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The synthesis of pseudo-healthy images, involving the generation of healthy

counterparts for pathological images, is crucial for data augmentation, clinical

disease diagnosis, and understanding pathology-induced changes. Recently,

Generative Adversarial Networks (GANs) have shown substantial promise in

this domain. However, the heterogeneity of intracranial infection symptoms

caused by various infections complicates the model’s ability to accurately

di�erentiate between pathological and healthy regions, leading to the loss

of critical information in healthy areas and impairing the precise preservation

of the subject’s identity. Moreover, for images with extensive lesion areas,

the pseudo-healthy images generated by these methods often lack distinct

organ and tissue structures. To address these challenges, we propose a three-

stage method (localization, inpainting, synthesis) that achieves nearly perfect

preservation of the subject’s identity through precise pseudo-healthy synthesis

of the lesion region and its surroundings. The process begins with a Segmentor,

which identifies the lesion areas and di�erentiates them from healthy regions.

Subsequently, a Vague-Filler fills the lesion areas to construct a healthy

outline, thereby preventing structural loss in cases of extensive lesions. Finally,

leveraging this healthy outline, a Generative Adversarial Network integrated with

a contextual residual attention module generates a more realistic and clearer

image.Ourmethodwas validated through extensive experiments across di�erent

modalities within the BraTS2021 dataset, achieving a healthiness score of 0.957.

The visual quality of the generated images markedly exceeded those produced

by competingmethods, with enhanced capabilities in repairing large lesion areas.

Further testing on the COVID-19-20 dataset showed that our model could

e�ectively partially reconstruct images of other organs.

KEYWORDS

pseudo-healthy image synthesis, generative adversarial networks, intracranial infection,

data augmentation, contextual residual attention module lesion inpainting for pseudo-

healthy synthesis

1 Introduction

Intracranial infections, involving the brain and its adjacent structures, pose

significant clinical challenges due to their potential to cause severe outcomes.

Characterized by inflammation and infection within the cranial cavity, these

conditions affect the brain parenchyma, meninges, and other intracranial structures.

A wide range of pathogens, including bacteria, viruses, fungi, and parasites,
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can instigate various infections such as meningitis, encephalitis,

brain abscesses, and subdural empyemas (Foerster et al., 2007).

Magnetic Resonance Imaging (MRI) is crucial in detecting,

assessing, and monitoring these central nervous system infections

and inflammations (Zimmerman and Girard, 2004; Mitchell and

Dehkharghani, 2014). By providing comprehensive imaging of the

brain and its meningeal coverings, MRI helps identify distinct

patterns and features indicative of different types of intracranial

infections. For example, MRI excels in distinguishing between

pyogenic and fungal abscesses; pyogenic abscesses typically present

with a well-defined rim and surrounding edema. In cases of

ventriculitis (Luque-Paz et al., 2021), MRI can display ventricular

enlargement, ependymal enhancement, and intraventricular debris.

Enhancing MRI images in instances of intracranial infection is

thus essential, as it provides clinicians with critical diagnostic

information, improving both diagnostic accuracy and efficiency.

Figure 1 illustrates an instance of intracranial infection (Deng and

Gaillard, 2014).

In recent years, the development of pseudo-healthy

image synthesis technology has become a pivotal tool in

data augmentation and medical image anomaly detection. In

the realm of data augmentation, generating pseudo-healthy

images significantly enriches datasets by creating numerous

representations from the same subjects’ pathological images

(Xia et al., 2020). This technique not only bolsters the model’s

generalization capabilities but also mitigates challenges associated

with data imbalance and limited sample availability. In anomaly

detection within medical imaging, synthesizing pseudo-healthy

images allows models to simulate representations of healthy

tissues (Tsunoda et al., 2014). By contrasting these images with

their pathological counterparts, clinicians can more accurately

pinpoint lesions. Thus, the production of high-quality pseudo-

healthy images is crucial for enhancing the detection and

diagnosis of conditions like intracranial infections. Furthermore,

comparing pathological images with pseudo-healthy ones deepens

the understanding of pathology-induced alterations, thereby

advancing insights into disease progression and pathology

development processes.

The process of synthesizing pseudo-healthy images involves

generating apparently normal, lesion-free images from pathological

data using sophisticated computer imaging and machine learning

techniques. Ideally, a pseudo-healthy image should possess two

essential attributes (Zhang et al., 2022): First, the image must

maintain a healthy appearance, closely mimicking a genuine

healthy image. This is the primary goal of pseudo-healthy image

synthesis. Second, the synthesized image must originate from the

same individual as the pathological image. This requirement is

equally important, as producing healthy images from different

individuals does not aid in medical diagnosis (Bowles et al., 2016).

Typically, it is not feasible for the tissues or organs of a single patient

to exhibit both pathological and healthy states simultaneously.

Therefore, identifying an exact corresponding pseudo-healthy

image for a specific pathological image is inherently complex

and fraught with uncertainties. In the context of pseudo-healthy

synthesis for intracranial infection, the varied manifestations of

the disease in MRI images present significant challenges. For

instance, severe cerebral edema in lesion areas can cause a

mass effect, compressing and deforming adjacent brain ventricles.

Consequently, pseudo-healthy synthesis for intracranial infection

should focus on restoring the anatomical integrity in affected

regions and accommodating the disease’s diverse presentations.

The synthesis of pseudo-healthy images entails creating

seemingly normal, lesion-free images from pathological data

through the use of advanced computer image processing and

machine learning techniques. Determining whether an image

is truly pseudo-healthy hinges on the absence of pathological

features, while maintaining the subject’s identity depends on the

intact preservation of non-pathological regions. Consequently, in

pseudo-healthy synthesis, accurately localizing pathological regions

and reconstructing their healthy analogs is paramount. Several

Generative Adversarial Network (GAN)-based approaches for

pseudo-healthy image synthesis have been previously proposed

(Baumgartner et al., 2018; Chen and Konukoglu, 2018; Baur

et al., 2019, 2020). These methods typically employ a generator,

structured as an encoder-decoder network, to convert pathological

images into their healthy-looking equivalents. Simultaneously, a

discriminator, competing against the generator, utilizes a classifier

to differentiate between the synthesized healthy images and actual

healthy images. Through this adversarial training process, the

generator and classifier refine their capabilities in a dynamic

interplay. However, a significant limitation of these methods is

their inability to effectively learn and incorporate pathological

information, which complicates the task of maintaining the

subject’s identity in the synthesized pseudo-healthy images. To

overcome these challenges, Xia et al. (2020) and Zhang et al.

(2022) introduced the use of a segmentor alongside pixel-level

annotations. This strategy involves the collaborative training

of both the generator and the segmentor. The segmentor’s

training loss is fed back to the generator, encouraging it to

differentiate pathological information from the subject’s identity

while preserving any healthy attributes present in the pathological

image. Despite these advancements, the methods still face several

drawbacks.

(1) Integrating the segmentor into the model results in an

overdependence on the segmentor’s efficacy for lesion localization.

The varied etiologies underlying intracranial infections lead to

significantly diverse symptoms. Thus, a singular segmentation

strategy is evidently inadequate to meet these demands.

(2) The generator creates segments devoid of lesion regions,

whereas the classifier’s visual focus is primarily on healthy areas.

This causes the generator to employ images from different subjects

to deceive the discriminator, unintentionally erasing the unique

identity of the subject.

(3) These models demonstrate a deficiency in learning

anatomical structures from healthy images, thus hindering their

capacity to accurately reconstruct anatomical features within lesion

areas, especially in cases involving extensive lesions.

To address the challenges and accommodate the anatomical

alterations caused by intracranial infections, we introduce a

novel three-stage pseudo-healthy image synthesis model called the

Lesion Region Inpainting Generative Adversarial Network (LRI-

GAN). This model is specifically tailored to manage the varying

characteristics of infection areas in brain imaging. It ensures the

preservation of the subject’s identity by accurately synthesizing
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FIGURE 1

A nodular mass is centered in the right basal nuclei with an irregularly thick contrast-enhancing rim. The central portion of the mass is mildly

hypointense to gray matter on T1-weighted imaging and hyperintense on T2-weighted imaging with poor suppression on FLAIR. Histological

examination of para�n sections 1 and 2 confirmed the presence of numerous Toxoplasma gondii tachyzoites and sporadic bradyzoite cysts. These

parasites are embedded within a context of extensive cerebral parenchymal necrosis, where a distinct boundary demarcates the necrotic areas from

the adjacent viable tissue. Imaging of necrotic regions reveals evidence of necrotic blood vessels, with the accumulation of neutrophils and chronic

inflammatory cells, as well as nuclear debris in the surrounding and perivascular regions. Within the surviving parenchyma, reactive proliferation of

small blood vessels is observed. Para�n section 3 displays both cortical and white matter structures. In the deep white matter, there is a significant

presence of Toxoplasma gondii tachyzoites along with sporadic bradyzoite cysts situated in areas of congestion and focal necrosis. Sporadic cysts

can also be identified in the more superficial white matter and cortical regions. These findings are consistent with a diagnosis of cerebral

toxoplasmosis. (A) T1-weight, (B) T2-weight (C) T1ce-weight (D) Flair-weight (E) Para�n section 1 (F) Para�n section 2 and (G) Para�n section 3.

and replacing lesioned areas with pseudo-healthy regions, thus

maintaining image integrity. The three-stage architecture enhances

the model’s effectiveness in constructing accurate healthy contours.

Initially, various segmentation models are pre-trained, based

on specific pathological requirements, or employing pixel-level

annotations from clinical experts to precisely pinpoint lesion areas.

Subsequently, in the second stage, a “Vague-filler” network fills

the identified lesion regions, including an adjacent 5 mm area,

capturing the essential characteristics of healthy tissues. The final

stage employs a Generator network, enhanced with a contextual

residual attention module, which adeptly learns from real healthy

images and extracts relevant features from non-lesioned parts of

the pathological image. This innovative approach results in pseudo-

healthy images that not only reflect a clearer visual quality but

also enhance diagnostic accuracy, as demonstrated in Figure 2. The

LRI-GAN thus represents a significant advancement in medical

imaging, particularly in the synthesis of images for diagnostic and

treatment planning in cases of intracranial infection.

To assess the efficacy of our proposed method, we utilized

image slices from the BraTS2021 dataset, featuring various

conditions like edema, hemorrhage, and deformation. Our

extensive testing shows that this method surpasses contemporary

leading techniques in performance. Further validation was

conducted using the COVID-19-20 dataset to evaluate the model’s

versatility across different organs, confirming consistent high

performance.

Key contributions of our study include:

(1) Development of an advanced pseudo-healthy image

synthesis approach tailored for intracranial infections, which

preserves the identity of the pathological region with meticulous

lesion area restoration.

(2) Introduction of a novel generator network architecture,

incorporating a flipped symmetrical structure and a contextual

residual attention mechanism, designed specifically to accurately

mend lesioned areas.

(3) Establishment of a new evaluation metric called “Structure

Healthiness” (SH), designed to gauge the capability of models to

restore the anatomical integrity of lesion areas.

2 Related works

In the field of medical image analysis, the synthesis of pseudo-

healthy images has attracted significant interest due to its potential

benefits for various downstream applications. Research in this

area can be categorized into two main groups based on the
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FIGURE 2

Our model generates clearer pseudo-healthy images in the presence of large lesions compared to the current state-of-the-art model GVS-GAN.

nature of the training data utilized (Zhang et al., 2022). The first

category is Pathology-deficiency based methods. These methods

exclusively rely on healthy images during the training process

and are consequently devoid of pathological information. They

do not require pathological data for training and are often

closely associated with unsupervised medical image segmentation

techniques (Bowles et al., 2017; Baumgartner et al., 2018; Tao

et al., 2023; Rahman Siddiquee et al., 2024). The second category

comprises Pathology-sufficiency based methods, which utilize a

comprehensive dataset containing both pathological and healthy

images during training. These approaches address the challenge

of pseudo-healthy image synthesis from an image translation

perspective. They incorporate pathological images along with their

corresponding image-level or pixel-level pathological annotations

to ensure that the synthesized pseudo-healthy images closely

resemble the characteristics of healthy tissues (Sun et al., 2020; Xia

et al., 2020; Zhang et al., 2022). This methodology facilitates more

accurate and clinically relevant outputs by incorporating essential

pathological details into the training process.

2.1 Pathology-deficiency based methods

Pathology-deficiency based methods begin by learning

the normative distribution, leveraging techniques focused on

compressing and recovering structures of healthy anatomical

features during training. Subsequently, during the testing phase,

these methods compress pathological images into a latent

space. The underlying hypothesis is that the resultant latent

representations closely approximate those of pseudo-healthy

images, leading to the reconstruction of pseudo-healthy images

from these representations. Chen and Konukoglu (2018) utilized

an autoencoder-based approach to capture the distribution of brain

MRIs from healthy subjects. Their objective was to map images

to regions proximate to corresponding healthy images in latent

space, employing specific constraints to guide this process. In a

similar vein, Baur et al. (2019) modeled the distribution of healthy

brain MRIs to identify pathological alterations through erroneous

reconstructions. They implemented a Laplacian pyramid technique

to compress and reconstruct healthy brain MRIs, which resulted in

higher reconstruction fidelity at greater resolutions. Nevertheless,

such methods are founded on idealized assumptions that often

do not hold in practical scenarios. Specifically, the challenge lies

in identifying an optimal latent representation that aligns with

pseudo-healthy images when pathological images are compressed

into the latent space. This difficulty frequently leads to a failure

to preserve the identity of the pseudo-healthy images. Therefore,

while the theoretical foundation of these methods is strong, their

practical application is hindered by limitations in capturing and

maintaining the true characteristics of the subject’s healthy state in

the synthesized images.

2.2 Pathology-su�ciency based methods

To synthesize higher-quality pseudo-healthy images, VA-GAN

(Baumgartner et al., 2018) introduces a GAN-based framework that

incorporates pathological information. This framework comprises

a generator, tasked with synthesizing images that appear healthy

while preserving the subject’s identity, and a discriminator, which

distinguishes between these synthesized images and real, unpaired
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healthy images. However, this method relies primarily on image-

level annotations, which limits its ability to accurately differentiate

between lesioned and non-lesioned areas, consequently impacting

the preservation of the subject’s identity in the synthesized

images. To mitigate these limitations, PHS-GAN (Xia et al.,

2020) and ANT-GAN (Sun et al., 2020), both variants of Cycle-

GAN, incorporate pixel-level annotations. PHS-GAN addresses

the one-to-many issue characteristic of medical images with

variable pathology by employing a segmenter alongside pixel-

level pathological annotations. This configuration allows precise

localization of lesions, facilitating the separation of pathological

information from healthy tissue, thus enhancing the precision of

pseudo-healthy image synthesis. This method effectively manages

pathological data to improve the accuracy and realism of the

generated images. ANT-GAN, on the other hand, utilizes the L2

loss calculated between non-lesioned areas of the pathological and

pseudo-healthy images. By reintegrating this feedback into the

entire cyclic network, ANT-GAN ensures that the identity of the

subject is maintained in the resultant images. To improve the

localization of lesions, GVS-GAN (Zhang et al., 2022) attempts

to resolve discrepancies between how healthy and pseudo-healthy

images are perceived by the segmenter, aiming for a harmonized

outcome. Nonetheless, these strategies, by trying to make the

segmenter less sensitive to lesions, may not truly achieve the

creation of “pseudo-healthy” images in the strictest sense. A

persistent challenge with these methods is their struggle to

fully grasp the anatomical features of a healthy brain, especially

when faced with images featuring extensive lesions. This often

leads to the generated images obscuring rather than restoring

the anatomical structure of the affected areas. Consequently,

while these approaches advance the field of pseudo-healthy

image synthesis by better managing pathological information and

improving image realism, they still face significant hurdles in

accurately rendering and restoring the detailed anatomy in areas

affected by pathology.

2.3 Our method

To facilitate the synthesis of pseudo-healthy images for

intracranial infections, we have integrated the aforementioned

methods and introduced a segmentation-first, then-repair strategy

for pseudo-healthy synthesis. This approach differs from previous

methodologies, which incorporated the segmentor within the

generative network during the training phase, thus performing

segmentation and generation simultaneously. Instead, our method

employs the segmentor specifically to localize lesion areas, a

strategy that prevents the segmentor from excessively influencing

the generative network during training and ensures that the

generator does not focus disproportionately on concealing lesions.

Additionally, this segmentation-first approach allows for the

flexible replacement of the segmentor, enhancing the model’s

adaptability to the varied manifestations of intracranial infections

evident in MRI images. Our method executes the synthesis of

pseudo-healthy images in a structured three-stage process. Initially,

in the first stage, lesion areas are precisely identified using either

a pre-trained segmentor model or manual annotations. Following

this, the second stage employs a Vague-Filler network designed

to infill these localized lesion areas, effectively mimicking the

appearance of healthy tissue. In the final stage, a generator equipped

with an inverted symmetrical structure and a contextual residual

attention module (Yi et al., 2020) is utilized. This sophisticated

arrangement enables the generator to learn effectively from both

flipped images and features outside the lesion areas, thereby

enhancing its capability to synthesize more accurate pseudo-

healthy images tailored to the specific requirements of intracranial

infection cases.

3 Methods

The architecture of LRI-GAN comprises three distinct

components aligned with the workflow: a Segmentor (responsible

for localization), a Vague-Filler (responsible for coarse filling),

and a Generator (responsible for fine reconstruction). Both the

Vague-Filler and the Generator are trainable elements, whereas

the Segmentor is a pre-trained deep learning model or manually

annotated pixel-level pathology. The structure of this paper is

as follows: Section 3.1 provides an overview of the problem;

Section 3.2 introduces the Segmentor; Section 3.3 describes the

Vague-Filler; Section 3.4 elaborates on the Generator; Section 3.5

discusses the loss function of LRI-GAN; Section 3.6 outlines the

training process of LRI-GAN; and Section 3.7 details the inference

procedure of LRI-GAN.

3.1 Problem overview

As illustrated in Figure 3, we consider a set of images

{xi}
N
i=1 ∈ X, with each i representing a slice, alongside their

binary annotations {yi}
N
i=1 ∈ Y . These images are classified into

two subsets based on their labels: pathological images {pi}
M
i=1 and

healthy images {hi}
N−M
i=1 . The data distributions of the pathological

and healthy samples are denoted as pi ∼ fp and hi ∼ fh,

respectively.

In the inference pipeline, for a given pathological image pi that

contains lesion regions, our objective is to derive the corresponding

yi (where 0 indicates normal regions and 1 indicates pathological

regions) via the Segmentor S. Subsequently, yi is combined with pi
and fed into the Vague-filler V to produce a vague pseudo-healthy

image vagueĥi. This image is then refined by the Generator G to

yield a clearer pseudo-healthy image ĥi, ensuring that ĥi adheres to

the distribution of healthy images (i.e., ĥi ∼ fh). Moreover, we aim

to maintain the normal anatomical structure of pi within ĥi.

In the training pipeline, we emphasize healthy images to

comprehensively learn their latent features. For a given healthy

image hi, we randomly mask 30%–60% of the regions to emulate

the process of a pre-trained Segmentor detecting lesion regions,

resulting in the correspondingmask yi. This mask is then combined

with hi and input into the Vague-filler V to generate a vague

pseudo-healthy image vagueĥi. The Generator G is then utilized to

refine vagueĥi, producing a clearer pseudo-healthy image ĥi, which

ensures that the masked regions in ĥi closely resemble the original

healthy image hi.
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FIGURE 3

The LRI-GAN mainly consists of three components: the Segmentor, the Vague-Filler, and the Generator. During the training stage, the model is

trained on healthy images. In the inference stage, it is applied to pathological images.

3.2 Segmentor

Before commencing the synthesis of pseudo-healthy images,

accurately identifying lesion locations within pathological images

is crucial. The primary aim during the Segmentor phase is to

obtain pixel-level annotations yi that precisely delineate lesion areas

in the pathological image pi. However, acquiring such detailed

pathological annotations is often expensive and time-consuming.

Therefore, for pathological images lacking specific annotations,

we utilize a pre-trained segmentor, S, to automatically generate

these annotations. In this study, we employ the U-Net architecture,

renowned for its effectiveness in medical image segmentation, as

the pre-trained segmentor (Ronneberger et al., 2015).

3.3 Vague-Filler

The Vague-Filler processes the pathological image pi, where

lesion regions are replaced by blanks, to produce a preliminary

pseudo-healthy image, vagueĥi. Detailed insights into the Vague-

Filler’s methodology are provided in the “Vague Filler” section

illustrated in Figure 4. This component accepts an image alongside

a binary mask of lesion regions as inputs and outputs a filled-

in image. It incorporates gated convolution as its sole learnable

mechanism. The Vague-Filler operates on a “straight-line” residual

network architecture devoid of skip connections, preserving the

input and output dimensions at H×W pixels. To broaden

the receptive field and minimize computational demands, the

input image is initially down-sampled to H
2 ×

W
2 pixels prior

to convolution. Subsequent convolutions further reduce the

resolution to H
4 ×

W
4 pixels using two gated convolutions. The

image then undergoes additional processing at the H
4 ×

W
4 scale

via a sequence of gated convolutions, which vary in stride and

padding, yet maintain a consistent size throughout the input and

output stages.

3.4 Generator

The Generator’s fundamental role is to enhance a vaguely

defined pseudo-healthy image, denoted as vagueĥi, into a

distinctly clearer image ĥi. This enhancement recognizes the

symmetric nature of brain medical imagery, incorporating

a flip-symmetric architecture detailed in the Generator

section of Figure 3. Initially, vagueĥi undergoes a flipping
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FIGURE 4

The structure of Vague-Filler V and Generator G; H is the height of the input image, and W is the width of the input image.

operation to prepare for convolutional processing. Both the

original and flipped versions of vagueĥi undergo parallel

convolutional operations.

flip vagueĥi = flip(vague ĥi) (1)

The convolution phase features a fully symmetric dual-path

structure that optimizes feature extraction:

LF = down_conv(vague ĥi) (2)

LF_flip = down_conv(flip vagueĥi) (3)

LF represents the latent features derived post-convolution,

and down_conv refers to the down-sampling convolution

process. The Attention Calculation Module (ACM)

calculates attention score matrices for both the forward and

flipped images:

PIAS Matrix = ACM(LF) (4)

FIAS Matrix = ACM(LF_flip) (5)

The PIAS Matrix denotes the Positive Image Attention Score

Matrix, detailing the interactions of the forward image with the

mask area, while the FIAS Matrix is the Flip Image Attention Score

Matrix, detailing interactions of the flipped image components with

the mask. After calculating these matrices, both pathways integrate

the residuals within the masked areas using their respective

Attention Transfer Modules (ATM), based on the attention scores

and contextual residuals:

ĥi = conv(LF, LF_flip,ATM(LF,PIAS Matrix),ATM(LF_flip, FIAS Matrix)) (6)
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The ACM uses cosine similarity measures for establishing

image attention scores across high-level feature maps:

ci,j =

〈
bi

‖bi‖
,

bj

‖bj‖

〉
(7)

bi and bj represent the patches outside and inside the mask

area, respectively. The resultant similarity scores are squared and

normalized to derive attention scores for each patch:

si,j =
c2i,j∑N
i=1 c

2
i,j

(8)

N represents the number of patches outside the mask area.

Despite the heterogeneity in lesion areas, a 256–256 matrix

uniformly stores potential affinity scores between any pair of

patches.

Finally, the ATM utilizes these attention scores to fill gaps in the

low-level feature map with contextually weighted patches:

bj =

N∑

i=1

si,jbi (9)

bi is extracted from outside the masked area and bj fills within

the mask. Each patch measures 16× 16, allowing for the extraction

of 256 patches in total.

Through residual aggregation, the model reconstructs detailed

aspects of the lesion area:

Rj =

N∑

i=1

si,jRi (10)

R denotes the residual image, with Ri and Rj representing the

patches involved in filling the masked area. These patches cover all

pixels seamlessly, ensuring a coherent integration of filled residuals

with the surrounding tissue. The resultant aggregated residual

image is then merged with the up-sampled blurry image from the

generator to enhance clarity.

3.5 Loss function

3.5.1 Vague-Filler loss
L1 Loss: To ensure uniformity throughout the training process

of the Vague-Filler, we utilize the L1 loss function. The formula for

this is given by:

Lv =
1

N

N∑

i=1

|hi − vagueĥi|

In training the Vague-Filler, our objective is to enhance the

model’s focus on the contour structures of healthy images, while

allowing a greater tolerance toward their textural features. The

L1 loss function is chosen because it minimally penalizes large

discrepancies and accommodates outliers effectively, making it an

appropriate choice for this application.

3.5.2 Generator loss
To enhance the stability of the generator’s training, we use

the hinge loss method for adversarial training. Additionally, to

enrich texture details in the generated images, we incorporate

perceptual loss.

Adversarial loss: For the adversarial training of the generator,

we employ the hinge loss method. The primary goal is to

maximize the separation between positive and negative samples,

thus enhancing categorical distinctions. This approach is based

on the methodology used in the Geometric GAN (Lim and Ye,

2017), which has demonstrated improvements in the effectiveness

of adversarial training. The adversarial losses for the discriminator

and the generator are defined as follows:

LD = E
[
max(0, 1− D(hi))

]
+ E

[
max(0, 1+ D(G(pi)))

]

LG = −E[D(G(hi))]

Here, G represents the generator, and D represents the

discriminator. For D, only positive samples where D(X) < 1

and negative samples where D(G(z)) > −1 impact the outcome,

implying that a small fraction of samples exceeding these thresholds

will not influence the gradients. This results in more stable training

dynamics.

Perceptual loss:To ensure that the images generated by

the generator network during high-definition reconstruction

closely align with the visual characteristics of healthy tissues,

we incorporate perceptual loss. Perceptual loss emphasizes the

perceptual quality of the restored images rather than solely focusing

on pixel-level differences. This loss is widely used in medical

imaging to enhance the restoration of textural details (Yang et al.,

2018; Li et al., 2021). The perceptual loss is defined as follows:

Lperc(G) = λE
[
‖φ(hi)− φ(G(hi))‖

]

Here, φ denotes the feature extraction function

from the VGG16 network, and λ, the weight of the

texture loss, is set to 64. The final loss function of the

generator is:

loss = LG + Lperc(G)

3.6 Training pipeline

The training process is elucidated within the “Training

Pipeline” section, as depicted in Figure 3. During this phase, the

grayscale values of all images are linearly adjusted to a range of

[−1, 1]. Masks are designated by a value of 1 for missing regions

and 0 for background areas. In this context, hi represents the input

healthy image, h̃i denotes the generated healthy image, and m

indicates the mask for missing regions. The operation ⊙ signifies

element-wise multiplication. The Vague-Filler V interprets the

concatenated masked image and mask as inputs to forecast the

vague image vaguey = V(hi,m), maintaining the same dimensions

as the input image. Following this, the Generator G uses the

combined vague image and mask to predict y = G(vaguey,m),
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1: Input: Training data H, Vague-filler model V,

Generator model G, Discriminator model D

2: Output: Trained Vague-filler model V, Generator

model G, Discriminator model D

3: Initialization;

4: while V or G has not converged do

5: // In order to amplify the adversarial impact,

the discriminator undergoes two updates for

each single update of the generator.

6: for 1, 2 do

7: Sampling batch images hi from training data

H;

8: Generating random masks m for hi;

9: Getting inpainted vague y← V(hi,m);

10: Pasting back vague h̃i ← y⊙m+ hi ⊙ (1−m);

11: Getting Pseudo-Healthy inpainted vague y ←

G(h̃i,m);

12: Pasting back h̃i ← y⊙m+ hi ⊙ (1−m);

13: Updating the Discriminator D with loss LD;

14: end for

15: Sampling batch images hi from training data H;

16: Generating random masks m for hi;

17: Getting inpainted vague y← V(hi,m);

18: Updating the Vague-filler V with loss LV;

19: Pasting back vague h̃i ← y⊙m+ hi ⊙ (1−m);

20: Getting Pseudo-Healthy inpainted vague

y← G(h̃i,m);

21: Pasting back h̃i ← y⊙m+ hi ⊙ (1−m);

22: Updating the Generator G with loss LG;

23: end while

24: Return Trained Vague-filler model V, Generator

model G, Discriminator model D;

Algorithm 1. Training of our approach.

producing a pseudo-healthy image with dimensions identical to

those of the input image. Detailed descriptions of this training

process are provided in Algorithm 1.

3.7 Inference pipeline

The inference process is detailed within the “Inference Pipeline”

section, as outlined in Figure 3. During inference, the grayscale

values of all images are linearly adjusted to range from [−1, 1].

Masks are used to indicate pathological regions with a value of 1 and

background areas with a value of 0. In this context, pi represents the

input pathological image, while h̃i signifies the generated healthy

image post vague filling. The operation ⊙ stands for element-

wise multiplication. The Vague-Filler V processes the concatenated

masked image and mask as input, forecasting a vague filled image

vague y = V(hi,m) that retains the dimensions of the input image.

Subsequently, the Generator G utilizes the combined vague image

and mask to generate y = G(vague(h̃i),m), resulting in the pseudo-

healthy image h̃i. This process is comprehensively described in

Algorithm 2.

1: Input: Test data T, Vague-filler model V,

Generator model G, Segmentor model S, Vague-filler

model weights Vweights, Generator model weights

Gweights, Segmentor model weights Sweights

2: Output: Pseudo-healthy images h̃i

3: Initialization;

4: Load weights for Vague-filler model V from Vweights;

5: Load weights for Generator model G from Gweights;

6: Load weights for Segmentor model S from Sweights;

7: Sampling batch images pi from test data T;

8: Getting masks m← S(pi);

9: Getting inpainted vague y← V(pi,m);

10: Pasting back vague x̃hi ← y⊙m+ pi ⊙ (1−m);

11: Getting Pseudo-Healthy inpainted vague y ← G(x̃hi ,m);

12: Pasting back h̃i ← y⊙m+ pi ⊙ (1−m);

13: Return h̃i;

Algorithm 2. Inferencing of our approach.

4 Experiments

4.1 Datasets

The proposed model was rigorously evaluated using the

T1 and T2 modalities of the BraTS2021 dataset, demonstrating

effectiveness across the T1ce and FLAIR modalities as well.

The model’s versatility was further assessed by examining its

adaptability to viral lesions in other organs with the COVID-19-20

dataset.

BraTS2021 Dataset (Menze et al., 2015; Bakas et al., 2017; Baid

et al., 2021): The BraTS2021 Dataset (Brain Tumor Segmentation

Challenge 2021 Dataset) is designed for the task of medical

image segmentation, specifically aimed at evaluating and advancing

algorithms for brain tumor segmentation. It comprises MRI

scans of the brain collected from multiple medical centers. Each

case in the dataset includes four different MRI modalities: T1-

weighted, T2-weighted, T1-weighted with contrast enhancement

(T1ce), and Fluid-Attenuated Inversion Recovery (FLAIR), along

with corresponding ground truth tumor segmentation. Comprising

1,251 cases in the training set, 219 in the validation set, and

530 in the test set, the BraTS2021 dataset ensures comprehensive

evaluation. All cases are skull-stripped, resampled to an isotropic

resolution of 1 mms, and co-registered. Each volume presents four

modalities: T1, T2, T1ce, and FLAIR, measured at dimensions of

240× 240× 155 (L×W×H).

COVID-19-20 Dataset (Roth et al., 2022): The COVID-19-20

challenge facilitates the evaluation of innovative techniques for

segmenting and quantifying lung lesions induced by SARS-CoV-

2 through CT images. Drawn from multiple institutions across

various countries, these images depict a diverse cohort in terms of

age, gender, and disease severity. The dataset includes 199 training

images and 50 validation images, each with a resolution of 512–512

pixels. Notably, these images detail lung lesions caused by SARS-

CoV-2 and include ground truth annotations derived from non-

contrast chest CT scans with confirmed positive RT-PCR results.
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4.2 Implementation details and baseline
comparisons

Environment:Windows 11, CUDA 11.7.

Framework: The methodology is implemented using the

PyTorch framework.

Optimizer: Model training is facilitated using the Adam

optimizer.

Learning rate: The initial learning rate is set at 0.001 and

reduces by 50% every 5 epochs.

Batch size: Given the slice dimensions of the BraTS2021 dataset

at 240 × 240 and those of the COVID-19-20 dataset at 512 × 512,

batch sizes are accordingly adjusted. A batch size of 16 is employed

for the BraTS2021 dataset, while a smaller batch size of 4 is utilized

for the COVID-19-20 dataset.

Training hardware: The model is trained on an NVIDIA

GeForce 4080 Super 16GB GPU.

Comparedmethods: The effectiveness of the proposed method

is assessed against three pathologically-informed pseudo-healthy

synthesis approaches [GVS-GAN (Zhang et al., 2022), PHS-GAN

(Xia et al., 2020), and VA-GAN (Baumgartner et al., 2018)] and two

widely-used generative adversarial models [AAE (Makhzani et al.,

2016) and Cycle GAN (Zhu et al., 2020)].

Code sources: For the implementation, official codebases are

used for GVS-GAN, VA-GAN, and PHS-GAN, while the most

popular GitHub repositories are sourced for AAE and Cycle GAN.

Data processing: For the BraTS2021 dataset, we extracted one

slice every five slices, resulting in a total of 13,759 slices. For the

COVID-19-20 dataset, we filtered the slices to include only those

with clearly visible lungs, extracting one slice every two slices, which

yielded a total of 2,965 slices.

4.3 Structure healthiness

In certain instances, significant deformations are often

observed in pathological images, particularly when large lesion

areas are present. Figure 5 illustrates pseudo-healthy images and

their corresponding Canny edge maps synthesized under such

conditions. Notably, it is common for models to still generate

pseudo-healthy images with deformations. To address this issue,

Xia et al. (2020) suggested the use of a classifier to categorize

Canny edge maps of both healthy and lesioned images to evaluate

the presence of deformations. Despite this approach, our statistical

analysis of 13,759 pathological slices revealed that only 1,059 slices

presented large lesions, where the lesion area exceeded 20% of the

total brain area. This indicates that large lesions are relatively rare

among pathological slices. Therefore, solely classifying Canny edge

maps of healthy and lesioned images does not provide a reliable

assessment of a model’s deformation correction capability in cases

with extensive lesions.

Building on the methodology, we introduce the concept of

“Structural Health” (SH) to more accurately explore models’

abilities to correct deformations in images with substantial lesion

areas. We specifically employed the BraTS21 dataset for this

purpose, analyzing Canny edge maps of medical images both

with and without extensive lesions. A binary classifier, trained

on the VGG network, was utilized. This classifier demonstrated

a high level of performance, achieving an average accuracy of

91.2% during its pre-training phase, which underscores its efficacy

in detecting deformations in images. The classifier’s output, a

continuous value ranging from 0 to 1, indicates the likelihood of an

image being free from deformations. During the evaluation phase,

we focused exclusively on pseudo-healthy images generated from

samples with extensive lesions. Here, SH is quantified as the average

probability that these images maintain structural integrity and are

free from deformations.

SH = Exp∼P
[
Cp

(
GeN(xp)

)]
(11)

In this formula, xp denotes the pathological image, Cp

represents the pre-trained edge map classification model, and GeN

indicates the pseudo-healthy synthesis network.

4.4 Other metrics

4.4.1 Healthiness
To evaluate the “healthiness” of pseudo-healthy images, Xia

et al. (2020) developed a metric named “healthiness.” This metric

utilizes a pre-trained segmentation model, which is further refined

on a validation set. The fundamental role of this segmenter is

to identify pathological regions within both generated pseudo-

healthy images and their original pathological counterparts. The

healthiness metric is quantified by the proportion of matching

pathological pixels found in these images, where a higher

percentage indicates a more extensive presence of pathological

regions, thus denoting a lower healthiness. The healthiness index

(HEALTHINESS, H) is calculated using the following formula:

H = 1−
Exp∼P[N(fp(GeN(xp)))]

Emp∼pm [N(fp(xp))]

Here, xp represents the pathological image, fp is the pre-

trained segmentation model, N(·) denotes the number of pixels

identified as pathological by fp, and GeN refers to the pseudo-

healthy generation network. The denominator incorporates the

segmentation output fp(xp) of the pathological image rather than

the actual maskmp, to counter potential biases from the pre-trained

model. Subtracting this term from 1 indicates that a reduction in

the pathological mask correlates with an increase in H, signifying

enhanced healthiness.

4.4.2 Identity preservation
The metric for Identity Preservation quantifies the degree to

which the generated pseudo-healthy images maintain the subject’s

identity (Zhang et al., 2022), specifically assessing the likelihood

that both the synthesized pseudo-healthy image and the input

pathological image are derived from the same subject. This metric

evaluates the structural similarity and peak signal-to-noise ratio of

non-pathological regions between the pseudo-healthy image and its

corresponding pathological counterpart. The calculations are based

on the following formulas:

MP = PSNR
[
(1− yt)⊙ G

(
xp

)
, (1− yt)⊙ xp

]
(12)
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FIGURE 5

The pseudo-healthy synthetic images generated by VAGAN, PHS-GAN, GVS-GAN, and the method proposed in this paper, alongside their

corresponding edge maps that display the anatomical structures.

MS = SSIM
[
(1− yt)⊙ G

(
xp

)
, (1− yt)⊙ xp

]
(13)

Where xp represents the pathological image, yt denotes

the corresponding pathological mask, ⊙ signifies element-wise

multiplication, and PSNR and SSIM are abbreviations for Peak

Signal-to-Noise Ratio and Multi-Scale Structural Similarity Index,

respectively.

4.5 Evaluation of healthiness and identity
preservation

We conducted a thorough evaluation of our proposed method

alongside five other models, examining them across four essential

dimensions: Healthiness (H), Mask Peak Signal-to-Noise Ratio

(MPSNR), Mask Structural Similarity Index Measure (MSSIM),

and Structural Healthiness (SH). The outcomes for the T1

modality are detailed in Table 1, and those for the T2 modality

appear in Table 2. Under the T1 modality, the AAE model

achieved the highest Healthiness score and maintained strong

performance in the T2 modality. This superior performance

is primarily due to the blurriness of the images it generated,

which impacts the segmentor’s ability to accurately locate lesion

regions, thus resulting in higher health metrics. On the other

hand, the PHS-GAN and GVS-GAN models, tailored specifically

for brain medical imaging, significantly outshine the other

models in both health and subject identity metrics. However,

their heavy reliance on the segmentor for identifying lesion

regions slightly compromises subject identity preservation. The

AAE, VAGAN, and CycleGAN models exhibit a noticeable

deficiency in preserving subject identity compared to other

models, as they do not incorporate pixel-level pathological

annotations, leading to less precise lesion region localization.

Our method, which accurately replaces the pathological region

and its adjacent 5mm area, nearly flawlessly preserves subject

identity. Additionally, extensive training with healthy brain

medical images allows the pseudo-healthy brain images synthesized

by our method to be more coherent, ensuring a superior

Healthiness score.

4.6 Evaluation of visual quality

We conducted experiments comparing our model against

five baseline models, assessing their performance in synthesizing

pseudo-healthy images under the T1 and T2 modalities, as

depicted in Figure 6. Each method’s efficacy was evaluated based

on subject identity and healthiness. Healthiness is assessed by

how well pathological and normal regions integrate in the

synthesized images. Images where pathological regions blend

seamlessly with normal areas are considered “healthy,” while

those where pathological areas are distinctly separate are regarded

as “unhealthy.” Our findings indicate that images generated by

the AAE model often do not maintain the subject identity of

the input images and appear notably blurred. The VAGAN-

produced images can reconstruct lesion regions to a degree,

but the quality of reconstruction is poor, and the inaccurate

localization of lesions leads to a loss of subject identity.

PHS-GAN, similar to CycleGAN, and CycleGAN itself both

face challenges in preserving subject identity while repairing

extensive lesion regions, resulting in some images losing subject

identity and having less coherent repaired organ structures. The

performance of GVS-GAN relies heavily on the segmentor’s

accuracy during the generation process, with errors leading to

the creation of lesion-free but blurred tissue structures in the

synthesized images. In contrast, our method effectively preserves

subject identity in pseudo-healthy images by specifically replacing
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TABLE 1 Quantitative comparison of health and identity preservation metrics for AAE, CycleGAN, VAGAN, PHS-GAN, GVS-GAN, and the proposed

method under the T1 modality.

Models Healthiness MPSNR MSSIM Structure healthiness

AAE (Makhzani et al., 2016) 0.968 20.64 0.795 0.702

CycleGAN (Zhu et al., 2020) 0.701 31.63 0.968 0.294

VAGAN (Baumgartner et al., 2018) 0.721 21.50 0.899 0.422

PHS-GAN (Xia et al., 2020) 0.831 32.18 0.987 0.580

GVS-GAN (Zhang et al., 2022) 0.909 33.32 0.993 0.749

Ours 0.929 34.92 0.995 0.843

Bold indicates the highest values.

TABLE 2 Quantitative comparison of health and identity preservation metrics for AAE, CycleGAN, VAGAN, PHS-GAN, GVS-GAN, and the proposed

method under the T2 modality.

Models Healthiness MPSNR MSSIM Structure healthiness

AAE (Makhzani et al., 2016) 0.849 21.93 0.775 0.733

CycleGAN (Zhu et al., 2020) 0.744 32.98 0.964 0.496

VAGAN (Baumgartner et al., 2018) 0.783 22.47 0.898 0.499

PHS-GAN (Xia et al., 2020) 0.887 32.55 0.977 0.621

GVS-GAN (Zhang et al., 2022) 0.945 33.11 0.984 0.589

Ours 0.957 33.65 0.992 0.749

Bold indicates the highest values.

pathological regions. Enhanced by a context residual mechanism,

the synthesized images exhibit a balanced tissue structure

distribution, clear visual quality, and consistent preservation of

subject identity.

4.7 Other modalities

We conducted comparative experiments focusing on the

T1ce and Flair modalities, alongside the PHS-GAN and GVS-

GAN models, which previously showed promising results in

T1 and T2 modalities. As depicted in Figure 7, the qualitative

analysis reveals that images from all three models exhibit

a degree of blurring in the T1ce modality. Our model,

however, demonstrates superior performance in lesion repair

and restoration of brain structures compared to PHS-GAN

and GVS-GAN. In the Flair modality, both PHS-GAN and

our model show areas of high signal intensity, with PHS-

GAN’s high signal areas extending throughout the brain.

Meanwhile, the images generated by GVS-GAN display no

significant high signal areas but fall short in restoring brain

structures effectively.

The quantitative results, as presented in Table 3, show that our

approach significantly surpasses the other methods in the T1ce

modality. In the Flair modality, while GVS-GAN excels in terms of

healthiness, our method outperforms in other significant metrics.

Overall, the qualitative and quantitative outcomes underscore our

method’s comparative advantage in both T1ce and Flair modalities

over competing approaches, affirming its efficacy in producing

more accurate and clinically relevant pseudo-healthy images.

4.8 COVID-19-20 dataset

Our method was applied to the COVID-19-20 dataset

to generate pseudo-healthy images, specifically targeting viral

lesions. Despite this, the challenges inherent in COVID-19

segmentation and the complex nature of pneumonia cases

mean that pixel-level annotations are not sufficiently precise.

Consequently, there is a noticeable disparity between the

synthesized pseudo-healthy images and actual healthy images.

As shown in Figure 8, our approach achieves some success

in cases with small-scale lesions and relatively straightforward

backgrounds. However, in scenarios involving extensive lung

lesions, the synthesized images significantly diverge from true

healthy lung images, highlighting the limitations in current

segmentation and synthesis techniques in handling complex

clinical scenarios.

4.9 Ablation study

To evaluate the effectiveness of the proposed flip symmetry,

we conducted both qualitative and quantitative analyses on

three variations of GAN networks within the T1 modality:

the standard GAN, GAN with Contextual Residual Attention

(GAN+CRA), and GAN with Contextual Residual Attention plus

Flip Symmetry Network (GAN+CRA+FLIP). The qualitative

results are illustrated in Figure 9, and the quantitative outcomes

are detailed in Table 4. The findings demonstrate that networks

equipped with Contextual Residual Attention significantly

surpass the basic GAN in both quantitative and qualitative

evaluations. Furthermore, from a qualitative standpoint,
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FIGURE 6

Shows experimental results on five samples (one per row) from the BraTS2021 dataset under the T1 and T2 modalities. The columns, from left to

right, display the original pathological images, followed by the synthesized pseudo-healthy images generated by AAE, CycleGAN, VAGAN, PHS-GAN,

GVS-GAN, and the proposed method.
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FIGURE 7

Experimental results of five samples each for T1 and T2 modalities on the BraTS dataset: original pathological images and pseudo-healthy images

synthesized by PHS-GAN, GVS-GAN, and our method (from left to right).

networks incorporating the flip structure produce pseudo-healthy

images that exhibit greater symmetry compared to those

without the flip structure. This difference in STRUCTURAL

HEALTHINESS confirms that the images generated by networks

with the flip structure align more closely with established

health standards.

5 Conclusion

We have introduced a novel pseudo-healthy synthesis method

that utilizes an inpainting approach to generate images for

intracranial infections. Unlike previous methods, our approach

prioritizes the visual quality of the synthesized images. It consists
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TABLE 3 Quantitative comparison of health and identity preservation metrics for PHS-GAN, GVS-GAN, and the proposed method under the T1ce

modality and flair modality.

Modal Models Healthiness MPSNR MSSIM Structure healthiness

PHS-GAN (Xia et al., 2020) 0.831 31.78 0.979 0.571

T1ce GVS-GAN (Zhang et al., 2022) 0.909 33.13 0.989 0.529

Ours 0.935 37.53 0.994 0.679

PHS-GAN (Xia et al., 2020) 0.731 31.27 0.966 0.552

FLAIR GVS-GAN (Zhang et al., 2022) 0.912 32.16 0.979 0.602

Ours 0.891 35.58 0.992 0.605

Bold indicates the highest values.

FIGURE 8

Displays the pseudo-healthy images generated by the proposed method on the COVID-19-20 dataset, with three samples shown, one per column.

of three components: a Segmentor, a Vague-Filler, and a Generator.

The Segmentor identifies and localizes pathological regions, the

Vague-Filler constructs inpainted pseudo-healthy images, and the

Generator refines the reconstructions of the pathological input

images. We have also established numerical evaluation metrics to

assess the anatomical structure quality of the synthesized images.

Demonstrated on the BraTS2021 dataset, our method exceeds

current state-of-the-art benchmarks in qualitative, quantitative,

and subjective evaluations.

Looking ahead, several promising research directions emerge

from our work and the broader field. Our method effectively

patches lesion regions, enhancing the preservation of subject

identity. Post-patching, the Generator leverages global information,

allowing the synthesized pseudo-healthy regions to integrate

more seamlessly with adjacent areas. Although our results are

impressive, our approach is limited by the need for dense,

accurate segmentation annotations, which are challenging to

amass in clinical settings. Future research should aim to reduce

the reliance on precise pixel-level annotations, possibly through

more sophisticated segmentation models or unsupervised learning

techniques (Ma et al., 2024). Additionally, we have proposed

a method to repair regions surrounding lesions to counteract

pathologies beyond the lesion areas, though further refinement

is needed for more accurate synthesis. Our method also shows

limitations in synthesizing pseudo-healthy images of other organs

(Liu et al., 2022), prompting future efforts to integrate more

advanced localization techniques for a broader application of

pseudo-healthy synthesis.
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FIGURE 9

Comparison of pseudo-healthy images generated on the BraTS dataset: basic GAN, GAN with contextual residual attention, and GAN with contextual

residual attention plus flipped symmetrical network across five samples (one sample per column).

TABLE 4 Quantitative results for basic GAN networks, GAN networks with contextual residual attention mechanism, and GAN networks featuring both

contextual residual attention mechanism and mirrored symmetry network.

Models Healthiness MPSNR MSSIM Structure healthiness

GAN 0.591 32.72 0.962 0.245

GAN + CRA 0.882 34.03 0.989 0.660

GAN + CRA + FLIP 0.929 34.92 0.995 0.843

Bold indicates the highest values.
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