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Escherichia albertii is an emerging foodborne pathogen. We previously reported

that some avian Shiga toxin-producing E. albertii strains exhibited higher or

comparable cytotoxicity in Vero-d2EGFP cells with several enterohemorrhagic

E. coli (EHEC) outbreak strains. To better understand the environmental

persistence of this pathogen, comparative genomics and phenotypic assays

were applied to assess adhesion capability, motility, and biofilm formation in

E. albertii. Among the 108 adherence-related genes, those involved in biogenesis

of curli fimbriae, hemorrhagic E. coli pilus, type 1 fimbriae, and Sfm fimbriae

were conserved in E. albertii. All 20 E. albertii strains carried a complete set of

primary flagellar genes that were organized into four gene clusters, while five

strains possessed genes related to the secondary flagella, also known as lateral

flagella. Compared to EHEC strain EDL933, the eight chemotaxis genes located

within the primary flagellar gene clusters were deleted in E. albertii. Additional

deletion of motility genes flhABCD and motBC was identified in several E. albertii

strains. Swimming motility was detected in three strains when grown in LB

medium, however, when grown in 5% TSB or in the pond water-supplemented

with 10% pigeon droppings, an additional four strains became motile. Although

all E. albertii strains carried curli genes, curli fimbriae were detected only in

four, eight, and nine strains following 24, 48, and 120 h incubation, respectively.

Type 1 fimbriae were undetectable in any of the strains grown at 37◦C or 28◦C.

Strong biofilms were detected in strains that produced curli fimbriae and in

a chicken isolate that was curli fimbriae negative but carried genes encoding

adhesive fimbriae K88, a signature of enterotoxigenic E. coli strains causing

neonatal diarrhea in piglets. In all phenotypic traits examined, no correlation

was revealed between the strains isolated from different sources, or between

the strains with and without Shiga toxin genes. The phenotypic variations could

not be explained solely by the genetic diversity or the difference in adherence

genes repertoire, implying complex regulation in expression of various adhesins.

Strains that exhibited a high level of cytotoxicity and were also proficient in

biofilm production, may have potential to emerge into high-risk pathogens.
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1 Introduction

Escherichia albertii, an emerging foodborne pathogen, is the
most divergent lineage among the other Escherichia species
and clades (Walk et al., 2009; Ooka et al., 2015). Due to
similar biochemical properties and possession of the intimin gene
located on the locus of enterocyte effacement (LEE) pathogenicity
island, many E. albertii isolates have been misidentified as
enteropathogenic E. coli (EPEC), or enterohemorrhagic E. coli
(EHEC) (Ooka et al., 2012). E. albertii causes diarrhea, abdominal
pain, and high fever in humans, although bacteremia and
extraintestinal infections were also reported (Gomes et al., 2020).
The well-known virulence factors in E. albertii include LEE
encoded intimin and its Tir receptor, responsible for the initial
adherence of pathogen cells to the host epithelial cell surfaces,
as well as the LEE-encoded type three secretion system (T3SS)
and the effector proteins. Other common virulence factors include
Shiga toxin (Stx), cytolethal distending toxin (CDT), type six
secretion systems (T6SS), and the vacuolating autotransporter
toxin Vat (Carter et al., 2023a). Sporadic infections and outbreaks
of foodborne gastroenteritis caused by E. albertii have been
reported worldwide (Konno et al., 2012; Ooka et al., 2013; Ori
et al., 2018; Masuda et al., 2020; Bengtsson et al., 2023; Iguchi
et al., 2023). Transmission of E. albertii is thought to occur
via contaminated food or water although in most outbreaks the
transmission vehicles were not identified (Masuda et al., 2020;
Muchaamba et al., 2022).

Growing evidence supports that E. albertii has a wide habitat
range. E. albertii strains have been isolated from domestic and wild
animals, various foods, and aquatic environments (Muchaamba
et al., 2022). Among the reported animal hosts, birds appear to be
one of the main reservoirs/carriers (Oaks et al., 2010; Hinenoya
et al., 2021; Hinenoya et al., 2022; Wang et al., 2022; Barmettler
et al., 2023; Xu et al., 2024). Presence of E. albertii in various
water bodies and food products including chicken, pork, duck
meat, mutton, and oysters has been reported (Felfoldi et al., 2010;
Maheux et al., 2014; Lindsey et al., 2015; Maeda et al., 2015; Wang
et al., 2016; Arai et al., 2022), however, little is known about
the contamination routes and the environmental prevalence and
persistence of this emerging foodborne pathogen. A recent study
investigating the survival of E. albertii in foods and water revealed
that E. albertii grew faster in chicken than in pork or in oysters but
had low viability in warm environmental water (Hirose et al., 2024).
Induction of flagellar biosynthesis and swimming motility was
observed in some strains when cells were exposed to hypoosmotic
pressure or at ambient temperature, suggesting a role of flagellar
motility in the survival of E. albertii in aquatic environments
(Ikeda et al., 2020).

Biofilm is a common microbial lifestyle in natural
environments (Watnick and Kolter, 2000). Compared with
planktonic cells, biofilm-associated cells are better at coping
with environmental stresses and have increased resistance to
toxic substances including antibiotics and chemical sanitizers.
Therefore, biofilm formation by enteropathogenic bacteria would
increase their survival and persistence in natural environments and
may serve as a source of contamination. Biofilm formation
involves multiple steps, including initial surface contact,
transient association, attachment, maturation, and dispersion

(O’Toole et al., 2000). Numerous bacterial adherence factors
including surface adhesive appendages and autotransporter
proteins play a role in biofilm formation. In E. coli K-12 strains,
flagellar motility, curli fimbriae, as well as FimH adhesin were
found to be important for initial surface contact and attachment.
Additionally, flagellar motility was found playing a role in
biofilm dispersion (Pratt and Kolter, 1998; Reisner et al., 2003;
Karatan and Watnick, 2009).

Shiga toxin-producing E. coli (STEC) produces diverse fimbrial
and nonfimbrial adhesins that facilitate the attachment to
and/or colonization by STEC cells in diverse ecological niches
(McWilliams and Torres, 2014; Vogeleer et al., 2014). In STEC
O157:H7 strains, curli fimbriae were found to mediate binding
to, and invasion of epithelial cells, and promote the attachment
of pathogens to plant and abiotic surfaces (Gophna et al.,
2001; Fink et al., 2012; Carter et al., 2016). The hemorrhagic
E. coli pilus (HCP), originally identified in STEC O157:H7 as a
colonization factor (Xicohtencatl-Cortes et al., 2007), contributed
to the biofilm formation of STEC O157:H7 strains on abiotic
surfaces (Xicohtencatl-Cortes et al., 2009). In E. coli and other
enteric pathogens, expression of type 1 fimbriae is controlled by a
phase variation mechanism, which reversibly switches between the
“ON” and “OFF” state of fim genes transcription (Abraham et al.,
1985). This switch is mediated by an invertible DNA element, fimS,
and two site-specific recombinases. Inversion of fimS abolishes the
transcription of fimA, which encodes the major subunit of type
1 fimbriae. Expression of type 1 fimbriae were detected in STEC
non-O157 strains, but not in O157:H7 strains (Roe et al., 2001). In
STEC O157:H7 strains, transcription of fimA is locked at the “OFF”
state due to a 16-bp deletion within the fimS (Iida et al., 2001).
Type 1 fimbriae contributed to the attachment of STEC cells to
abiotic surfaces in a O128:H2 strain and contributed to the biofilm
formation when the fim genes of the STEC O157:H7 strain Sakai
were expressed in a nonpathogenic E. coli strain (Cookson et al.,
2002; Elpers and Hensel, 2020).

Knowledge about environmental persistence of E. alberti is
scarce. Biofilm formation by E. albertii was reported in only a few
clinical strains at 37◦C although the efficiency of biofilm formation
was much lower than that of E. coli strain 042 (Lima et al., 2019).
Understanding prevalence and persistence of E. albertii in nonhost
environments will provide valuable information for risk assessment
and to bridge gaps in understanding the epidemiology of this
emerging human pathogen. We previously reported genomic
features and virulence genes repertoire of Shiga toxin-producing
E. albertii strains isolated from wild birds in an agricultural region
in California and revealed that some bird strains exhibited higher
or comparable cytotoxicity with several EHEC outbreak strains
(Carter et al., 2023a). To gain insight into the persistence of
E. albertii in nonhost environments, we systematically evaluated
the adhesion capability and several phenotypic traits known to
contribute to bacterial biofilm formation in a set of E. albertii avian
and clinical strains. Our study revealed great genetic diversity in
genes encoding fimbrial and nonfimbrial adhesins in E. albertii
as well as vast strain variations in expression of curli fimbriae,
swimming motility, and in biofilm formation. Our study provides a
foundation into further understanding how E. albertii senses and
responds to environmental stimuli for improved survival in the
changing environments.
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2 Materials and methods

2.1 Bacterial strains and growth media

Bacterial strains and their sources are listed in Table 1. The
complete genome sequences of E. albertii strains were reported
previously (Carter et al., 2023a). The strains were grown routinely
in Luria-Bertani (LB) broth (10 g tryptone, 5 g yeast extract, and 5 g
NaCl per liter) unless noted.

2.2 Sequence analysis

The flagellar genes in E. albertii strains were identified by
using BLASTn searches with the flagellar genes of the E. coli K-12
sub-strain MG1655 and the EHEC strain EDL933 (Supplementary
Table 1). Additional flagellar genes were identified from the
E. albertii genome annotations as described previously (Carter
et al., 2023a) (Supplementary Table 2). E. coli genes related to
fimbriae and pili biogenesis and genes encoding protein adhesins
(Supplementary Table 3) were used as queries of BLASTn to
identify homologs of adherence-related genomic loci in E. albertii
strains. The BLASTn was performed in Geneious Prime R© with a
threshold of 65% for gene coverage and 70% or 25% for sequence
identity at nucleotides or amino acids level, respectively. Homologs
of each gene or the entire operons were extracted from the
corresponding bacterial genomes. DNA sequences were aligned
using Clustal Omega in Geneious Prime R© (2024.0.3) and neighbor-
joining consensus trees were constructed with the following
parameters: Genetic Distance Model, Jukes-Cantor; Resampling
Method, bootstrap; and number of replicates, 10,000.

2.3 Motility tests

Swimming motility was examined for each strain grown
on soft agar (0.25%) in rich medium (LB), diluted TSB (5%),
and sterile pond water containing 10% pigeon droppings as
described previously (Murakami et al., 2020) with modification.
The pond water was collected from a public accessible creek
in Albany, California (37◦53′43.86′′N, 122◦18′16.68′′W). The
pigeon droppings were collected near a train station in El
Cerrito, California (37◦54′9.63′′N, 122◦17′56.17′′W). To prepare
the 10% pigeon-droppings suspension, pigeon droppings were
first suspended in nine volumes of pond water and then filtered
through a 0.22-µm filter followed by adding agar to 0.25% prior
to autoclaving. Single colonies of each E. albertii strain were point-
inoculated on soft agar plates using sterile toothpicks. The plates
were incubated at 30◦C for three days prior to observing the
motility.

2.4 Detection of curli fimbriae

Curli fimbriae were examined by growing each strain at 26◦C
for 1, 2, and 5 days on Congo Red indicator (CRI) plates,
consisting of LB agar plates without sodium chloride (LBNS) and

supplemented with 40 µg/ml of Congo Red dye and 10 µg/ml of
Coomassie Brilliant Blue, as described previously (Carter et al.,
2011). Curli-producing strains were indicated by red colonies
whereas curli-deficient strains were indicated by white colonies on
CRI plates.

2.5 Detection of type 1 fimbriae

Production of type 1 fimbriae was examined by
hemagglutination for each strain grown in LBHS broth statically at
37◦C or in LBNS broth statically at 28◦C for two days. Cells were
collected by centrifugation at 8,000 g for 3 min and resuspended in
1x PBS buffer at a final concentration about 3 x 108 cells/ml. Fifty
µl of bacterial suspension was then mixed with 50 µl of guinea pig
red blood cells (Innovative Research Inc) at room temperature in
the presence or absence of 1% D mannose as previously described
(Biscola et al., 2011). E. coli strain DH5a was used as a positive
control and EHEC strain EDL933 was used as a negative control.

2.6 Biofilm formation and quantification

Biofilm assays were carried out as described previously (Carter
et al., 2023b). Briefly, overnight cultures of E. albertii grown in LB
at 37◦C were inoculated in LBNS broth at a final concentration of
1x106 cells/ml. One ml of inoculated LBNS broth was aliquoted
into a borosilicate glass tube and then incubated statically at 28◦C
for 1, 2, and 5 days. At the end of each incubation, the planktonic
cells were removed carefully, and the tubes were rinsed twice with
one ml sterile distilled water and then stained with one ml 0.1%
crystal violet at room temperature for 30 min. The dye was then
removed gently, and the tubes were washed twice with sterile
distilled water. The crystal violet that bound to the glass tube
was solubilized in 0.5 ml of 33% acetic acid and the absorbance
was determined at 570 nm using a microplate reader (SpectraMax
340; Molecular Devices, Sunnyvale, CA). Tubes with uninoculated
media served as negative controls. Each data set was the average of
results from at least three biological replicates. All data were first
evaluated for normal distribution by the Shapiro-Wilk test using
Graph Pad Prism 10 Version 10.2.3 (Dotmatics). The differences
in biofilm formation, represented by the absorbance at 570 nm,
among the strains were assessed by the adjusted P-value of the
Tukey’s multiple comparisons test after a One-way ANOVA test
(P ≤ 0.05). Similarly, the differences in biofilm formation of each
strain at various incubation times were assessed by the adjusted
P-value of the Tukey’s multiple comparisons test after a One-way
ANOVA test.

3 Results

3.1 E. albertii flagellar genes

Of the 48 genes related to flagella biosynthesis and motility
in strain EDL933, homologs of 40 and 35 genes were identified
in 13 and seven E. albertii strains, respectively (Supplementary
Table 1). In strain EDL933, these 48 flagellar genes are distributed
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at four genomic locations, with a size of 11.5 Kb, 15.6 Kb, 6.7 Kb,
and 11.0 Kb for Regions 1–4, respectively. Examining the genomic
locations of the flagellar genes in E. albertii revealed a similar genes
organization as in strain EDL933 (Figure 1A). Among the four
genomic locations, the greatest sequence variation was detected
in Region 2. In strain EDL933, Region 2 contained seven flagellar
genes and eight chemotaxis genes (cheZYBR, tap, tar, and cheWA).
Unlike strain EDL933, the eight chemotaxis genes were deleted in
all E. albertii strains examined. Furthermore, an additional deletion
of genes flhBCD and motBA was detected in a subset of E. albertii
strains including five avian and two clinical strains. This deletion
appeared to be mediated by a recombination between the sites
within genes flhA and otsA since a 183-bp otsA gene fragment
was located immediately upstream of a truncated flhA gene. In
contrast, the flagellar genes located in the other three regions in
strain EDL933 were all conserved in E. albertii strains.

Interestingly, a Flag-2 locus, which encodes a secondary
flagellar system that resembles the lateral flagella in Aeromonas
hydrophila and Vibrio parahaemolyticus (Ren et al., 2005), was
identified in one avian (RM9973) and four clinical E. albertii strains.
The Flag-2 loci in E. albertii varied in size from 33 Kb in the
clinical strain 2010C-3449 to 44 Kb in the clinical strain 05-3106.
Like the Flag-2 locus in the enteroaggregative E. coli (EAEC) strain
042, Flag-2 genes were organized into three gene clusters, separated
by the two variable regions, VR1 and VR2 (Figure 1B). In strain
042, the first gene cluster contains 14 genes that are involved
in regulation and expression of flagellar basal body components.
Homologs of these 14 genes were detected in the avian strain
RM9973 and in the clinical strain 05-3106. Genes lfhB and lfiR were
deleted in the strain 07-3866, while genes lafK and lfiEFGHIJ were
deleted in both strains 54-2045 and 2010C-3449 (Supplementary
Table 2). The second gene cluster in strain 042 also contains 14
genes encoding flagellar structural proteins and the third gene
cluster carries nine genes that are mainly involved in flagellar
filament synthesis. Homologs of all genes within the second and the
third gene clusters were detected in the Flag-2 positive E. albertii
strains. In the Flag-2 negative E. albertii strains, this region was
about 2.5 Kb, containing the truncated two border genes, flhA
and lafU (Figure 1B). A highly similar truncated Flag-2 locus was
detected in E. coli strains EDL933 and K-12 strain MG1655 (%
Identity > 90).

3.2 Motility in E. albertii

When grown in LB at 30◦C for three days, motility was
observed in two avian strains, RM10507 and RM10705, and
one clinical strain 07-3866 (Table 1). Both strains RM10507 and
RM10705 were isolated from brown-headed cowbird and were
Flag-2 negative. These three strains remained motile when grown in
5% TSB or in pond water supplemented with 10% pigeon droppings
(Table 1). Interestingly, four nonmotile strains when grown in
LB, became motile when grown in 5% TSB or in the pond water
supplemented with 10% pigeon droppings (Table 1). These four
strains included two avian strains, RM9973 and RM9976 that were
both isolated from American crow, the chicken isolate 2014C-
4356, and the clinical strain 05-3106. The majority of nonmotile
phenotypes could be explained by the mutations identified in the

flagellar genes, including the deletion of motAB and flhBCD in
avian strains RM15112-RM15116 and in clinical strains 2014C-
4015 and 2014EL-1348 (Figure 1B), point deletions in fliF of the
strains RM9974 and 2011C-4180 and in motA of the strain 2013C-
4143, and an amber mutation in flgG and flhA of the strains 54-2045
and 2010C-3449, respectively (Supplementary Table 1).

3.3 E. albertii fimbrial genes

Homologs of genes encoding 12 fimbriae and pili implicated in
adherence, biofilm formation, and pathogenesis in diverse E. coli
pathotypes were examined in E. albertii. All genes are listed in
Supplementary Table 3. Homologs of genes encoding curli fimbriae,
type 1 fimbriae, and hemorrhagic E. coli pilus (HCP) were detected
in all strains while homologs of genes encoding adhesive fimbriae,
Sfm fimbriae, and P fimbriae were detected in a subset of E. albertii
strains examined.

3.3.1 Curli genes and expression of curli fimbriae
Like E. coli, genes related to biogenesis of curli fimbriae in

E. albertii are organized in two divergent operons, csgDEFG and
csgBAC, and located upstream of tRNA gene serX (Figure 2A).
Sequence analysis revealed that all E. albertii curli genes were placed
in the same clade that was separated from the E. coli curli genes
(Figure 2B). The curli genes of the E. albertii strains shared a high
sequence similarity ( > 95%) with each other, except for the clinical
strain 2010C-3449, in which, both csgE and csgD were truncated
due to an IS insertion, while csgA carried an amber mutation.

Unexpectedly, production of curli fimbriae varied greatly
among the E. albertii strains (Figure 2C). Among the 10 avian
strains, production of curli fimbriae was observed in strains
RM9973, RM9974, RM9976 and RM10705, although all avian
strains carried intact coding sequences for all curli genes. As
expected, no curli fimbriae were observed for clinical strain 2010C-
3449. Among the other clinical strains, production of curli fimbriae
was detected in three out of four stx2f positive strains (2012EL-
1823B, 2014C-4015, 2014EL-1348) and in the stx2f negative strain
07-3866. Colonies of strain 2013C-4143 exhibited pink and light red
color following 48 h and 120 h incubation, respectively, suggesting
that this strain could produce curli fimbriae under the condition
examined but with less amount compared with the other curli-
positive strains (Figure 2C).

3.3.2 Type 1 fimbriae genes and expression of
type 1 fimbriae

In E. coli, the type 1 fimbriae genes (fimB, fimE, and
fimAICDFGH) are located on an 8.8-Kb DNA fragment. Expression
of the type 1 fimbriae is controlled by a phase variation
mechanism, in which, transcription of fimA is switched to “ON”
or “OFF” by an invertible DNA element, fimS, and two site-
specific recombinases encoded by genes fimB and fimE, respectively
(Figure 3A). Homologs of the nine fim genes were identified in all
20 E. albertii strains examined. Additionally, the invertible element,
fimS, flanked by two 9-bp inverted repeats (IRs), was also detected
in all E. albertii strains. The IRs (5′-TTGGGGCCA-3′) in E. albertii
strains were identical to the IRs in E. coli strains EDL933 and K-
12 strain MG1655, except for the avian strain RM9973, in which a
single base substitution of G to A occurred at position 6.
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Region 3, fli genes Region 4, fli genes 
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RM9973

RM9974
flhA*

lafU*

(253,818-256,269)

E. coli str. 042

284,682 323,159

lfhAB-lfiRQPNM-lafK-lfiEFGHIJ lfgNMABCDEFGHIJKL lafABCDEFSTUVR1 VR2

RM9973

284,409 326,617

lfhAB-lfiRQPNM-lafK-lfiEFGHIJ lfgNMABCDEFGHIJKL lafABCDEFSTUVR1 VR2
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murJ rne
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flhD
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dcyD amyA
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dsrB

E F G H I J K L M N O P Q R
EDL933

rcsA

1,982,306 1,993,623

dsrB

E F G H I J K L M N O P Q R
RM9973

FIGURE 1

Sequence analyses of E. albertii flagellar genes. (A) Gene organization and genomic locations of the primary flagellar genes. Numbers indicate the
corresponding chromosomal positions of the four flagellar gene clusters in E. coli O157:H7 strain EDL933 and E. albertii avian strains RM9973 and
RM15112. Green arrows represent the flagellar genes detected in E. albertii and grey arrows represent the bordering genes or the hypothetical genes.
Yellow arrows represent E. coli genes that are missing in E. albertii strains. (B) Gene organization and genomic locations of the secondary flagellar
genes (Flag-2). Numbers indicate the corresponding chromosomal positions in EAEC strain 042 and avian strain RM9973. The three flagellar gene
clusters are indicated by the red arrows. In the strains lacking a Flag-2, such as EDL933 and RM9974, the corresponding chromosomal sites were
uniformly occupied by the two truncated genes, flhA and lafU. Genes labeled with an “*” indicate those carrying mutations within the coding
sequences.

Expression of type 1 fimbriae in E. coli O157:H7 strains
including EDL933 is silenced due to a 16 bp deletion in fimS (Roe
et al., 2001). This deletion locks the transcription of fimA at the
“OFF” orientation. Comparative analyses of E. albertii fimS genes
with the EDL933 fimS revealed an intact fimS in E. albertii strains,
like the fimS in E. coli K-12 strain MG1655 (Figure 3B). Sequence
analyses of other fim genes placed all E. albertii strains in the same
clade, separated from the fim genes in the E. coli strains (Figure 3C).
Various mutations including point deletions and IS insertions were
revealed in the fimA, fimC, and fimD genes of clinical strain 2010C-
3449, the fimD of the clinical strain 54-2045, and the fimI of the
clinical strain 2013C-4143 (Supplementary Table 3).

However, a mannose-sensitive hemagglutination assay failed to
detect type 1 fimbriae in any of the 20 E. albertii strains examined
when they were grown in LBHS at 37◦C or in LBNS at 28◦C, like
strain EDL933. Production of type 1 fimbriae was detected in E. coli
DH5a cells under both testing conditions.

3.3.3 Other fimbriae genes
Homologs of genes encoding hemorrhagic E. coli pilus

(hcpABC) were identified in all 20 E. albertii strains, and mutations
in hcpB (annotated as gspE in E. albertii), encoding the type II
secretion system protein GspE, were present in seven out of the
20 strains examined (Supplementary Table 3). Similarly, homologs
of genes encoding the Sfm fimbriae (sfmACDHF and sfmZ) were

identified in the 18 out of the 20 strains examined. Mutations
were most common in sfmD, encoding a fimbrial biogenesis usher
protein (Supplementary Table 3). In the clinical strains 54-2045
and 2010C-3449, only a homolog of sfmA was present. Among the
adhesive fimbriae genes examined, homologs of cfaABCD genes,
which are often present on the chromosomes of EHEC strains,
were identified in 10 out of the 14 stx2f -positive E. albertii strains,
while homologs of faeCDEFGHIJ genes, which are often present
on the plasmids of enterotoxigenic E. coli (ETEC) strains, were
identified in the clinical strain 07-3866 and in the chicken isolate
2014C-4356 (Supplementary Table 3). In E. coli, there are 12
genes (papXGFEKJDCHABI) related to biogenesis of P fimbriae.
Homologs of seven genes, papEKJDCHA, were identified in seven
out of the 20 E. albertii strains, homologs of five genes, papJDCHA,
were identified in the chicken isolate 2014C-4356, and homologs of
four genes, papDCHA, were identified in the clinical strain 2012EL-
1823B.

3.4 Nonfimbrial adhesin genes and their
genetic diversity

The most common autotransporter adhesin genes
detected in E. albertii were paa, ehaC, eaeH, ehaB, and sinB
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TABLE 1 E. albertii strains used in this study and the motility test.

Strains Sources/Year of
isolation

GenBank
BioSample Number

aSwimming Motility

stx2f -positive E. albertii LB 5% TSB Pond water with 10%
pigeon droppings

RM9973 American crow (Corvus
brachyrhynchos)/2009

SAMN12620691 − + +

RM9974 American crow (Corvus
brachyrhynchos)/2009

SAMN12620692 − − −

RM9976 American crow (Corvus
brachyrhynchos)/2009

SAMN12620693 − + +

RM10507 Brown-headed cowbird
(Molothrus ater)/2009

SAMN12620694 + + +

RM10705 Brown-headed cowbird
(Molothrus ater)/2009

SAMN12620697 + + +

RM15112 Oregon Junco (Junco
hyemalis)/2011

SAMN12620700 − − −

RM15113 Oregon Junco (Junco
hyemalis)/2011

SAMN12620701 − − −

RM15114 Oregon Junco (Junco
hyemalis)/2011

SAMN12620702 − − −

RM15115 White-Breasted Nuthatch
(Sitta carolinensis)/2011

SAMN12620703 − − −

RM15116 Oregon Junco (Junco
hyemalis)/2011

SAMN12620704 − − −

2011C-4180 Human/2011 SAMN03019926 − − −

2012EL-1823B Human/2012 SAMN04498560 − − −

2014C-4015 Human/2014 SAMN04505646 − − −

2014EL-1348 Human/2014 SAMN04505647 − − −

stx-negative E. albertii

2014C-4356 Chicken Carcass/2009 SAMN07159041 − + +

05-3106 Human/2005 SAMN08199278 − + +

07-3866 Human/2007 SAMN07159045 + + +

54-2045 (NCTC 9362) Human/1954 SAMN09534374 − − −

2010C-3449 Human/2010 SAMN07159044 − − −

2013C-4143 Human/2013 SAMN08172567 − − −

aSwimming motility was observed after incubation at 30◦C for three days.

(Supplementary Table 3). paa encodes an AcfC family adhesin.
A homolog of paa was present in nearly all E. albertii strains
examined and exhibited > 80% sequence identity with the paa
gene in EHEC strain EDL933. The gene ehaC encodes an AIDA-I
family autotransporter adhesin. A homolog of ehaC was detected
in all E. albertii strains examined, although a point deletion and a
point insertion were present in the avian strain RM10705 and the
clinical strain 2010C-3449, respectively (Supplementary Table 3).
The E. albertii ehaC genes exhibited ∼ 75% sequence identity with
the ehaC gene in strain EDL933. eaeH encodes an intimin-like
adhesin FdeC. A distant homolog (∼ 80% length in CDS and 27.6%
identity in amino acids) was identified in all E. albertii strains
examined, although mutations were detected in the clinical strain
2011C-4180 (IS insertion), and avian strains RM10507 (Insertion
of 5’-GTCTG-3’) and RM10705 (a point deletion). A homolog of
ehaB, ranging in size from 2430 bp to 2979 bp was detected in

E. albertii strains. Interestingly, the ehaB genes in avian strains
RM9973 and RM9976, and in clinical strains 05-3106, 54-2045, and
2014C-4356, displayed higher sequence similarity with the EDL933
ehaB gene compared with the ehaB genes in other E. albertii strains.
The gene sinH, encoding an intimin-like inverse autotransporter,
was present in all E. albertii strains examined. In fact, the gene
sinH appeared to be widespread in E. albertii but only present in a
subset of E. coli strains. Homologs of sinH were not identified in
EHEC strain EDL933.

3.5 Biofilm formation

Following the initial 24 h incubation, a visible ring was observed
for avian strain RM9974 and four clinical strains, 2012EL-1823B,
2014C-4015, 2014EL-1348, and 07-3866 (Figure 4A). Consistently,
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FIGURE 2

Sequence analyses of curli genes and detection of curli fimbriae in E. albertii. (A) Chromosomal locations of curli operons and pairwise comparison
of the curli genes between the E. albertii avian strain RM9973 and E. coli O157:H7 strain EDL933. Numbers indicate the corresponding chromosomal
positions in each strain. Green arrows represent the annotated genes, and the pink arrows represents tRNA gene serX. (B) Sequence analysis of curli
genes. The curli operons were identified by BLASTn search of a database containing all genomes examined using a 4.4-Kb DNA fragment containing
the seven curli genes of the E. coli strain MG1655 as a query in Geneious Prime R©. The sequences of the curli genes were extracted from
corresponding genomes and aligned using Clustal Omega alignment in Geneious Prime R©. A consensus tree was constructed with the following
parameters: Genetic Distance Model, Jukes-Cantor; Resampling tree method: Bootstrap; Number of Replicates: 10,000; Support Threshold: 50%.
The stx2f positive strains are indicated in parentheses. The strain marked with an “*” indicates presence of mutations within the coding sequences of
curli genes. (C) Detection of curli fimbriae on CRI plates. Curli fimbriae were examined by growing each strain on the CRI plates at 26◦C for 24 h,
48 h, and 120 h. Production of curli fimbriae is indicated by red colonies which resulted from the binding of CR dye supplemented in growth
medium.

quantitative analysis revealed that the attached biomass for the
above five strains were all significantly greater than the rest of the
strains except the comparison between strains 2014EL-1348 and
RM15112 (One-way ANOVA, adjust P < 0.05) (Supplementary
Table 4). Among the five biofilm producing strains, strains

RM9974, 2014C-4015, and 07-3866 produced significantly greater
amounts of biofilm than the other two strains (Figure 4B).
Following 48 h incubation, the attached biomass for the five
biofilm producing strains were all significantly greater than the
corresponding biofilms at 24 h (Figure 4C) (One way ANOVA
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FIGURE 3

Sequence analyses of E. albertii type 1 fimbriae genes. (A) Chromosomal locations and pairwise comparison of the type 1 fimbriae genes between
the E. albertii avian strain RM9973 and E. coli O157:H7 strain EDL933. Numbers indicate the chromosomal positions in each strain. Green arrows
represent the fim genes; Gray arrows represent the neighbor genes; and the red arrows represents right and left inverted repeats (IRs) within fimS.
The 9-bp IR in strain EDL933 is 5′-ttggggcca-3′ while in strain RM9973, the 9-bp IR is 5′-ttgggacca-3′. (B) Pairwise alignment of the cis element fimS
of the E. albertii avian strain RM9973 and E. coli O157:H7 strain EDL933. Red arrows represent the IRs. The grey triangle represents the
16 bp-deletion in EDL933 fimS. (C) Sequence analysis of E. albertii type 1 fimbriae genes with the fim genes in E. coli strains EDL933 and MG1655.
The fim genes were identified by BLASTn search of a database containing all genomes examined in this study using an 8.7-Kb DNA fragment
containing the nine fim genes of the E. coli strain EDL933 as a query in Geneious Prime R©. The sequences of the fim genes were extracted from
corresponding genomes and aligned using Clustal Omega alignment in Geneious Prime R©. A consensus tree was constructed using Geneious Tree
Builder with the following parameters: Genetic Distance Model, Jukes-Cantor; Resampling tree method: Bootstrap; Number of Replicates: 10,000;
Support Threshold: 50%. The stx2f positive strains are indicated in parentheses. The strain marked with an “*” carries mutations within the coding
sequences of type 1 fimbriae genes.

test, adjust P < 0.05). Among the strains that did not produce
any detectable biofilm at 24 h, a visible ring was observed for
strains RM9973 and RM10705 (Figure 4A). Quantitative analysis

revealed that strains 07-3866, 2014C-4015, 2014EL-1348, and
RM9974 produced significantly greater amounts of biofilm than
that of the strain 2012EL-1823B (One way ANOVA test, adjust
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P < 0.05) (Figure 4C). Among the strains that did not produce any
visible biofilms at 48 h, strain 2014C-4356 produced a considerable
amount of biomass on the glass surface following 120 h incubation
(Figure 4A). Among the strains that produced biofilms following
48 h incubation, a significant increase in attached biomass was
observed for all strains following 120 h incubation (One-way
ANOVA, adjust P < 0.05) (Figure 4D). At 120 h post inoculation,
quantitative analysis revealed that avian strain RM9974, chicken
isolate 2014C-4356 along with the clinical strain 2014C-4015 were
the strongest biofilm producers, followed by the clinical strains
2014EL-1348 and 2012EL-1823B, and the avian strain RM9973,
which all produced significantly greater amounts of biofilm than
the clinical strain 07-3866 (One-Way ANOVA, adjust P < 0.05).
For avian strains RM9976 and RM10705, although a visible ring
was detected on glass surfaces, they were not significantly different
from those of non-biofilm producing strains (Figure 4D).

4 Discussion

Flagellar motility allows bacteria to move rapidly towards
nutrients and away from toxic substances, thus it plays an
essential role in bacteria to explore new niches and to establish
colonization. Moreover, flagella also serve as a virulence factor in
many enteric pathogens, contributing to adhesion, invasion, and
host colonization (Moens and Vanderleyden, 1996; Colin et al.,
2021). In E. coli, nearly 50 genes are involved in flagella assembly
and function. Expression of the flagellar genes is tightly regulated
by a three-tiered transcriptional hierarchy to ensure production
of flagellum at the right time and under the applicable conditions
(Khan et al., 2020). The group I genes, flhDC, encode the master
transcriptional regulator FlhDC that activates the expression of
the group II genes. In E. coli, there are nearly 30 genes belonging
to the group II and many of these genes encode components
of the flagellum basal body and hook and the sigma factor 28
FliA. FliA regulates the expression of group III genes, which
are involved in synthesis of complete flagellum and chemotaxis
systems. The regulation of flagellar gene expression in E. albertii
is unknown, although a similar hierarchical regulation fashion is
expected considering the close phylogenetic relationship between
the two species. Originally, E. albertii was thought nonmotile and
lacked flagella although 74% E. albertii strains were reported to
carry a complete set of flagellar biosynthesis genes (Abbott et al.,
2003; Ooka et al., 2015). Induction of flagellar motility by low
osmotic pressure was observed in 27 out of the 59 E. albertii
strains tested (Ikeda et al., 2020); similarly, induction of swimming
motility by nutrients derived from pigeon droppings was observed
in six out of the 12 strains examined (Murakami et al., 2020),
implying strain variation in expression of flagellar motility in
E. albertii. Consistently, our study revealed great diversity in
flagellar genes repertoire and conditionally expressing swimming
motility in E. albertii. Among the 20 E. albertii strains examined,
three were motile regardless of the growth conditions, while four
were motile only when grown in pond water supplemented with
pigeon droppings or in the diluted TSB medium. Deletion of a
large DNA fragment containing genes flhAB, motBA, and flhCD
is likely the molecular basis of nonmotile phenotypes observed
in five avian and two clinical strains. Furthermore, a loss-of-
function mutation in genes fliC, fliF, fliJ, flgD, flgG, flhA, and motA

may explain some but not all non-motile phenotypes observed in
our study. Considering the highly complex regulation in flagellar
gene expression, comparative transcriptomic studies may provide
insight into the molecular basis of the strain variation in expression
of flagellar motility.

Our study revealed the presence of the Flag-2 locus in
E. albertii. The Flag-2 locus appears to be widespread among
the Enterobacterales (De Maayer et al., 2020) and serve as
a hot spot for gene insertions and deletions. Consistently,
great sequence variation was observed among the five Flag-2
loci identified, including large deletions, point mutations and
transposon insertions. However, several VR1 genes that are
predicated on having a role in posttranslational regulation of
flagellar biosynthesis are conserved in E. albertii, including the
glycosyltransferase gene and the lysine-N-methylase gene. Unlike
the primary flagellar system, the function of the Flag-2 locus is
not fully understood. Expression of Flag-2 genes was observed
in Yersinia enterocolitica with a maximal level at 20◦C and, in
Plesiomonas shigelloides, the Flag-2 locus encoded lateral flagella
appeared to be essential for swarming motility (Bresolin et al., 2008;
Merino et al., 2015). Systematic analyses of cargo genes located in
the VR2 in Flag-2 loci suggested a role in secretion of virulence
factor and in inter-bacterial competition (De Maayer et al., 2020).
Searching other E. albertii genomes deposited in public databases
as of April 2024 revealed that about 25% of genomes carry a Flag-2
locus. Additional studies are needed to elucidate any physiological
roles or ecological benefits conferred by this secondary flagellar
system in E. albertii.

Among the 12 fimbriae/pili that are commonly present in
E. coli, genes encoding curli fimbriae, hemorrhagic E. coli pilus,
type 1 fimbriae, and Sfm fimbriae were identified in most of the
E. albertii strains examined, while genes related to biogenesis of
adhesive fimbriae, or P fimbriae were only present in a subset of
strains. Curli, also known as bacterial amyloid, is an important
colonization factor involved in initial surface attachment, biofilm
formation, and induction of the host inflammatory response
(Barnhart and Chapman, 2006). Although 19 out of the 20
E. albertii strains examined in our study carried intact curli genes,
production of curli fimbriae was detected in only nine strains. This
strain variation could not be explained solely by the differences
in the coding sequences of the curli genes or the differences in
the intergenic regions between the two curli operons, including
the promoters of csgD and csgB, since some curli-deficient strains
shared the identical intergenic sequences with the curli expressing
strains (Data not shown). Strain variation in curli production
were reported in E. coli and Salmonella enterica (Romling et al.,
1998; Dyer et al., 2007), which both have served as the model
organisms for studying curli biogenesis and regulation. In both
E. coli and S. enterica, expression of curli is regulated by a complex
regulation network involving multiple transcriptional regulators,
two-component regulatory systems, and in some isolates cyclic
dinucleotide 3’,5’-cyclic di-GMP (Barnhart and Chapman, 2006;
Blomfield and van der Woude, 2007). Therefore, mutations in
any of these regulators or the target sequences that interact with
the regulators directly or indirectly could have an impact on the
expression of curli fimbriae. For example, mutations in genes
encoding the transcriptional regulators rpoS or rcsB were reported
to be the molecular bases of strain variation in curli production
in EHEC O157:H7 (Carter et al., 2012; Carter et al., 2014) and
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FIGURE 4

Biofilm formation by E. albertii strains on glass surfaces. (A) Crystal violet staining the attached biomass on the glass surfaces under a static growth
condition for 24 h, 48 h, and 120 h. Only strains that can produce visible rings are shown here. (B–D) quantitative analyses of biofilms under a static
growth condition for 24 h (B), 48 h (C), and 120 h (D). Each data set represents the mean and SD of three biological replicates. Differences that are
statistically significant (One-way ANOVA followed by a Tukey’s multiple comparisons test, adjust P < 0.05) are indicated by different letters. The
detailed results of the statistical analyses are presented in Supplementary Table 4.
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mutations in the csgD promoter could lead to overproduction of
curli fimbriae (Uhlich et al., 2002). Knowledge about the regulation
of curli fimbriae in E. albertii is limited. Examining genes encoding
putative transcriptional regulators of the curli genes in E. albertii
revealed a loss-of-function mutation in the rpoS gene in strains
05-3106 and 54-2045, while no mutations were identified in genes
encoding Crl, MlrA, CpxRA, OmpR-EnvZ, or RcsBC. Additional
studies are required to gain a comprehensive understanding of curli
regulation network in E. albertii as well as the environmental and
physiological signals that may induce or repress the expression of
curli fimbriae.

Although the majority of E. albertii strains examined in our
study carried functional fim genes and an intact fimS, none of
them displayed a mannose-sensitive hemagglutination (MSHA)
phenotype under the growth conditions examined. Expression of
type 1 fimbriae was reported to be dependent on the growth
conditions. For example, optimal production of a predominantly
type 1 fimbriae positive population in Shigella required serial
passage every 48 to 72 h in unshaken brain heart infusion broth
at 37◦C (Snellings et al., 1997). Since the goal of our study
was to reveal if the type 1 fimbriae contributed to the biofilm
formation in E. albertii, the conditions tested for production of
type 1 fimbriae were the conditions used for examining biofilm
formation, which may not be optimal for expression of type 1
fimbriae. Additionally, the phase variation of type 1 fimbriation is
regulated at multiple levels. In E. coli, switch of fimS is required
but not sufficient for biosynthesis of type 1 fimbriae. Besides
FimB and FimE, other transcriptional regulators including IHF,
Lrp, and H-NS were reported to be involved in fimS switch
(Blomfield and van der Woude, 2007). Variations in the activities
of FimB and FimE, cross talks between fimbrial operons, as
well as the presence of other recombinases can all contribute
to variation in expression of type 1 fimbriae. Additional studies
are required to understand growth conditions, physiological cues,
and environmental signals for induction of type 1 fimbriae in
E. albertii.

Among the nonfimbrial adhesins examined, genes encoding
the autotransporter (AT) adhesins were predominant in E. albertii.
For example, homologs of ehaA, ehaB, ehaC, and upaH that
all encode an AIDA-I type autotransporter (AT) adhesin were
identified in all or most of the strains examined and a homolog
of ehaG, encoding a trimeric AT adhesin was identified in all
strains. Other AIDA-1 type adhesins genes in E. albertii included
aatA, aidA, agn43, and cah. In E. coli, Ag43 is the most prevalent
AIDA-1 type AT adhesin, however, in E. albertii, the agn43 was
identified only in a clinical strain. Other commonly detected
non-fimbrial adhesin genes were eaeH, paa, and sinH. The gene
eaeH encodes an intimin-like adhesin that facilitates adhesion of
bacterial cells, delivery of heat-labile toxin, and colonization of
the small intestine in ETEC (Sheikh et al., 2014). The gene paa,
encoding an AcfC family adhesin, is widespread in both EHEC and
ETEC strains. Paa contributes to the formation of A/E lesions in
animal hosts and thus is an important virulence factor in various
E. coli pathotypes (An et al., 1999; Batisson et al., 2003). The
paa gene appears to be widespread in E. albertii and in some
strains, there are two paa loci, including the bird strains isolated
in Poland (BioSample numbers: SAMN33094111, SAMN33094114,
SAMN33094099, SAMN33094102, and SAMN33094112), and a
poultry strain isolated in China (SAMN17525956). The gene

sinH encodes an intimin-like inverse autotransporter. The inverse
autotransporters were reported to play a role in biofilm formation
in E. coli and contributed to biofilm formation and virulence
in Yersinia ruckeri (Martinez-Gil et al., 2017; Goh et al.,
2019; Wrobel et al., 2020). However, deletion of sinH in the
UPEC strain CFT073 did not impact the biofilm formation
significantly, rather, the mutant displayed a significant fitness
reduction during UTI in a murine model (Shea et al., 2022).
Like paa, sinH appears to be conserved in E. albertii. BLASTn
search of additional 57 complete E. albertii genomes deposited
in GenBank as of April 2024 identified a sinH in all of
them.

Like curli production, E. albertii strains differed greatly in
biofilm formation on glass surfaces. Consistent with our previous
report that, in STEC, curli fimbriae are important for biofilm
formation on abiotic surfaces (Carter et al., 2016; Carter et al.,
2019), all curli-producing E. albertii strains produced moderate
or strong biofilms under the condition examined. Interestingly,
some curli-positive strains produced visible biofilm following a 24-
h incubation, while others did not produce biofilms until a 120-h
incubation, implying a difference in biofilm development among
the E. albertii strains. Furthermore, although no curli fimbriae
were detected in chicken isolate 2014C-4356, strong biofilms were
observed on day 5 of incubation, suggesting a role of other adhesins
in biofilm formation. Strains 2014C-4356 and 07-3866 were the
only strains carrying genes encoding the adhesive fimbriae that
are located on a large plasmid commonly found in ETEC strains,
such as pUMNK88_Hly (GenBank accession # NC_017643.1). It
requires further investigation to determine if the plasmid-borne
adhesive fimbriae are expressed in E. albertii and whether it
contributes to biofilm formation in strains that do not produce curli
fimbriae.

Biofilms of foodborne pathogens can enhance their survival
and persistence in diverse ecological niches and serve as sources of
contamination in food production environments and of infection
in health-care environments. Adhesion is the first step in biofilm
development and in establishing colonization in animal hosts.
Strong adherence often implies enhanced surface attachment and
biofilm formation, leading to increased fitness and pathogenic
potential. Therefore, understanding the adhesion capability and
the underlining factors in E. albertii would provide valuable
information for development of effective control strategies. Our
study revealed that curli fimbriae, Type 1 fimbriae, Sfm fimbriae,
and HCP appear to be the common fimbrial adhesins in
E. albertii, while adhesive fimbriae was a strain-specific trait.
Among the numerous nonfimbrial adhesins identified in E. albertii,
autotransporter adhesins EhaA, EhaB, EhaC, EhaG, and SinH,
and the adherence factors EaeH and Paa are common, while
Agn43, Cah, and Iha that are widespread in E. coli, are only
associated with a few strains. E. albertii strains carry different
combinations of fimbrial and nonfimbrial adhesins that may
facilitate colonization of E. albertii in diverse niches. Our study
further revealed great variations in expression of curli fimbriae
and in biofilm production, suggesting complex regulation in
expression of adhesins in E. albertii. Studies are needed to identify
environmental cues that induce the adhesions expression and the
receptors specifically interacted with each adhesin to gain insight
into molecular basis of niche selection for E. albertii, an emerging
human and avian pathogen.
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