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Plants shape their surrounding soil, influencing subsequent plant growth in a 
phenomenon known as plant–soil feedback (PSF). This feedback is driven by 
chemical and microbial legacies. Here, we cultivated six crops from two functional 
groups, i.e., three grasses (Lolium, Triticum, and Zea) and three legumes (Glycine, 
Lens, and Medicago), to condition a living soil. Subsequently, the same species were 
sown as response plants on conspecific and heterospecific soils. We employed 
high-throughput sequencing in tandem with soil chemistry, including total organic 
matter, pH, total nitrogen, electrical conductivity, phosphorus, and macro and 
micro-nutrients. Our results showed that Glycine exhibited the strongest negative 
PSF, followed by Triticum and Zea, while Lolium displayed low feedback. Conversely, 
Lens demonstrated robust positive PSF, with Medicago exhibiting slight positive 
feedback. Soil chemistry significance indicated only higher Cl content in Triticum 
soil, while Lens displayed higher Zn and Mn contents. Microbial diversity exhibited 
no significant variations among the six soils. Although conditioning influenced the 
abundance of functionally important microbial phyla associated with each plant, no 
specificity was observed between the two functional groups. Moreover, each crop 
conditioned its soil with a substantial proportion of fungal pathogens. However, 
co-occurrence analysis revealed a strong negative correlation between all crop’s 
biomass and fungal pathogens, except Glycine, which exhibited a strong negative 
correlation with mutualists such as Arthrobacter and Bacillus. This underscores 
the complexity of predicting PSFs, emphasizing the need for a comprehensive 
understanding of plant interactions with both pathogens and mutualists, rather 
than focusing solely on host-specific pathogens.
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1 Introduction

Plants can differentially influence their soil environment by altering its physical, chemical, 
and biological features, thereby affecting their performance relative to competitors and 
ultimately leading to changes in plant community composition and diversity (Aqeel et al., 
2023) through a belowground process called plant–soil feedback (PSF). A particular plant 
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species may modify its soil environment in a way that enhances its 
growth rate compared to other plant species, resulting in positive PSF, 
or in a manner that diminishes its growth rate relative to that of other 
plant species, resulting in negative PSF (Van der Putten et al., 2013). 
Positive PSF may arise from improved nutrient availability (Chapman 
et  al., 2005) or the accumulation of symbiotic mutualists in the 
rhizosphere (Idbella et al., 2021). Negative PSF may be attributed to 
the immobilization or depletion of nutrients (Zhang et al., 2023), the 
build-up of root herbivores and soilborne pathogens (Van der Putten, 
2003), or the accumulation of autotoxic factors (Idbella et al., 2024). 
PSF describes the net effect of these concurrent events, i.e., positive 
and negative effects, as they do not occur in isolation (Harrison and 
Bardgett, 2010). Variations in the strength of PSFs between species can 
predict the distribution of species abundance, with rarer species 
generally having more intense negative PSF (Bennett et al., 2017).

Among the mechanisms that cause PSF, the two most cited are 
plant-mediated nutrient cycling (e.g., abiotic factors) and plant-
microbial interactions (e.g., biotic factors). Plants exert different 
effects on local nutrient cycling, and studies often suggest that litter 
decomposability is an important plant trait controlling plant-mediated 
nutrient cycling (Bonanomi et al., 2023). In natural ecosystems, litter 
may leave physical, chemical, and biotic legacies in the soil that 
strongly impact soil functioning and plant growth (Ehrenfeld et al., 
2005; Bonanomi et al., 2021). In particular, the production of nutrient-
rich, lignin-poor litter that decomposes rapidly creates positive PSF 
by promoting rapid nutrient cycling, especially when the benefits act 
more strongly on the plant itself (Lehmann and Kleber, 2015). On the 
other hand, direct interactions between plants and soil microbes show 
that plants differ in their local microbial communities and their 
response to specific microbial species (Chouyia et al., 2022). The main 
categories of soil microbiota that characterize PSF are natural enemies 
(i.e., soil microbial pathogens and pests), symbionts (i.e., mycorrhizal 
fungi, endophytes, nitrogen-fixing, and plant growth-promoting 
microbes), and decomposers (i.e., microbiota that degrade litter, root 
exudates, and soil organic matter) (Wardle, 2002). They can all 
influence plant growth directly and indirectly through their influence 
on soil physicochemical properties (Idbella et al., 2022b). A positive 
PSF can occur when the plant promotes the population growth of 
symbionts in different ways compared to enemies during cultivation 
(Klironomos, 2002) or when the promoted enemies have stronger 
effects on competitors than on the plant itself (Bever et al., 2010). 
Negative PSF occurs when the plant differentially suppresses the 
population growth of symbionts compared to enemies, or when 
facilitated symbionts have stronger effects on competitors than on the 
plant itself. Abiotic PSF effects are likely to be less species-specific 
(Heinze et  al., 2020), whereas biotic PSF effects are supposed to 
be highly specific (Van der Putten, 2003).

Another crucial factor cited in the literature to explain the increase 
in negative PSF is the release of autotoxic compounds during the 
decomposition of plant litter (Cesarano et al., 2017). By definition, 
autotoxicity causes negative PSF by inhibiting the growth of 
conspecifics. In some cases, autotoxic chemicals also inhibit 
mutualistic microbes and neutralize positive PSF (Zhou et al., 2018). 
However, two main criticisms of the autotoxicity hypothesis have been 
raised. The first states that toxins from plant residues are rapidly 
degraded by microbial activity in the soil and become ineffective after 
a few weeks, while negative PSF may persist in the field for months or 
even years. The second states that many, if not all, organic compounds 

extracted from diseased soils and plant residues exhibit general 
phytotoxicity, which contrasts with the species-specificity of negative 
PSF. Alternatively, Mazzoleni et al. (2015) reported that fragmented 
extracellular self-DNA accumulated in litter and soil during the 
decomposition of conspecific residues has species-specific inhibitory 
effects on various wild plants. These results provide a chemical basis 
for autotoxicity that must be considered in explaining the negative PSF.

In agroecosystems, ecological resilience and resistance can 
be enhanced by improving system diversity through practices such as 
crop rotation, intercropping, cover crops, or the integration of 
livestock (Liebman and Schulte, 2015; Murrell, 2017). It has long been 
known that PSFs influence agricultural production and form the basis 
for crop rotation (Van der Putten et al., 2013). Negative PSFs, resulting 
from the accumulation of plant pathogens, often lead to yield decline 
in continuous monoculture farming. Crop diversification, including 
intercrops and rotations, reduces the incidence of soil pathogens by 
disrupting their biological cycle (Letourneau et al., 2011). This practice 
also improves soil microbial biomass and functions, including 
beneficial microbiota like arbuscular mycorrhizal fungi (AMF) 
(Lacombe et al., 2009) and nitrogen fixers (Li et al., 2016). Moreover, 
crop rotation induces changes in nutrient cycling processes (McDaniel 
et al., 2014), which can have variable indirect effects on pathogens and 
mycorrhizal fungi. For instance, increased nutrient availability might 
stimulate pathogen growth due to heightened host plant productivity 
and tissue quality (Nordin et al., 2006). However, these effects might 
suppress mycorrhizal fungi due to shifts in the nutrient limitation 
status of the microbes (Treseder and Allen, 2002; Johnson, 2010). 
Mechanisms for this influence involve variation in litter chemistry, soil 
pH, and nutrient contents among crops (Fierer and Jackson, 2006). 
Recent research has shown that the direction and magnitude of PSFs 
are influenced by the agricultural management system (Johnson et al., 
2017) and the phylogenetic distance between interacting species 
(Miller and Menalled, 2015). In this context, legume-grass mixtures 
are considered an essential element of crop rotation in many 
agricultural systems in temperate and tropical environments, 
especially for organically managed farms (Holcombe et al., 2020). 
While grass monocultures have often been preferred by producers due 
to easier weed and grazing control (Beuselinck et al., 1994), the cost 
of nitrogen fertilizer and potential negative environmental impacts of 
nitrogen application have led to an urgent need to maintain or increase 
pasture production while reducing nitrogen fertilizer use (Solomon 
et al., 2011). This has resulted in increased interest in grass-legume 
mixed pastures. Legumes, as nitrogen fixers, can increase nutrient 
availability to other plants, producing interspecific positive PSF effects 
(Harrison and Bardgett, 2010). Similarly, grasses with highly branched 
roots may provide a more suitable habitat for root-associated microbes 
that have positive effects on other plants (Latz et al., 2015). However, 
an increase in root surface area, common in grasses, could also lead 
to an increase in the abundance of plant antagonists such as root 
pathogens. Still, root pathogens of grasses are specialized in monocots 
and are unlikely to negatively affect plants from any other functional 
group (Cortois et  al., 2016). Nevertheless, the presence of grass 
endophyte symbioses can affect legume establishment (Stevens and 
Hickey, 1990). For example, negative PSF effects have been reported 
in Medicago sativa L., Trifolium pratense L., Lotus tenuis L., and 
Trifolium repens L. when grown with endophyte-infected tall fescue 
(Hoveland et al., 1999; Liu et al., 2021). These studies suggest that 
these negative effects are caused by the presence of endophytes and 
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their influence on the competitiveness of the host grass, altering 
several host traits that may affect legume success and their interaction 
with rhizobia and AMF (García-Parisi et al., 2017; Idbella et al., 2019, 
2021). Therefore, it is important to investigate the mechanisms by 
which grasses can inhibit legume establishment.

Most studies examining PSF effects in agroecosystems have 
focused on the performance of natural species in soils conditioned by 
conspecifics and heterospecifics (Klironomos, 2002; Seipel et al., 2019; 
Idbella et al., 2022a). Consequently, there is limited knowledge about 
how soil conditioning impacts plant performance in agroecosystems 
(Ehrenfeld et  al., 2005; Bezemer et  al., 2006). In this study, 
we investigated how individual plant species promoted or inhibited 
conspecific and heterospecific growth through changes in the soil. 
Specifically, we cultivated six plant species, including three grasses 
(Triticum durum L., Zea mays L., and Lolium perenne L.) and three 
legumes (Medicago sativa L., Glycine max L., and Lens culinaris L.). 
The pots were exposed to conditioning for 1 year. Following the 
conditioning phase, all plant communities were removed from the 
soil, and the same species were sown as response plants in 
combinations allowing the growth of each plant species on conditioned 
conspecific and heterospecific soils. While most studies assessing 
feedback effects use soil sterilization or the addition of soil inoculum 
to sterilized background soil, our approach involved a “whole 
feedback” approach. This method, based on conditioning the soil, 
mimics real field conditions where changes in both microbiota and 
soil chemistry occur during conditioning. Thus, both alterations in 
soil biota and chemistry contribute to PSF. To evaluate the relative 
importance of soil chemistry and microbiota, we fully characterized 
soil chemical properties, as well as fungal and bacterial communities, 
using next-generation sequencing. The study aimed to test the effects 
of different soil legacies established during the conditioning phase by 
each plant species on the chemical and microbial properties of the soil. 
Consequently, we sought to understand the impact on the growth of 
conspecifics and heterospecifics during the response phase. Our 
hypothesis posited that each species would experience species-specific 
negative PSF, while legumes would induce positive PSF on grasses and 
vice versa. Specific aims were:

 i to provide evidence that in the response phase, grasses and 
legumes would grow less in soils that were dominated by their 
own functional type;

 ii to assess if the nature of negative PSF is associated with soil 
pathogens accumulation;

 iii to assess if positive PSF is caused by increased soil N and other 
major nutrients.

2 Materials and methods

The experiment was carried out in a greenhouse between March 
2019 and February 2021 and comprised two phases: the conditioning 
and the response phase (Figure 1). During the conditioning phase, soil 
was individually conditioned by six crop species: Triticum durum 
L. var. Desf., Zea mays L. var. guasconensis, Lolium perenne L. var. 
aristatum, Medicago sativa L. var. vulgaris, Glycine max L. var. Merr, 
and Lens culinaris L. var. Medik. In the response phase, the six crop 
species were cultivated in soil previously conditioned by the same 
crop, i.e., conspecific, or by each of the other five crop species, i.e., 

heterospecifics, for an entire growth cycle. The seeds utilized in this 
experiment were obtained from commercially purchased seeds with 
no prior treatment (De Corato sementiR).

2.1 Conditioning phase

In this initial experimental phase, plants are cultivated in the soil 
for a specific duration, corresponding to approximately 6 months, to 
condition it and modify local biotic and abiotic soil properties 
(Ehrenfeld et al., 2005; Van der Putten et al., 2013). Pots (25 L = 38.5 cm 
opening diameter × 35 cm height × 30 cm bottom diameter) were 
filled with sterile soil characterized by the following properties: 22.1% 
clay, 56.6% silt, 21.3% sand, pH 7.74, electrical conductivity 0.32 dS 
m−1, organic carbon 15.4 g kg−1, total nitrogen 1.6 g kg−1, C/N ratio 9.6, 
CaCO3 7.16 g kg−1, and available phosphorus 239 mg kg−1. The soil was 
collected from the topsoil (0–30 cm) of a farm in the Campania region, 
southern Italy (E: 14° 18′, N: 40° 51′; 4 m a.s.l.), homogenized, and 
sieved through a 1 cm mesh size to eliminate coarse fragments. Prior 
to the experiment, the soil underwent sterilization by autoclaving at 
one atmosphere pressure and 120°C for 1 h, repeated three times at 
24-h intervals.

In total, the conditioning phase comprised 180 pots, organized 
into monocultures of 6 plant species, each with 30 replicates. Fifteen 
seeds were sown in each conditioning pot for every plant species. The 
seeds underwent surface sterilization in a 3% sodium hypochlorite 
solution for 1 min and were rinsed multiple times with sterile water 
before use (Oyebanji et al., 2009). Following germination, the number 
of seedlings in each pot was reduced to five, and the pots received 
regular watering. All pots were placed randomly in a greenhouse with 
70% relative humidity, 11 h of daylight with an annual average day 
temperature of 18°C, and 13 h of night with an annual average night 
temperature of 12°C. Following each plant’s growth cycle, namely 
130 days for T. durum, 119 days for Z. mays, 60 days for L. perenne, 
150 days for M. sativa, 130 days for G. max, and 110 days for 
L. culinaris, the plants were meticulously removed from their 
respective pots, leaving the roots intact within the soil to maintain the 
integrity of the rhizosphere, which harbors a substantial portion of the 
microbial community. At this point, soil samples were collected from 
each block and then divided into two fractions: one fraction was 
stored at 4°C for studying the chemical properties of the soil, while the 
other fraction was stored at −20°C for molecular analysis.

2.2 Response phase

In this second experimental phase, each soil conditioned by plant 
species, comprising a block of 30 pots, was subdivided into 6 
sub-blocks, each containing 5 replicates (Figure 1). Fifteen seeds were 
sown in each response pot, utilizing the same seed treatments as 
employed in the conditioning phase. Consequently, in this response 
phase, plants were cultivated in soils previously conditioned by the 
same plants, as well as by five heterospecifics. A total of 180 
conditioned pots were utilized (6 response plants × 5 replicates × 6 
conditioned blocks). Following germination, the number of seedlings 
in each pot was reduced to five, and the pots received regular watering. 
Seven months later, all the plants were harvested. The plants were cut 
at soil level, and the shoots were dried at 70°C for 72 h, with their dry 

https://doi.org/10.3389/fmicb.2024.1454617
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Idbella et al. 10.3389/fmicb.2024.1454617

Frontiers in Microbiology 04 frontiersin.org

weight subsequently recorded. It is important to note that root 
biomass was not measured in this study. Although root biomass is 
recognized as crucial in this context, the experimental design involved 
leaving the roots undisturbed from the conditioning phase to the 
response phase to preserve the rhizosphere. As a result, we refrained 
from measuring root biomass, as it would have been challenging to 
differentiate between roots associated with the conditioning and 
response phases.

2.3 Soil chemistry

After the conditioning phase, soil samples were dried in a 
ventilated chamber at room temperature until a constant weight was 
achieved. The soil underwent analysis for 15 parameters, including 
total organic matter (OM), pH, total nitrogen (N), and macro and 
micronutrients crucial for plant growth. Specifically, the following 
parameters were assessed: Soil electrical conductivity (EC) and pH 
were determined in soil-water suspensions at ratios of 1:5 and 1:2.5, 
respectively, using a conductivity meter and a pH meter (Czekała 
et  al., 2016). Total N was determined using the Kjeldhal method 
(Czekała et al., 2016), while phosphorus was determined using the 
molybdovanadate-phosphate method (AOAC, 1990). OM content was 
determined by weight loss at 550°C for 8 h (Silva et  al., 2014). 
Potassium (K), magnesium (Mg), iron (Fe), manganese (Mn), calcium 
(Ca), sodium (Na), copper (Cu), and zinc (Zn) were determined by 
flame atomic absorption spectroscopy (Peters et  al., 2003). Total 
limestone (CaCO3) was determined by the weight method against a 
strong acid. Attack of the limestone resulted in the release of CO2, the 
volume of which was measured (LANO: NF ISO 10693). Finally, the 

chloride content (Cl) in the soil was determined by the volumetric 
method as described by Meldrum and Forbes (1928).

2.4 Microbial DNA extraction and amplicon 
sequencing

The microbiome of three soil replicates for each plant species post 
the conditioning phase underwent analysis via Illumina high-
throughput sequencing. Microbial DNA was extracted from 0.5 g of 
homogenized soil using the DNeasy PowerSoil kit (Qiagen). High-
throughput sequencing of the amplified V3-V4 regions of the 16S 
rRNA gene (~460 bp) and ITS1-2 (~300 bp) were used to assess 
bacterial and fungal diversity. PCR was conducted with primers 
S-D-Bact-0341-b-S-17/S-D-Bact0785-a-A-21 (Berni Canani et  al., 
2017) and BITS1fw/B58S3-ITS2rev (Bokulich and Mills, 2013) under 
conditions detailed in the original studies. For bacterial primers 
S-D-Bact-0341-b-S-17 (5′-CCTACG GGNGGCWGCAG-3′) and 
S-D-Bact-0785-a-A-21 (5′-GAC TACHVGGGTATCTAATCC-3′), 
PCR conditions comprised 25 cycles of 95°C for 3 min, 95°C for 30 s, 
55°C for 30 s, 72°C for 30 s, 72°C for 5 min, and then held at 
4°C. Regarding fungal primers BITS1fw (5’-ACCTGCGGARGGAT 
CA-3′) and B58S3-ITS2rev (5’-GAGATCCRTTGYTRAAAGTT-3′), 
PCR conditions included 35 cycles of 95°C for 30 s, 55°C for 30 s, and 
72°C for 60 s, with a final extension of 72°C for 5 min. PCR products 
underwent purification using Agencourt AMPure beads (Beckman 
Coulter, Milan, IT) and quantification via an AF2200 Plate Reader 
(Eppendorf, Milan, IT). Equimolar pools were created, and sequencing 
was performed on an Illumina MiSeq platform, generating 2× 250 bp 
paired end reads.

FIGURE 1

Conceptual representation of the experimental design. Soil was conditioned by monocultures of six crops. The six soil conditioning treatments are 
identified by having different colors of the pots. Thirty independent soil replicates were made for each of the conditioned soils. After the conditioning 
phase, five replicates of each of the conditioned soils were used to grow each of the six response crops, resulting thus in a combination of six response 
crops growing in each of the six conditioned soils. For more details, see the main text.
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Bacterial and fungal sequences were analysed using the DADA2 
package (version 1.16.0 pipeline) (Callahan et al., 2016) in R software 
(4.0.4) (R Core Team, 2016). DADA2, known for its superior 
taxonomic resolution, retains unique sequences and calculates 
sequencing error rates instead of clustering to 97% similarity (Hugerth 
and Andersson, 2017). The resulting taxonomic units are referred to as 
amplicon sequence variants (ASVs) rather than operational taxonomic 
units (OTUs). For bacterial sequences, both forward and reverse reads 
were trimmed to 240 bp, and primer sequences were removed. The 
following filter parameters were applied: maxN = 0, maxEE for both 
reads = 2, truncQ = 2 (MaxEE corresponds to the maximum expected 
errors, TruncQ represents the parameter truncating reads at the first 
occurrence of a quality score less than or equal to two, and MaxN is the 
maximum number of ‘N’ bases accepted). Error rates were estimated 
with learnErrors using nearly 4 million reads. Sequences were 
dereplicated using derepFastq with default parameters, and exact 
sequence variants were resolved using the dada algorithm. The 
RemoveBimeraDenovo function was then employed to eliminate 
chimeric sequences. For fungal sequences, the pipeline included a 
preliminary step of trimming adapter sequences and low-quality ends 
(<Q20) using Cutadapt software (Martin, 2011). In both the bacterial 
and fungal datasets, reads with more than three errors in the forward 
reads and five errors in the reverse reads were removed. Taxonomy was 
assigned using assignTaxonomy based on the SILVA (v132) and 
UNITE (v7) databases for bacterial and fungal communities, 
respectively (Quast et al., 2013; Nilsson et al., 2019). Chloroplast and 
Streptophyta contaminants, as well as singleton ASVs, were removed, 
and the relative abundances of the remaining taxa were recalculated.

2.5 Statistical analysis and data 
visualization

The statistical significance of the biomass data obtained from the 
experiment was assessed using a two-way analysis of variance 
(ANOVA) to determine the main and interactive effects of the fixed 
factors, conditioning, and response phase, on shoot biomass. The 
results of the analysis of variance were further validated through the 
pairwise Tukey test, comparing the individual means of response 
plants in each soil history. Moreover, the plant–soil feedback effect was 
quantified as the ratio between the total biomass of the conditioned 
and response soil (Brinkman et al., 2010). In this experiment, the 
feedback effect was calculated as ln (total biomass of a response plant 
growing in soils conditioned by the same plant / total biomass of the 
same response plant growing in soils conditioned by a different plant). 
To examine significant changes in the feedback effect, the interaction 
data were analysed using a generalized linear model (GLM), 
incorporating conditioning and response status as fixed factors.

For the microbial data, alpha diversity metrics were computed, and 
heatmaps were generated using PRIMER 7 software (Primer-E Ltd., 
Plymouth, United  Kingdom) to assess variations in community 
composition at the lowest taxonomic levels. The heatmaps visually 
represented the 50 most abundant taxa in the fungal and bacterial 
communities and organized the variables based on an association 
similarity index. Using a resemblance matrix calculated with Bray–
Curtis dissimilarity, non-metric multidimensional scaling (NMDS) 
analyses, grounded on the abundance of microbial communities, were 
executed using the “meta.mds()” function of the vegan package in 

R. The vector fitting of environmental variables to NMDS ordination 
was ascertained utilizing the “envfit()” function of the vegan package, 
considering 15 major components of physical and chemical 
characteristics. The significance of compositional changes between the 
two microbial communities was tested through PERMANOVA (999 
permutations), with the conditioning plant species serving as a fixed 
factor. Additionally, the ANOVA test was employed to assess the 
significance of variation in the alpha diversity metrics of the two 
microbial communities alongside the soil chemical characteristics. Post 
hoc Tukey tests were conducted to provide detailed insights into the 
level of significance between the samples. Furthermore, a Spearman 
ranking correlation test was applied to compare the shoot biomass of 
each of the six response species with soil chemical attributes, and a 
heatmap was generated using Rstudio (ComplexHeatmap package). 
Significance levels for differences were evaluated with p < 0.05. All 
statistical analyses were conducted using STATISTICA 13.3 software.

Furthermore, co-occurrence networks were established with 
bacterial and fungal communities based on individual ASVs to assess 
potential interactions or co-occurrence patterns between species and 
their impact on response plant biomass. The analyses were conducted 
for the communities of the six different conditioned soils sampled. To 
streamline the analysis and focus on the most abundant ASVs while 
minimizing the impact of rare ones, only the 50 most abundant ASVs 
were examined for both bacteria and fungi. Pairwise correlations 
between ASVs and biomass were calculated using Spearman’s 
correlation in R (Hmisc package). For statistical significance, only 
strong and significant correlations (Spearman’s r > 0.6 or r < −0.6 and 
p < 0.05) were considered. The network visualization was created using 
Gephi (version 0.9.2, Bastian et al., 2009), where each edge represents 
a robust and significant correlation, and each node represents an ASV 
along with the biomass node.

3 Results

3.1 Crop response to soil conditioning

Shoot biomass exhibited significant differences depending on the 
combination of conditioning and response status (Figure  2). 
Specifically, the shoot biomass of Lolium was significantly lowest when 
the soil was conditioned with Triticum, Zea, and Lolium itself, whereas 
it reached its highest levels when the soil was conditioned with 
Medicago. The shoot biomass of Lens peaked when the soil was 
conditioned with Lens itself, while it hit its lowest levels when the soil 
was conditioned with Triticum, Glycine, Zea, and Lolium. Glycine 
shoot biomass was notably lower when grown in soils conditioned 
with Glycine itself and with Medicago. Triticum shoot biomass was at 
its lowest in soils conditioned with Triticum, Zea, and Lolium, and at 
its highest with Lens and Medicago. Zea shoot biomass was the lowest 
in Glycine-conditioned soil and the highest in Medicago, Lens, and 
Triticum. Notably, no significant differences were observed in the 
shoot biomass of Medicago when grown in the six conditioned soils.

3.2 Plant–soil feedback

Our results reveal that the tested plant species exhibited varying 
feedback depending on the conditioned soil (Figure 3). In detail, 
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FIGURE 2

Average shoot biomass (g.pot−1) of each of the six response plants grown in each of the six conditioning plant species’ soil history. Red bars represent 
the conspecific soil history. The error bars represent the standard deviation. Bars topped by the same letter do not differ significantly by Tukey post hoc 
test (p  <  0.05).
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FIGURE 3

Feedback effect of each of the six response plants, i.e., biomass of each response plant grown in its own conspecific conditioned soil divided on the 
biomass of the same plant species grown on each of the heterospecific five conditioned soils. The error bars represent the standard deviation. Bars 
topped by the same letter do not differ significantly by Tukey post hoc test (p  <  0.05).
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TABLE 1 Soil chemical characterization of each of the six soil histories, different letters indicate statistically significantly differences by Tukey post hoc 
test (p <  0.05).

Zea Lens Glycine Triticum Lolium Medicago

pH 8.05a 8.09a 8.11a 8.27a 8.22a 8.17a

Total limestone (%) 1.67a 1.58a 2.68a 2.38a 1.20a 1.89a

EC (mS/cm) 0.22a 0.22a 0.20a 0.31a 0.23a 0.20a

Cl (g/Kg) 0.07ab 0.06b 0.06b 0.20a 0.07ab 0.06b

Na (g/Kg) 0.33a 0.30a 0.32a 0.38a 0.50a 0.34a

OM (%) 3.39ab 3.41ab 3.57ab 3.33b 3.58ab 3.68a

Total N (%) 0.19ab 0.18b 0.19ab 0.19ab 0.19ab 0.19a

P (mg/Kg) 134.32a 136.58a 135.23a 141.23a 130.91a 124.93a

K (g/kg) 2.08a 2.12a 2.06a 2.28a 2.35a 2.43a

Mg (g/Kg) 0.55a 0.56a 0.56a 0.57a 0.58a 0.56a

Ca (g/Kg) 6.34a 6.55a 6.22a 6.63a 6.37a 6.11a

Cu (mg/Kg) 40.95a 41.49a 39.40a 39.65a 39.80a 39.66a

Zn (mg/Kg) 20.94ab 24.18a 19.70ab 19.49ab 18.90b 17.76b

Mn (mg/Kg) 31.02ab 32.13a 30.46ab 26.33b 31.92ab 30.43ab

Fe (mg/Kg) 31.56a 31.65a 31.51a 43.63a 32.30a 29.84a

significant negative feedback was observed for Lolium when grown 
on soil conditioned with Medicago and Lens. In contrast, significant 
positive feedback was generated when the soil was conditioned with 
Triticum and Zea. Similarly, Zea experienced significant negative 
feedback when grown on soil conditioned with Medicago, Lens, and 
Lolium, while significant positive feedback occurred when grown on 
soil conditioned with Glycine. On the other hand, Triticum and 
Glycine displayed strong negative feedback when grown in all 
conditioned soils, except for the response of Glycine in a conditioned 
Medicago soil, which exhibited strong positive feedback. Lens and 
Medicago showed significant positive feedback when grown in each 
of the six conditioned soils. In general, the overall feedback effect 
indicated that Glycine exhibited the strongest negative feedback, 
followed by Triticum, while low feedback was recorded for Lolium 
(Supplementary Figure S1). On the other hand, Lens was the only 
crop that showed strong positive feedback, while slight positive 
feedback was recorded for both Zea and Medicago.

3.3 Soil chemical properties and correlation 
with crop response

Soil chemical parameters exhibited slight variations among the 
conditioned soils (Table  1). Specifically, Triticum conditioned soil 
demonstrated the highest Cl content, but lower OM and Mn contents 
compared to the other conditioned soils. Conversely, Lens conditioned 
soil displayed the highest levels of Zn and Mn compared to the other 
soils. No significant differences were identified between the soils in 
terms of the remaining chemical parameters.

The Pearson correlation between shoot biomass and soil chemical 
parameters (Supplementary Figure S2) revealed a strongly significant 
positive correlation between Fe, Mn, Cu, Ca, Na, Cl, total N, and 
CaCO3 with Glycine biomass, accompanied by a strong negative 
correlation with soil pH. For Lens, biomass showed a positive 
correlation with Zn and K content and a negative correlation with 

CaCO3, while Medicago biomass was significantly correlated with soil 
P, EC, and total N content. Lolium biomass displayed a significant 
positive correlation with Mn, Ca, and K content, while it exhibited a 
negative correlation with total N content. The contents of Mn, Zn, and 
Cu were negatively correlated with the growth of Triticum, whereas 
Ca and soil pH demonstrated a positive correlation. Biomass of Zea 
was negatively correlated with P, Ca, K, Na, and soil pH, while it 
showed a positive correlation with soil Fe content.

3.4 Microbial diversity and community 
composition

Our results show that no significant differences were observed in 
the number of bacterial species, the number of ASVs and the Shannon 
diversity index (Figure 4). On the other hand, the number of fungal 
species was significantly low in Glycine conditioned soil compared to 
Triticum and Lolium, while the number of ASVs was significantly low 
in Glycine-conditioned soil compared to Triticum, Lens, and Lolium. 
In contrast, no significant change was observed in Shannon diversity 
index for fungi among the conditioned soils.

At the phylum level (Supplementary Figure S3), the bacterial 
community varied among the conditioned soils. In detail, all 
conditioned soils contained mainly Pseudomonadota, ranging 
from 20.6% in Triticum to 25.5% in Glycine soils. On the other 
hand, the highest percentage of Actinomycetota was found in 
Triticum soils with 18.0%, while the lowest abundance was 
recorded in Glycine soil with a percentage of 12.8%. 
Planctomycetota abundance, however, ranged from 14% in 
Medicago soil to 17.2% in Triticum soil. While Gemmatimonadota 
were less abundant in Glycine soil at 9.2%. Moreover, the highest 
levels of Acidobacteriota were found in Glycine soil (9.2%) 
followed by Zea soil (8.9%) while the lowest levels were found in 
Lolium (6.4%) soils. Verrucomicrobiota, on the other hand, was 
most abundant in Glycine soil (7.4%).
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The fungal community showed a clear variation among the 
conditioned soils (Supplementary Figure S3). In particular, all the 
soils studied were dominated by the phylum Ascomycota, with 
abundance ranging from 95.1, 93.9 and 92.3% in the soils of 
Triticum, Glycine and Lolium, respectively, to 57.6% in the soils of 
Zea. However, the highest percentage of the phylum Basidiomycota 
was found in the soil of Zea (21.9%), while their abundance did not 
exceed 5% in the other soils. On the other hand, the phylum 
Chytridiomycota was found in Lens (10.3%) and Zea (10%) soils, and 
less than 2% in the other soils.

At lower taxonomic level, the bacterial heatmap showed a slight 
difference between the conditioned soils with respect to the 50 most 
common ASVs (Supplementary Figure S4). Specifically, we found that 
all conditioned soils had high abundance of Acidobacteriota 
subgroup_6 and Longimicrobiaceae, while Pedosphaeraceae were more 
abundant in Glycine, Medicago and Lens than in the other soils. In 
addition, a large amount of Pseudarthrobacter was found in Lolium, 
Zea and Triticum soils, while Bacillus was more abundant in Medicago 
soil. On the other hand, the fungal heatmap showed a clear variation 
among the conditioned soils with respect to the 50 most abundant 

FIGURE 4

Box plots showing the variation in the Shannon diversity, number of species and reads for bacterial and fungal communities in the six soil histories. 
Different letters indicate significant (p  <  0.05) differences in the indices. The lower and upper bounds of the boxplots show the first and third quartiles 
(the 25th and 75th percentiles); the middle line shows the median, whiskers above and below the boxplot indicate inter-quartile range.

https://doi.org/10.3389/fmicb.2024.1454617
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Idbella et al. 10.3389/fmicb.2024.1454617

Frontiers in Microbiology 10 frontiersin.org

FIGURE 5

Heatmap showing relative abundance of the 50 most frequent Amplicon Sequence Variants (ASVs) in the fungal community in each of the six soil 
histories. The hierarchical grouping of variables is based on Whittaker’s association index.

ASVs (Figure 5). In particular, Plectosphaerella cucumerina was more 
abundant in Lolium and Triticum soils, while Plectosphaerella 
oratosquillae was highly abundant in conditioned Triticum soil. 
Botryotrichum atrogriseum, on the other hand, was particularly 
abundant in Glycine soil. In addition, Fusarium solani was highly 
abundany in Glycine soil followed by Triticum. Zea soil, however, 
contained the highest abundance of Fusarium acutatum, followed by 
Triticum. Moreover, Paramyrothecium foliicola was highly abundant 
in Lolium and Medicago, while Stachybotrys chartarum was most 
abundant in Lolium soils. Alternaria and Cladosporium delicatulum 
were very common in Medicago and Lens soils. Stemphylium was 
highly abundant only in Medicago soil and less abundant in Lens soil.

3.5 Linking microbial community to soil 
chemical properties

The nMDS analysis of the bacterial community in terms of 
chemical parameters (Figure  6) showed that the ordination of 
Medicago, Glycine and Lens samples was strongly correlated with soil 
OM content, while the ordination of Lolium and Zea samples was 
positively correlated with Mn, Zn, and Na content. However, pH and 
Fe content showed positive correlation with ordination of Triticum 
samples. The other soil chemical parameters showed negative 

correlation with bacterial ordination of all soil samples. As for the 
ordination of samples based on fungal community, nMDS analysis 
showed that Cu, Mn, K, pH, Na, CaCO3, EC, P, total N and OM were 
positively correlated with soil samples of Medicago, Lens, and Lolium. 
Whilst ordination based on fungal community of Triticum, Glycine, 
and Zea was positive and strongly correlated with Cl content, followed 
by Zn, Mg, Fe and Ca contents.

3.6 Linking microbial community to crop 
response

We constructed six co-occurrence networks (Figure  7) and 
calculated five topological parameters to assess interactions among 
ASVs and with the response biomass for each of the five networks 
(Supplementary Table S1). The number of nodes ranged among the 
networks from 77 in Medicago to 91 in Lolium, whereas the number 
of edges ranged from 1,022 in the Medicago network to 1809 in Lens. 
The percentage of positive ASVs correlations in the microbial 
networks ranged from 57.6% in Zea to 78.7% in Lolium. The network 
diameter varied among soils, from the lowest value of 5 in Lens and 
Medicago to the highest value of 7 in Glycine network. Moreover, the 
network density was highest in Zea and Lens, while it was lowest in 
Glycine. However, the values of characteristic path length and 
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FIGURE 6

Nonmetric multidimensional scaling (NMDS) plots of bacteria and fungi communities in each of the six soil histories. MDS axis 1 and MDS axis 2 
represent the two axes of the two-dimensional ordination space. Each point represents the microbiome of one replicate of the plant. The stress-level 

(Continued)
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shown in each plot indicates how well the individual distances between objects are represented (between 0 and 1; the closer to 0, the better are 
original data points represented in the ordination space). Vectors represent soil environmental variables which significantly correlated with the 
ordination (p  <  0.05 based on 999 permutations).

FIGURE 6 (Continued)

FIGURE 7

Correlation base network analysis showing potential interactions between bacterial, fungal families and response biomass in conspecific soil for each 
of the six response plants. The lines connecting nodes (edges) represent positive (grey) or negative (red) co-occurrence relationship. The connection 
stands for a strong (Spearman’s ρ  >  0.6 and ρ  <  −0.6) and significant (p-value<0.05) correlation. The size of each node is proportional to the ASV relative 
abundance, only the top 50 ASVs were kept. The nodes were coloured by kingdom level.
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clustering coefficient showed no significant changes among the 
conditioned soil networks. On the other hand, modularity recorded 
the highest value of 1.537 in Zea network while the lowest values of 
0.339 and 0.452 were recorded in Lens and Lolium soils, respectively.

The co-occurrence network showed that Glycine biomass had 
significantly strong negative interactions with Arthrobacter, Bacillus, 
Caldilineaceae, Longimicrobium, Powellomycetaceae and SH _PL14 
ASVs, while Lens biomass was negatively correlated with Acremonium, 
Actinoplanes, Chaetomiaceae, Cladosporium delicatulum, Fusarium 
and Nectriaceae ASVs. On the other hand, Lolium biomass had strong 
negative interactions with Acrocalymma, Curvularia tuberculata, 
Fusarium acutatum, Fusarium solani, Plectosphaerella cucumerina, 
Setophoma terrestris and Stemphylium ASVs. Triticum however 
showed significant negative interactions with ASVs Alternaria, 
Cladosporium ramotenellum, Gibberella baccata, Paramyrothecium 
and Plectosphaerella oratosquilla while the ASVs that showed 
significant negative interactions with Medicago biomass are 
Acremonium, Alternaria, Cellvibrio, Cladosporium delicatulum, 
Cladosporium sphaerospermum, Curvularia Americana, Devosia, 
Fusarium acutatum, Geobacillus, Haliangium, Paramyrothecium 
foliicola, Paracoccus, and Tumebacillus. Finally, Zea biomass showed 
significant negative interactions with the following ASVs: 
Acremonium, Cladosporium delicatulum, Cladosporium ramotenellum, 
Fusarium acutatum, Iodophanus, and Stemphylium.

4 Discussion

In this study, we  compared the legacies of six plant species, 
belonging to grass and nitrogen-fixing functional groups, on 
conspecific and heterospecific plant performances. We assessed soil 
chemical properties and soil microbiota using a whole PSF approach. 
Overall, we found that plant species-specific legacies affect all these 
variables in some way. Indeed, the response of plant species exhibited 
different PSF behaviors depending on the previously conditioned soil. 
Previous studies have shown that the direction and effect sizes of PSF 
appear to differ between functional plant groups (Kulmatiski et al., 
2008; Meisner et al., 2014). However, the present study, contrary to our 
expectations, shows that PSF may not be specific to functional groups. 
We observed that the grass Lolium produces strong negative feedback 
when grown in soils conditioned by the legumes Medicago and Lens 
(i.e., lower growth of Lolium in soils conditioned by Lolium compared 
to the growth of Lolium in soils conditioned by Medicago and Lens). 
In contrast, Lolium showed strong positive feedback when grown in 
soils previously conditioned by the grasses Triticum and Zea. However, 
Zea grass suffered a significant negative PSF when grown in soils 
conditioned with the legumes Medicago, Lens, and the grass Lolium. 
A significant positive PSF occurred when grown in soil conditioned 
with the Glycine legume. Notably, Glycine recorded the strongest 
negative PSF in its own soil and negative feedback when grown in all 
conditioned soils except Medicago legume soil, which showed strong 
positive PSF. Existing evidence suggests that Medicago is particularly 
susceptible to autotoxicity (Chon et al., 2006), a specialized form of 
allelopathy. Autotoxicity involves chemical compounds from older 
plants affecting their own seedlings, resulting in a heightened negative 
PSF, which aligns with our findings. On the other hand, the grass 
Triticum suffered from a strong negative PSF in all conditioned soils 
without exception. Similarly, Hannula et al. (2019) concluded that the 

direction of the PSF could not be predicted solely from the plant group 
or family, even though soils from grasses tended to have more positive 
feedback than soils conditioned by forbs and legumes.

The observed patterns in the present study may be influenced by 
at least two mechanisms investigated here: soil nutrient availability 
and/or soil microbial communities. The advantage of using the 
“conspecific” and “heterospecific” feedback approach is that it can 
illuminate the chemical and microbial legacies produced by the 
decomposition of litter and root exudates of different plant species 
during the conditioning phase. Originally, we assumed that each plant 
species would alter the chemical properties of the soil in a unique way, 
and that these changes could affect subsequent growth. However, our 
results show that the differences in the chemical legacies produced by 
the six plant species were statistically insignificant. Legumes live in 
symbiosis with nitrogen-fixing rhizobacteria, and we hypothesize that 
the feedback effects would be due to nitrogen availability, even though 
we  did not detect differences in nitrogen availability in the soil 
chemical analysis between legumes and grasses. Our results support 
the idea that priority effects in plant communities are not solely a 
matter of resource availability (Cesarano et al., 2017). Since Triticum 
and Lolium, which also suffered from a strong negative feedback 
effect, did not differ in terms of chemicals with Lens, which had the 
highest positive feedback effect, we could speculate that the diversity 
of conditioning plant species has little effect on subsequent plant 
growth by altering nutrient availability in the soil. Similarly, a recent 
study by Xue et al. (2021) showed that differences in soil chemical 
analysis between soils conditioned by four grasses, including Lolium 
perenne, and three legumes, including Medicago Sativa and Trifolium 
repens, had no effects on subsequent plant invasion in a 
PSF experiment.

Alternatively, soil microbes are thought to significantly influence 
PSF, both directly by affecting plant growth or defense responses, and 
indirectly, for example, by affecting mineralization or acting as 
antagonists of plant pathogens (Van der Putten et al., 2013; Chialva 
et  al., 2018). Our results showed that microbial diversity, i.e., the 
Shannon diversity index, did not exhibit significant differences among 
the six conditioned soils. Moreover, the effect of conditioning on 
microbial community composition showed no specificity between the 
two plant functional groups. However, the abundance of functionally 
important microbial phyla was affected by plant legacies. We found 
that Actinomycetota were highly abundant in the soils of grass 
Triticum, while less abundant in the soils of legume Glycine. Moreover, 
Gemmatimonadota were less abundant in Glycine soils. Similarly, the 
highest levels of Acidobacteriota were found in Glycine soils followed 
by Zea soils, while the lowest levels were found in Lolium soil. 
Verrucomicrobiota, on the other hand, were most abundant in Glycine 
soils. Moreover, Ascomycota abundance was the highest in Triticum 
and Glycine soils, while the phylum Basidiomycota was mostly found 
in the soil of Zea. Our results indicate that each plant species, rather 
than plant functional groups, generates its own microbial legacy in the 
soil after a period of conditioning. In contrast, several recent works 
have shown that plant family and functional group can explain a large 
portion of the variation in microbial community structure (Dassen 
et al., 2017; Hannula et al., 2021). Moreover, Connell et al. (2021) 
found a significant legacy of conditioning by Bromus inermis that 
affected not only the bacterial community composition but diversity 
as well. We  hypothesized that microbial community composition 
would be altered by individual plant species, possibly due to the higher 
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amount and/or diversity of litter that falls, decomposes, and enters the 
soil C and N cycles (Hooper et al., 2000). Previous studies suggest that 
litter decomposition in the soil can alter microbial biomass, 
composition, and community structure by increasing substrate 
variability and diversity of soil chemical compounds, and that this can 
vary depending on the plant species (Chapman et al., 2013). These 
results were confirmed by our nMDS analysis showing that the 
ordination of the microbial community for each plant species was 
strongly correlated with different soil chemical parameters.

Interestingly, our results show that at the low taxonomic level, the 
bacterial ASVs Pedosphaeraceae were more abundant in the legumes 
Glycine, Medicago, and Lens soils, while Bacillus was more abundant in 
Medicago soils. A recent study by Yuan et al. (2022) demonstrated the 
significant potential of Pedosphaeraceae as key bacteria with interspecific 
interactions for phytoremediation. Additionally, Bacillus species, known 
for forming spores that can survive in soil for extended periods under 
harsh environmental conditions (Hashem et al., 2019), were found in high 
abundance in the soils of legumes due to their exclusive symbiotic ability. 
Moreover, our results reveal a substantial amount of Pseudarthrobacter in 
the soils of Lolium, Zea, and Triticum grasses. Pseudarthrobacter is a group 
of endophytic bacteria known to be present in soils, deserts, and mines 
(Finger et  al., 2019; Chai et  al., 2019). Notably, Pseudarthrobacter 
sulfonivorans strain Ar51 has demonstrated efficient degradation of 
petroleum and several benzene compounds at low temperatures (Zhang 
et al., 2016). Previous studies have emphasized that the effects of soil 
legacy can be explained primarily by soil fungal composition (Bezemer 
et al., 2006; Wang et al., 2019). However, our results indicate that the 
abundance of specific fungal species or groups of fungi in the soil is more 
crucial for plant growth and, consequently, PSF than the composition of 
the entire fungal community. Interestingly, we  found that the soil of 
Glycine contained a high abundance of Botryotrichum atrogriseum and 
Fusarium solani, while the soil of Triticum contained a high abundance of 
Plectosphaerella cucumerina, P. oratosquillae, F. solani, and F. acutatum. In 
contrast, the soil of Lolium contained a high relative abundance of 
P. cucumerina, Paramyrothecium foliicola, and Stachybotrys chartarum. 
Lens soil, however, contained high levels of Alternaria and Cladosporium 
delicatulum, while Medicago soil had, in addition, high levels of 
Stemphylium. Our results indicate that each plant species conditions its 
own soil with a high proportion of putative pathogenic fungi, which could 
explain the direction of the generated PSF in the response phase. However, 
when linking the conspecific biomass to different ASVs present in the soil, 
our co-occurrence analysis showed that all plant species had a strong, 
significant negative correlation with fungal pathogens accumulated in the 
soil, with the exception of Glycine. Glycine showed a strong negative 
correlation with plant growth-promoting rhizobacteria such as 
Arthrobacter and Bacillus, suggesting that the ability to predict PSFs 
requires a better understanding of plant interactions with diverse 
communities of plant pathogens and mutualists, rather than single host-
specific pathogens (Bever et al., 2012; Benítez et al., 2013).

5 Conclusion

In conclusion, our study on the legacies of six plant species belonging 
to grass and nitrogen-fixing functional groups has provided valuable 
insights into the interactions within soil ecosystems. We  compared 
conspecific and heterospecific plant performances, assessed soil chemical 
properties, and delved into soil microbiota using a PSF approach. The 
observed patterns in our study suggest that the response of plant species 

exhibits diverse PSF behaviors depending on the previously conditioned 
soil. Our results highlight the complexity of plant–soil interactions and 
emphasize that predicting PSF only by basing on plant functional groups 
might be insufficient, as individual plant species play a crucial role in 
shaping the outcomes. Two potential mechanisms, soil nutrient 
availability and microbial communities, were explored to elucidate the 
observed patterns. While our initial assumption posited unique chemical 
legacies from each plant species, statistical insignificance in soil chemical 
differences implies complicated interactions at play. Moreover, the distinct 
microbial legacies generated by each plant species suggest that the 
microbial community composition is more influenced by individual plant 
species than broader functional groupings. On the other hand, soilborne 
pathogens were found to be abundant in all soils, and our co-occurrence 
analysis provides insights into the correlations between conspecific 
biomass and soil microbes, emphasizing the importance of understanding 
diverse plant-pathogen and mutualist interactions for accurate predictions 
of PSF. Understanding the relationships between plants and soil microbes 
can guide sustainable practices, fostering resilient agricultural ecosystems 
in the face of changing environmental conditions. Future research should 
investigate the roles of soilborne pathogens and mutualistic microbes 
across diverse ecosystems, with a focus on plant genotypes and 
environmental stressors, which will provide deeper insights into PSF 
dynamics. Moreover, long-term studies are needed to capture temporal 
shifts in microbial communities and soil chemistry over successive 
plant generations.
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