AUTHOR=Du Qianjie , Li Raoyong , Liu Li , Chen Lin , Tang Junrong , Deng Jia , Wang Fang TITLE=Application of Bacillus tequilensis for the control of gray mold caused by Botrytis cinerea in blueberry and mechanisms of action: inducing phenylpropanoid pathway metabolism JOURNAL=Frontiers in Microbiology VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2024.1455008 DOI=10.3389/fmicb.2024.1455008 ISSN=1664-302X ABSTRACT=Background

Botrytis cinerea a blueberry gray mold, is one of the main diseases affecting postharvest storage, causing significant losses. Several studies have shown that Bacillus tequilensis can prevent the growth of plant pathogens by producing various antibacterial substances, and can induce plant resistance. However, research on the biological management of post-harvest gray mold in blueberries using B. tequilensis remains unclear.

Methods

To better control the postharvest gray mold of blueberry, the effects of B. tequilensis KXF6501 fermentation solution (YY) and KXF6501 cell-free supernatant (SQ) on the induction of disease resistance in blueberry fruits were studied using biochemical and transcriptomic analyses.

Results

We found that YY controlled the conidial germination and mycelial growth of B. cinerea in vitro, followed by SQ. After 3 d of culture, the lesion diameter and incidence of gray mold in blueberry fruits inoculated with YY and SQ were smaller than those in the control group. Therefore, gray mold in blueberries was effectively controlled during the prevention period, and the control effect of YY was better than that of SQ. Transcription spectrum analysis of blueberry peel tissue showed that the YY- and SQ-induced phenylpropane metabolic pathways had more differentially expressed genes (DEGs) than other biological pathways. In addition, biochemical analyses showed that YY treatment effectively enhanced the activity of enzymes related to the phenylpropane pathway (phenylalanine ammonialyase [PAL], cinnamate 4-hydroxylase [C4H], 4-coumarate CoA ligase [4CL], and polyphenol oxidase [PPO]) and stimulated the synthesis of lignin, total phenols, and flavonoids, followed by SQ. Compared with the control, the YY and SQ treatments reduced the weight loss rate and better maintained the appearance and nutritional quality of the blueberry fruits.

Conclusion

Our findings suggest that B. tequilensis KXF6501 is potentially useful as a suitable bio-control agent in harvested blueberries.