their research, this recognition motif was successfully fused to both 
the N-terminus and C-terminus of different potential carrier proteins, 
generating glycoconjugate vaccines against S. typhimurium and 
S. flexneri 2a pathogen infections, respectively. Inspired by these 
technological advances, we  also added a peptide fragment 
(45SAVTEYYLNHGEWPGNNTSAGVATSSEIK73) to the C-terminus 
of the carrier protein cholera toxin B subunit (CTB) using the PglL-
dependent O-glycosylation system to generate OPS-based 
glycoconjugate vaccines against UPEC (Wang et al., 2023a).

Although both the N-OST PglB and the O-OST PglL exhibit 
remarkable versatility toward glycan substrates, neither enzyme has 
been experimentally proven to conjugate glycans containing a glucose 
residue at the reducing end. However, in approximately 75% of 
S. pneumoniae and many other pathogenic bacteria, CPSs contain 
glucose as the reducing-end monosaccharide. This indicates that these 
types of OST are not suitable for the biosynthesis of glycoconjugate 
vaccines, thereby limiting further application. Nonetheless, the two 
types of OST, PglS and Tfpm, are now known to transfer glycans with 
glucose at the reducing end (Harding et  al., 2019). PglS was first 
discovered in Acinetobacter baylyi ADP1 and is capable of transferring 
a diverse array of polysaccharides, including those with glucose as the 
reducing-end sugar (Harding et al., 2015). Furthermore, Feldman 
et al. engineered a polyvalent pneumococcal glycoconjugate vaccine 
using the natural acceptor protein ComP as a vaccine carrier (Feldman 
et al., 2019; Harding et al., 2019). Several antimicrobial glycoconjugate 
vaccines using the conventional vaccine carrier Pseudomonas 
aeruginosa exotoxin A protein are already in the clinical trial phase 
(Porstendörfer et al., 2000; Schulz et al., 2013).

Harding et al. (2019) explored the recognition motif of PglS by 
fusing a peptide fragment from ComP to the N-terminus and 
C-terminus of two vaccine carrier proteins. These proteins included 
the detoxified variant of diphtheria toxin, CRM197, and recombinant 
ExoProtein A (rEPA) (Knoot et al., 2021; Knoot et al., 2023). As a 
result, both proteins were glycosylated. Recombinant O-glycoconjugate 
vaccines were produced with PglS-dependent O-glycosylation against 
a variety of pathogens, such as Streptococcus mastitis and Klebsiella 
pneumoniae (Geno et al., 2015; Pan et al., 2015; Carboni et al., 2017).

In 2023, Harding et al. identified a novel type of O-OST, termed 
TfpM, from Moraxella bacteria (Knoot et al., 2023). TfpM proteins are 
similar in size and sequence to PilO enzymes; however, these proteins 
can transfer long-chain polysaccharides to acceptor proteins. 
Furthermore, one of the glycosylation sites on pilin-like proteins is 
serine (Ser). The ability to tag proteins for TfpM-dependent 
O-glycosylation expands the potential biotechnological applications 
of this enzyme family. Utilizing this system, they engineered a variety 
of glycoconjugate vaccines against bacterial infections.

2.2 Alternative therapeutic bacterial 
conjugates

Although protein glycoconjugation is the most widely studied 
approach in vaccine research, researchers in the field of bacterial 
glycobiology are exploring alternative approaches to boost the 
immunogenicity of carbohydrate epitopes. Nearly all Gram-negative 
bacteria and some Gram-positive bacteria release outer membrane 
vesicles (OMVs) during their life cycles (Schwechheimer and Kuehn, 
2015). These vesicles are usually nanosized proteoliposomes (ranging in 
size from 20 to 250 nm) with bilayer membranes that are mainly 
composed of virulence-associated components (e.g., membrane proteins, 
CPS, and LPS) (Tan et al., 2018). In light of their immunogenic capacities 
and high built-in adjuvanticity, OMVs have become promising vaccine 
candidate antigens (Lei et al., 2019). An OMV-based vaccine derived 
directly from N. meningitidis was developed as a licensed vaccine termed 
Bexsero® (GlaxoSmithKline), which has proven to be an effective vaccine 
against serogroup B meningococcal infections (Gorringe and Pajón, 
2012). Compared to traditional subunit vaccines, OMV vaccines have 
numerous advantages: (i) OMVs carry significant amounts of virulence-
associated pathogen-associated molecular patterns (PAMPs), which play 
an essential role in inducing an immune response; (ii) OMVs, as 
nanoscale particles, enhance the accumulation of antigens in lymph 
nodes, thereby boosting immunogenicity; and (iii) nanocarriers provide 
efficient adjuvanticity and stimulate antigen-presenting cell activation to 
elicit robust immune responses.

A novel bacterial glycoengineering approach to develop OMV-based 
nanovaccines was reported (Morelli et  al., 2021; Long et  al., 2022). 
Inspired by these technological advances, a series of E. coli-derived 
glycosylated OMVs (glycOMVs) were generated (Valguarnera and 
Feldman, 2017; Xie et al., 2022). These glycOMVs, carrying O-antigens 
from eight bacterial species, including F. tularensis and the CPS of 
S. pneumoniae serotype 14 (CPS14), were shown to elicit significant 
serum titers of class-switched, glycan-specific IgG antibodies in mice 
(Price et al., 2016). Notably, mice immunized with glycOMVs decorated 
with the CPS14 of S. pneumoniae elicited the same level of antigen-specific 
serum titers as mice vaccinated with the commercially licensed 
glycoconjugate vaccine Prevnar13®. These results indicate that the use of 
bacterial OMVs decorated with heterologous antigens holds great 
potential in the design of effective antibacterial vaccines.

In another investigation, a nanoconjugate vaccine was generated 
using a nano-B5 self-assembly system that carries the O-polysaccharide 
from K. pneumoniae (Pan et al., 2020). This nanovaccine has been shown 
to effectively boost antigen uptake by antigen-presenting cells and 
provoke a humoral immune response against K. pneumoniae. The 
designed nano-B5 self-assembly system in this study can effectively 
integrate various modular components and antigen cargos to efficiently 
create a potentially vast array of nanovaccine structures using multiple 
bacterial species.

Furthermore，to explore new areas within the structural domain of 
glycans and proteins in E. coli, Tytgat et  al. (2019) engineered a 
cytoplasmic glycoengineering system to generate a nanoscale 
glycoconjugate. In their work, the shift from en bloc glycosylation to 
sequential glycosylation was a significant change in methodology. 
Sequential glycosylation in the cytoplasm allows for a more tailored, 
stepwise addition of glycan moieties directly to proteins. Moreover, the 
glycoengineering process occurred in the cytoplasm, marking a 
groundbreaking approach to protein glycosylation. This innovative 
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TABLE 2 Summary of polysaccharide-based glycoconjugate vaccine candidates using various carrier proteins.

Carrier 
protein

Organism Glycan Coupling method Status

TT/DT Streptococcus pneumoniae Capsules - polyvalent(4, 6B, 9 V, 14, 

18C, 19F, 23F, 1, 5, and 7F)

Chemical Marketed (Feldman and Anderson, 

2020)

Haemophilus influenzae PRP Chemical Marketed (Lepow et al., 1987)

Neisseria meningitidis Capsule-serotype A Chemical Marketed (Ateudjieu et al., 2020)

Neisseria meningitidis Capsule-serotype A, C, W, and Y Chemical Marketed (Robertson et al., 2023)

Neisseria meningitidis Capsule-serotype A, C, W, Y, and X Chemical Marketed (Robertson et al., 2023)

Salmonella Typhimurium Capsule-serotype Vi Chemical Marketed (Lee et al., 2020)

CRM197 Streptococcus pneumoniae Capsules - polyvalent(4, 6B, 9 V, 14, 

18C, 19F, and 23F)

Chemical Marketed (Chibuk et al., 2010)

Streptococcus pneumoniae Capsules - polyvalent(4, 6B, 9 V, 14, 

18C, 19F, 23F, 1, 5, 7F, 3, 6B, and 19A)

Chemical Marketed (Chibuk et al., 2010)

Streptococcus pneumoniae Capsules - polyvalent(4, 6B, 9 V, 14, 

18C, 19F, 23F, 1, 5, 7F, 3, 6B, 19A, 22F, 

and 33F)

Chemical Marketed (Schellenberg et al., 2023)

Streptococcus pneumoniae Capsules - polyvalent(4, 6B, 9 V, 14, 

18C, 19F, 23F, 1, 5, 7F, 3, 6B, 19A, 8, 

10A, 11A, 12F, 15B, 22F, and 33F)

Chemical Marketed (Schellenberg et al., 2023)

Neisseria meningitidis Capsule-serotype A,C,W, and Y Chemical Marketed (Blanchard-Rohner et al., 

2013)

Haemophilus influenzae PRP Chemical Marketed (Akeda et al., 2018)

Salmonella Typhimurium Capsule-serotype Vi Chemical Development (van Damme et al., 

2011)

rEPA Shigella dysenteriae O-antigen Biological Development (Ihssen et al., 2010)

Shigella flexneri Capsule- Type 2a Biological Development (Ravenscroft et al., 

2019)

Francisella tularensis O-antigen Biological Development (Marshall et al., 2018)

Escherichia coli O-antigen O1, O2, O6, and O25a Biological Development (Van den Dobbelsteen 

et al., 2016)

Salmonella Typhimurium O-antigen Biological Development (Shah, 2009)

Streptococcus pneumoniae Capsule-serotype 8, 9 V, and 14 Biological Development (Harding et al., 2019)

Klebsiella pneumoniae Capsule-serotype K1 and K2 Biological Development (Feldman et al., 2019)

Group B Streptococcus Capsule-serotype Ia, IIb, and III Biological Development (Duke et al., 2021)

Escherichia coli O-antigen O16 Biological Development (Knoot et al., 2023)

Klebsiella pneumoniae O2a O-antigen O2a Biological Development (Knoot et al., 2023)

Group B Streptococcus Capsule-serotype III Biological Development (Knoot et al., 2023)

Salmonella enteritidis LT2 O-antigen LT2 Biological Development (Lanzilao et al., 2015)

CTB Shigella flexneri O-antigen Biological Development (Pan et al., 2016)

Salmonella para-typhi A O-antigen Biological Development (Sun et al., 2018)

Brucella abortus O-antigen Biological Development (Li et al., 2023)

Escherichia coli O-antigen O4, O5, O7, and O21 Biological Development (Jiang et al., 2021; Wang 

et al., 2023a; Wang et al., 2023b)

Klebsiella pneumoniae O-antigen O1 Biological Development (Liu Y. et al., 2023)

MBP Escherichia coli O-antigen polysaccharide (O157) Biological Development (Ma et al., 2014)

AcrA Burkholderia pseudomallei O-PSII Biological Development (Garcia-Quintanilla 

et al., 2014)

Brucella abortus O-antigen of Y. enterocolitica O9 Biological Development (Huang et al., 2020)

OMPC Haemophilus influenzae PRP Chemical Marketed (Kniskern et al., 1995)
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approach could potentially enable new functionalities in proteins, 
enhance the stability and efficacy of therapeutic proteins, and allow for 
the production of glycoconjugates for diverse future 
biomedical applications.

2.3 Carrier proteins as a vaccine design 
parameter

Four carrier proteins have been used in licensed bacterial vaccines 
that promote a T cell-dependent (TD) immune response: tetanus toxoid 
(TT), diphtheria toxoid (DT), Cross Reactive Material 197 (CRM197), and 
Haemophilus protein D (PD) (Giannini et al., 1984; Micoli et al., 2018; 
David et al., 2019; Ravenscroft et al., 2019; Del et al., 2022). Diphtheria 
and tetanus toxoids were initially selected as carrier proteins for Hib 
conjugate vaccines because of their long history of safety and efficacy 
(Prymula et al., 2006; Forsgren et al., 2008). Immunization of mice with 
DT/TT/CRM197 prior to CRM197-conjugated N. meningitidis serogroup 
A and C polysaccharides was found to significantly improve anti-
polysaccharide IgG titers (Terra et al., 2012; Moeller, 2022). Additional 
experiments showed that the activation of carrier protein-specific T 
helper cells could result in more effective activation of glycan-specific B 
cells, with carrier-derived fragments presented on their surface (Adamo 
et al., 2012; Oleksiewicz et al., 2012; Saggy et al., 2012; Zhang et al., 2013).

2.3.1 New protein carriers under investigation
In addition to the carrier proteins already used in licensed 

commercial glycoconjugate vaccines, many others have been tested in 
preclinical studies and clinical trials with significant results. The 
recombinant protein rEPA has been engineered as a carrier to chemically 
conjugate with Shigella O-antigens, Staphylococcus aureus CPS5 and 
CPS8, and Salmonella Typhi Vi antigen (Szu et al., 1987; Brakke, 1992; 
Fattom et al., 1993; Cohen et al., 1997; Kossaczka et al., 1999). These 
glycoconjugate vaccines have been shown to boost vaccine efficacy. The 
cholera toxin B subunit (CTB) is a non-toxic pentameric moiety of 
cholera toxin (CT) and can be  safely administered through various 
routes to humans (Hol et al., 1995; Sanchez and Holmgren, 2008; Baldauf 
et al., 2015). It has the capacity to induce an antigen-specific serum IgG 
response, along with toxin-neutralizing immunity. Recently, the CTB has 
been successfully used as a carrier protein by conjugating antigens to 
induce immune responses against several pathogens (such as 
C. trachomatis, H. pylori, S. paratyphi A) (McKenzie and Halsey, 1984; 
Vempati, 2014; He et al., 2022). Therefore, the CTB is a promising carrier 
that can be utilized in the development of glycoprotein vaccines.

2.3.2 Proteins with a dual role of a carrier and an 
antigen

In some cases, prior or simultaneous exposure to a protein can lead 
to vaccine interference, thereby decreasing glycoconjugate efficacy 
(Dagan et al., 2010; Borrow et al., 2011). To overcome unwanted vaccine 
interference, new carrier candidates from different pathogens have been 
researched at the preclinical level (Micoli et al., 2019; Gebre et al., 2021). 
Some protein carriers serve a dual role of both a carrier and a protective 
antigen to elicit or enhance immune responses. Group B Streptococcus 
(GBS) pili proteins GBS80 and GBS67, previously selected as pathogen-
derived protein carriers and shown to confer protection, were conjugated 
to capsular PS type II and V, respectively (Singh and Srivastava, 2011; 
Moeller et al., 2021; Micoli et al., 2023). Furthermore, the recombinant 

protein termed TcdB_GT from Clostridium difficile was conjugated to its 
polysaccharide II (PSII) and induced similar anti-PSII IgG levels in mice, 
comparable to those induced by a CRM197-PSII conjugate. Simon et al. 
also proposed using the flagellin protein of Salmonella enteritidis as a 
carrier to conjugate with its OPS, thereby achieving enhanced protection 
through the additive effect of anti-O-antigen and anti-flagellin immune 
responses (Simon et al., 2011). Despite the fact that each new carrier 
protein needs to undergo testing for safety and efficacy, their development 
as scaffolds for next-generation glycoconjugates appears promising.

2.4 Metabolic engineering strategies to 
improve UDP-sugar supply

Uridine diphosphate (UDP)-sugars, such as UDP-glucose (UDPG), 
are crucial sugar precursors for the biosynthesis of important sugar-
containing compounds, such as polysaccharides, glycoproteins, and 
glycolipids. These compounds are critical for cell growth and survival 
and are often limiting during recombinant biosynthesis (Feng et al., 
2020). Therefore, it is crucial to ensure that their supply is sufficient 
in vivo. To address this issue, several regulatory schemes have been 
developed to improve the accumulation of endogenous UDP-sugars, 
such as the inhibition or knockout of non-essential pathways that 
consume UDP-sugars (Zhuang et al., 2017) and the fine-tuning of gene 
expression (Lv et al., 2019).

2.4.1 Design and construction of an Escherichia coli 
glyco-platform to improve OPS production

As key precursors, UDP-sugars, especially UDPG, are involved in 
many cellular activities in E. coli, which can reduce their availability for 
OPS-based glycoconjugates biosynthesis (Verstrepen et al., 2004). Earlier 
studies have shown that supplementing large amounts of carbon sources, 
such as glucose, in the medium can alleviate the limitation of insufficient 
supply of UDPG (Liu S. et al., 2023). However, an excessive carbon 
source during the fermentation process can lead to overproduction of 
the acetic acid byproduct, which can ultimately lead to metabolic 
imbalance and inhibit the expression of recombinant enzymes (Pei et al., 
2019). The main glucose-consuming pathways in E. coli are glycolysis 
and the PPP (Feng et al., 2020). Therefore, inhibiting multiple genes 
involved in these glucose-consuming pathways may have a positive effect 
on the production of OPS-based glycoconjugates (Simkhada et al., 2010; 
Pandey et al., 2013). Meanwhile, some studies have focused on using a 
mixed carbon source during the fermentation process, aiming to separate 
glycoside biosynthesis and cell growth (Soellner et al., 2013; Pei et al., 
2019). This strategy was found to improve the overall titer, yield, and 
productivity of isoorientin generation (Wu et al., 2017; Tang et al., 2020).

To biosynthesize OPS-based glycoconjugates with high efficiency, 
the glycoengineering chassis was optimized by redirecting the carbon 
flux toward the biosynthesis of the required precursors (Wang et al., 
2023a). To this end, E. coli K12 MG1655 was selected as the original 
strain, and multiple gene deletions were engineered in the genome to 
prevent carbon leakage from the pathway, thereby increasing the 
carbon flux toward OPS biosynthesis (Gleizer et al., 2019). Herein, 
Liu et al. established a synergistic glucose–glycerol co-feeding system 
to improve OPS accumulation by separating bacterial growth from 
polysaccharide biosynthesis. Specifically, pfkA/B, zwf, nagB, and 
pykA/F were blocked to inhibit or knockout non-essential pathways, 
such as the E. coli Embden-Meyerhof-Parnas pathway and the PPP 

https://doi.org/10.3389/fmicb.2024.1457908
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2024.1457908

Frontiers in Microbiology 09 frontiersin.org

that consume UDP-sugars (Jiang et al., 2015; Gleizer et al., 2019). 
Moreover, genes involved in the synthesis of ECA and the incomplete 
O16-specific OPS in E. coli MG1655 were also deleted to avoid 
interference with OPS production or to inhibit the consumption of 
the pool of essential substrates (Datsenko and Wanner, 2000; Yates 
et  al., 2019). To enhance the glycerol consumption pathway and 
alleviate carbon catabolite repression, the gene gldA, encoding 
glycerol dehydrogenase, was also disrupted (Soellner et al., 2013). 
Overall, such a strategy can directly improve the reserve of 
UDP-sugar precursors and further increase OPS synthesis.

2.4.2 Fine-tuning of gene expression to increase 
the supply of NDP-sugars

Efficient protein glycosylation of glycoconjugates in E. coli requires 
sufficient availability of polysaccharide precursors, prior to their transfer 
by OST to engineered carrier proteins (Ihssen et al., 2010). The most 
common strategy is to enhance the expression levels of native biosynthesis 

pathway genes for NDP-sugars or dNDP-sugars that can channel more 
glucose into these NDP-sugars or dNDP-sugars due to the elevated 
production of pathway enzymes (Hernández-Montalvo et al., 2003). The 
first step is to clone the gene cluster that expresses O-antigen by PCR into 
E. coli and further ensure the correct assembly of the glycan (Liu et al., 
2017). Some studies have reported that the overexpression of the genes 
pgm and galU1, both of which are essential for UDPG biosynthesis, 
resulted in improved glucoside production (Weyler and Heinzle, 2015). 
Wang et al. (2023a) applied this strategy to significantly boost the levels of 
glycosyl donors (UDP-Glc, UDP-Gal, and UDP-GlcNAc) for 
monosaccharide building blocks present in the OPS of UPEC O21 cells 
(Figure  4). In their study, the genes pgm, galU, and galE, which are 
involved in the biosynthesis of UDP-Gal and UDP-Glc, were 
overexpressed. Furthermore, the genes glmS, glmM, and glmU were also 
overexpressed to boost the glycosyl donor UDP-GlcNAc (Deng et al., 
2006). In such a system, this approach boosted the availability of 
UDP-sugars and glycosylation in the glycoengineering strain MGD15.

FIGURE 4

Schematic representation of a system in E. coli for dual-carbon utilization and orthogonal glycoprotein biosynthesis engineering. ptsHICrr, encoding 
phosphotransferase system (PTS); PEP, phosphoenolpyruvate; PYR, pyruvate; pgi, glucose-6-phosphate isomerase; pgm, phosphoglucomutase; glmS, 
glucosamine 6-phosphate synthase; glmM, phosphoglucosamine mutase; glmU, glucosamine 1-phosphate acetyltransferase/N-acetylglucosamine 
1-phosphate uridyl transferase; UDP-GlcNAc, UDP-N-acetyl--D-glucosamine; manA, mannose-6-phosphate isomerase; Man-6P, D-mannose 
6-phosphate; pfkA, 6-phosphofructokinase I; pfkB, 6-phosphofructokinase II; nagB, glucosamine 6-phosphate deaminase; glpK, glycerol kinase; gldA, 
glycerol dehydrogenase; gpsA, glycerol-3-phosphate dehydrogenase; G3P, glycerol 3-phosphate; DHAP, glycerone phosphate; pykA/F, pyruvate 
kinase II/I; ppsA, phosphoenolpyruvate synthetase; TCA cycle, Tricarboxylic acid cycle.
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In another case, gene fine-tuning strategies were employed to 
promote OPS4 accumulation. Optimization of the pathway for enhancing 
dTDP-L-Rha and UDP-L-FucNAc synthesis can be targeted to improve 
glycosylation performance (Cress et al., 2014; Keinhörster et al., 2019). To 
identify enzymes with high catalytic activity, the biosynthetic pathways of 
dTDP-L-Rha and UDP-L-FucNAc from different bacterial sources were 
evaluated for efficient precursor production. Moreover, modular 
optimization was employed in this study by codon optimization (Alper 
et al., 2005). The biosynthetic pathways of dTDP-L-Rha and UDP-L-
FucNAc from different bacterial sources were screened to identify 
enzymes with high catalytic activities to facilitate efficient precursor 
production (Ajikumar et al., 2010). Codon-optimized genes involved in 
the biosynthetic pathways of dTDP-L-Rha from Mycobacterium 
tuberculosis and E. coli, as well as those genes involved in the biosynthetic 
pathways of UDP-L-FucNAc from P. aeruginosa, have been studied 
(Sharon et al., 2012).

3 Current challenges in the field

To address the complexities, costs, and labor-intensive nature 
of traditional chemical and chemoenzymatic methods, the use of 
microbial cell factories has emerged as a promising alternative for 
the biosynthesis of OPS-based glycoconjugate vaccines (Weyant 
et  al., 2018; Sorieul et  al., 2023). However, there are several 
challenges that need to be addressed in the further application of 
microbial cell factories in synthesizing the desired 
glycoconjugate vaccines.

 (i) The generation of multivalent glycoconjugates using 
cytoplasmic glycoconjugates presents unique challenges 
and complexities (Frasch, 2009). Creating multivalent 
glycoconjugates requires precise control over the number 
and arrangement of glycan chains attached to the protein 
(Bernardi et  al., 2013). This requires not only specific 
glycosyltransferases for heterologous substrates but also 
strategies to control the density and pattern of glycosylation, 
which can significantly impact the immunogenicity and 
biological function of the resulting multivalent 
glycostructures (Clomburg et al., 2017).

 (ii) Polysaccharide heterogeneity produced by microbial cell 
factories presents challenges in the application of glycoconjugate 
vaccines (Huang and Wu, 2010). The size, branching, and 
composition of polysaccharides, whose biosynthesis in 
microbial cell factories can vary, contribute to this heterogeneity. 
Since the immunogenicity of polysaccharide antigens can vary 
based on their molecular weight, branching, and sugar 
composition，the heterogeneity in polysaccharide structures 
can significantly affect the quality and efficacy of glycoconjugate 
vaccines (Anish et al., 2021). Controlling the uniformity and 
length of polysaccharide structures is crucial for ensuring 
consistent vaccine performance and regulatory approval.

 (iii) The lack of structural information about glycosyltransferases 
limits their application and modification. Glycosyltransferases 
are multi-transmembrane proteins, which makes resolving 
their structures challenging. However, with the development 
of cryo-electron microscopy techniques, it is likely that more 
glycosyltransferase structures will be clearly resolved. This will 

greatly enhance our understanding of the functions of 
different structural domains within glycosyltransferases, and 
it holds promise for the artificial design and reconstruction of 
these domains. Such advancements could enable engineered 
enzymes to possess a more relaxed and extensive recognition 
capability for polysaccharide structures, as well as more 
precise glycosylation motifs, thereby laying the foundation for 
the development of multivalent conjugate vaccines using sets 
of orthogonal glycosyltransferases.

 (iv) The biosynthesis of polysaccharide-conjugate vaccines relies 
heavily on the bioinformatic analysis of bacterial 
polysaccharide antigen synthesis gene clusters and the 
establishment of molecular serotyping (Hu et  al., 2013). 
However, deciphering polysaccharide antigens and conducting 
serotyping take time, thereby delaying the development of 
polysaccharide-based glycoconjugate vaccines and hindering 
the timely prevention and control of epidemic diseases.

 (v) Most licensed glycoconjugate vaccines typically utilize 
traditional carrier proteins (Wilder-Smith, 2008; Micoli 
et  al., 2018; Del Bino et  al., 2022). Rational design and 
screening of novel carrier proteins are expected to further 
enhance the immunogenicity of glycoconjugate vaccines 
(Yue and Ma, 2015). The selection of new carrier proteins 
must adhere to some key principles for use in glycoconjugate 
vaccine development: a. The carrier protein should 
be  produced in sufficient quantities, reliably and 
economically, with the appropriate degree of purity, to meet 
clinical requirements and allow for future commercial 
supply. b. It is essential for the carrier protein to be able to 
activate T-cells, thereby enhancing the overall immune 
response to the conjugate vaccine (Sun et al., 2019).
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