
Frontiers in Microbiology 01 frontiersin.org

Multi-omics analysis of gut 
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The gut microbiota plays a crucial role in host health and metabolism. This study 
explores the differences in gut microbiota and metabolites between domestic 
pigs (DP) and wild boars (WB) in urban environments. We analyzed gut microbial 
composition, metabolic profiles, virome composition, antibiotic resistance genes 
(ARGs), and human pathogenic bacteria (HPB) in both DP and WB. Our results 
revealed that DP exhibited a higher Firmicutes/Bacteroidetes ratio and were 
enriched in bacterial genera associated with domestication and modern feeding 
practices. Metabolomic analysis showed distinct profiles, with WB significantly 
enriched in the Pantothenate and CoA biosynthesis pathway, highlighting 
dietary and environmental influences on host metabolism. Additionally, DP had 
a distinct gut virome composition, particularly enriched in lytic phages of the 
Chaseviridae family. ARG analysis indicated a higher abundance of tetracycline 
resistance genes in DP, likely due to antibiotic use in pig farms. Furthermore, 
variations in HPB composition underscored potential health risks associated 
with contact with pig feces. These findings provide valuable insights into the 
microbial ecology of domestic pigs and wild boars, emphasizing the importance 
of these comparisons in identifying zoonotic pathogen transmission pathways 
and managing antibiotic resistance. Continued research in this area is essential 
for developing effective strategies to mitigate public health risks and promote 
sustainable livestock management practices.
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1 Introduction

The gut microbiota, consisting of trillions of microorganisms like bacteria, viruses, fungi, 
and protozoa, forms a complex symbiotic ecosystem with the host (Barko et al., 2018). This 
symbiotic relationship is pivotal for host health, immunity, and disease resistance (Rooks and 
Garrett, 2016; Afzaal et al., 2022). Recent studies highlight the gut microbiota’s significant role 
in both gastrointestinal and systemic health (Caputi et al., 2021). Furthermore, metabolites 
are critical regulatory factors and essential components for maintaining host growth, 
development, and health (Liu et al., 2022; Zhang et al., 2023). Metabolites produced by the gut 
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microbiota provide necessary energy and promote physiological 
activities through compounds like short-chain fatty acids and 
secondary bile acids (Rowland et al., 2018; Rahman et al., 2023).

Domestic pigs (Sus domesticus, DP) and wild boars (Sus scrofa, 
WB), represent two distinct populations with contrasting ecological 
niches, diets, and lifestyles. Centuries of selective breeding and 
domestication have led to significant genetic and phenotypic changes 
compared to their wild ancestors, wild boars (Larson et al., 2005; Yang 
et al., 2018, 2020). Studies show that DP have developed a lactobacillus-
dominated enterotype due to domestication and human feeding 
mechanisms, while WB retain a Bifidobacterium-dominated 
microbiome (Ushida et al., 2016; Yang et al., 2020; Kuthyar et al., 2023; 
Hu et al., 2024). Urbanization reduced the buffer zone between WB 
habitats and cities, increasing human-wildlife interactions and 
conflicts (Lamichhane et al., 2019; Li et al., 2022; Simkin et al., 2022). 
Furthermore, the absence of natural predators for WB in urban areas 
may contribute to a steady increase in their populations (Conejero 
et  al., 2019; Castillo-Contreras et  al., 2021; Zhou et  al., 2023). 
Additionally, urban environments provide new ecological pressures 
and dietary patterns for WB, potentially altering their gut microbiota 
(Stillfried et al., 2017; Castillo-Contreras et al., 2021; Davidson et al., 
2022). In contrast, DP are typically raised in controlled environments 
with formulated diets and management practices, including antibiotic 
use and vaccination (Maes et al., 2020; Rodrigues et al., 2022). WB 
inhabit diverse nature ecosystems, primarily consuming plants but 
also preying on invertebrates, small mammals, and carrion 
opportunistically (Stillfried et al., 2017; Ruf et al., 2021). Consequently, 
these changes in diet and habitat may lead to significant alterations in 
the gut microbiota of urban wild boars.

Furthermore, the proximity of wild boars to human settlements 
raises concerns regarding public health and safety. WB act as 
reservoirs for a plethora of human pathogenic bacteria (HPB) and 
antibiotic-resistant genes (ARGs), posing a significant risk of disease 
transmission to humans and domestic animals (Meng et al., 2009; 
Fredriksson-Ahomaa, 2019; Dias et al., 2022). Increased interactions 
in urban areas facilitate the exchange of infectious viruses, ARGs, and 
HPB, potentially leading to zoonotic disease outbreaks (Wierucka 
et al., 2023). Identified viruses in WB include hepatitis E virus (HEV), 
influenza A virus (IAV), and porcine reproductive and respiratory 
syndrome virus (PRRSV) (Chen et  al., 2018; Liang et  al., 2019). 
Additionally, key ARGs in WB confer resistance to beta-lactams, 
tetracyclines, fluoroquinolones, aminoglycosides, and sulfonamides, 
often originating from agricultural runoff or human waste 
(Fredriksson-Ahomaa, 2019; Torres et al., 2020; Selmi et al., 2022). 
The spread of ARGs, facilitated by horizontal gene transfer, 
complicates treatment and poses a threat to human health (Dias et al., 
2022). Additionally, wild boars carry various HPB, including 
Salmonella, Campylobacter, Escherichia coli, and Yersinia enterocolitica, 
which can cause gastrointestinal illnesses in humans through 
contaminated food, water, or direct contact with WBs or their feces 
(Meng et  al., 2009; Ali and Alsayeqh, 2022). Urbanization-driven 
increases in WB populations heighten the risk of pathogen 
transmission through closer human contact and 
environmental contamination.

In summary, urbanization and wild boar encroachment into 
urban areas pose significant ecological and public health challenges 
(Basak et al., 2022). Effective management strategies are needed to 
address human-wildlife conflicts and disease transmission risks. 

Analyzing the gut microbiota of domestic pigs and wild boars in 
urban areas is crucial for assessing zoonotic disease transmission and 
antibiotic resistance. Continued surveillance and research efforts are 
essential to monitor infectious viruses, ARGs, and human pathogenic 
bacteria, helping to mitigate public health risks.

2 Materials and methods

2.1 Animals and sample collection

In this study, fecal samples were collected from domestic pigs 
(DP) and wild boars (WB), comprising 8 domestic pigs and 28 wild 
boars. Further details on the sample information were provided in 
Supplementary Tables S1–S3. All animals were sourced from Nanjing 
City, Jiangsu Province, China. The domestic pig samples included 2 
DP samples from a pig farm in Pukou District and 6 DP samples from 
a pig farm in Jiangning District. Fecal samples from domestic pigs 
were obtained directly from their anus, placed in sterile sampling 
bottles, transported to the laboratory at 4°C, and stored at −80°C for 
long-term preservation. Regarding wild boar fecal samples, 4 WB 
samples were collected from a pig farm in Pukou District, 4 WB 
samples from a pig farm in Jiangning District, and 20 WB samples 
from a pig farm in Xuanwu District. For wild boars in their natural 
habitat, precautions were taken to minimize soil contamination. Fresh 
feces were gathered from the ground using sterile tweezers, transferred 
to sterile sampling bottles, transported to the laboratory at 4°C, and 
stored at −80°C for long-term storage.

2.2 DNA extraction and sequencing of 
full-length 16S rRNA and metagenomic 
samples

DNA was extracted using the QIAamp DNA Stool Mini Kit 
according to the manufacturer’s instructions. The concentration of 
DNA was determined by 1% agarose gel electrophoresis (DNA 
concentration ≥ 20 ng/μl). For full-length 16S rRNA analysis, the 
universal primer set 27F (AGRGTTYGATYMTGGCTCAG) and 
1492R (RGYTACCTTGTTACGACTT) was used to amplify the full-
length 16S rRNA gene from genomic DNA. PCR products were 
detected by 2% agarose gel electrophoresis. Gel extraction of PCR 
products was performed using the AxyPrepDNA Gel Extraction Kit 
(AXYGEN), followed by elution with Tris–HCl buffer. The recovered 
PCR products were further analyzed by 2% agarose gel electrophoresis. 
For metagenomic analysis, post-DNA extraction, DNA was 
fragmented into approximately 300 bp fragments using a Covaris 
M220 sonicator. “Y”-shaped adapters were ligated to both ends of the 
DNA fragments, followed by magnetic bead selection to remove self-
ligated fragments. Subsequently, PCR amplification was performed to 
construct the library. Library construction was carried out using the 
TruSeq™ DNA Sample Prep Kit, with library quantification via qPCR 
ensuring a library concentration greater than 3 nM. Next, bridge PCR 
amplification was conducted using the cBot Truseq PE Cluster Kit 
v3-cBot-HS. Following library qualification, high-throughput 
sequencing was performed on the Illumina HiSeq platform for full-
length 16S rRNA sequencing and metagenomic sequencing. After 
sequencing data acquisition, sequences shorter than 500 bp were 
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initially removed from the raw data. Subsequently, a series of 
processing steps including sequence correction, dereplication, and 
adapter trimming were carried out as in previous methods (Cui et al., 
2023; Dai et al., 2023) to obtain high-quality representative sequences.

2.3 Bioinformatics analysis of 16S rRNA 
data

OTU clustering analysis was conducted using Usearch software 
(version 10, http://drive5.com/uparse/) (Edgar, 2013). Initially, 
non-redundant sequences were extracted from the optimized 
sequences, and singleton sequences were eliminated. Subsequently, 
non-redundant sequences were clustered into OTUs at 97% similarity, 
while chimeras were simultaneously excluded, resulting in 
representative sequences for each OTU. These optimized sequences 
were then aligned to the representative sequences of OTUs, and 
sequences showing similarity greater than 97% to the representative 
sequences were filtered out to generate the requisite OTU table. 
Finally, the OTU table underwent rarefaction to ensure uniform 
sequencing depth across samples. Subsequently, the representative 
sequences of OTUs were processed using the uclust software (Edgar, 
2010) to enumerate the microbial community composition of wild 
boar and domestic pig samples at different taxonomic levels (including 
domain, kingdom, phylum, class, order, family, genus, and species).

Principal Coordinate Analysis (PCoA) and Non-metric 
Multidimensional Scaling (NMDS) analyses, utilizing Bray–Curtis 
dissimilarity, were conducted to visually represent the similarities and 
dissimilarities within and between sample groups. A Venn diagram 
was utilized to elucidate the shared and unique microbial taxa between 
the two groups, namely the WB and DP groups. This graphical 
representation provides a clear depiction of the overlap and 
distinctiveness of microbial communities. To further explore the 
differences in microbial composition between the groups, heatmaps 
were employed. Heatmaps provide a concise visual summary of 
microbial abundance patterns across samples, facilitating the 
identification of taxa exhibiting differential abundance between 
groups. This analytical tool aids in pinpointing key microbial 
signatures associated with specific sample conditions. Additionally, 
Linear discriminant analysis Effect Size (LEfSe) (Chang et al., 2022), 
a widely recognized tool for biomarker discovery, was employed. 
Initially, non-parametric factorial Kruskal-Wallis and Wilcoxon 
rank-sum tests were conducted to identify features with significantly 
different abundances among the samples. Subsequently, the Linear 
Discriminant Analysis (LDA) within LEfSe was utilized to assess the 
impact of each component’s abundance on the observed differences. 
The results were visualized using bar plots, with features having an 
LDA score > 3.0 and p < 0.05 considered significant biomarkers.

2.4 Bioinformatics analysis of metagenomic 
data

The BLAST (version 2.2.28+, http://blast.ncbi.nlm.nih.gov/Blast.
cgi) was utilized to align the metagenomic gene sequences and 
annotate them using multiple databases. The Seed database was 
employed for annotating viral components, which encompassed 
extensive viral-related information. For annotating antibiotic 

resistance genes, data from the Antibiotic Resistance Gene Database 
(ARDB), the Comprehensive Antibiotic Resistance Database (CARD), 
and non-redundant data from the NCBI database were integrated to 
construct the SARG dataset, ensuring comprehensive annotation of 
antibiotic resistance genes. Furthermore, the NCBI and VFDB 
databases were utilized for annotating Human Pathogenic Bacteria 
(HPB), to obtain detailed information related to human pathogenic 
bacteria. Finally, by analyzing the alignment results, the annotation 
outcomes were associated with the original sequences to identify 
features relevant to viral components, antibiotic resistance genes, and 
HPB, thereby further exploring the biological significance of these 
features within the microbial community. Based on the annotated 
classification information of the metagenome, stacked bar charts were 
employed to illustrate the composition and relative abundances of 
viral communities, antibiotic resistance genes (ARGs), and Human 
Pathogenic Bacteria (HPB) within each sample group. Furthermore, 
the Stamp (Shaufi et al., 2015) was utilized for differential analysis to 
determine their significant differences across different groupings 
(confidence interval is 95%, p < 0.05). Additionally, heatmap 
visualization was employed to analyze the relative abundances of these 
differentially represented species, allowing for a deeper understanding 
of the microbial community compositional differences between the 
two sample groups.

2.5 Metabolome analysis

Fecal samples from domestic pigs (DP) and wild boars (WB) were 
also utilized in the metabolome experiment, which was conducted by 
Shanghai Mingke Biotechnology (Hangzhou) Co., Ltd. The detailed 
Metabolome protocol was provided in the Supplementary material. 
To ensure the reliability and reproducibility of metabolomic data and 
highlight their biological significance, we  conducted a series of 
preparations and treatments. Initially, we employed deviation and 
missing value filtrations to identify and eliminate noise, outliers, and 
missing data, thereby retaining high-quality data. Specifically, 
we computed the relative standard deviation (RSD) for each peak and 
applied appropriate thresholds based on experimental conditions and 
data characteristics for filtration. Regarding missing value filtration, 
we retained only high-quality data and utilized imputation methods 
to fill missing values, ensuring data integrity and stability. For data 
standardization, we selected suitable internal standards for sample 
normalization, mitigating technical variability among different 
samples. We  established precursor tolerances of 5 ppm, product 
tolerances of 10 ppm, and a 5% product threshold for compound 
identification. Compound identification relied on mass-to-charge 
ratio (M/z), secondary fragments, and isotopic distribution, employing 
databases including the Human Metabolome Database (HMDB) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) for metabolite 
annotation and qualitative analysis. Extracted data underwent further 
processing, wherein peaks with missing values exceeding 50% in 
groups and compounds scoring below 36 points were removed.

Principal Component Analysis (PCA) and Partial Least Squares 
Discriminant Analysis (PLS-DA) were employed to evaluate the 
overall distributional trends and the extent of differences between 
samples across different groups. Utilizing the Pheatmap package in R 
(Li et al., 2023), we constructed heatmaps with Z-score conversion to 
visually depict the concentration of enriched metabolites, thereby 
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emphasizing the biological significance of the data and variations in 
metabolites among distinct samples. Subsequently, we  extracted 
metabolite compositions from each database and utilized 
MetaboSignal (Rodriguez-Martinez et  al., 2017) to generate 
enrichment information for KEGG pathways based on metabolite 
compositions. Bacterial genera displaying significant differences 
among groups of microbial samples corresponding to metabolome 
samples were identified using the Wilcoxon rank-sum test. Spearman 
correlation analysis was conducted to explore the associations between 
bacterial genera and metabolites employing the R package psych. 
Correlations were deemed significant at a threshold of p < 0.05 (Hu 
et al., 2022). Finally, a correlation heatmap was generated utilizing the 
R package pheatmap.

3 Results and discussions

3.1 Gut microbial composition differences 
between DP and WB

We analyzed 16S rRNA gene data from 36 samples (8 domestic 
pigs and 28 wild boars) (Supplementary Table S1). NMDS (Figure 1A) 
and PCoA (Figure 1B) analyses showed clearly separated clusters of 
DP and WB. As shown in Figure 1C, DP and WB shared 100 OTUs of 
gut microbiota. DP had fewer unique gut microbiota (12 OTUs) 
compared to WB (680 OTUs). The main phyla in the gut microbiome 
of wild boars included Proteobacteria, Firmicutes, Bacteroidetes, and 
Actinobacteria, while Firmicutes was overwhelmingly dominant in 
domestic pigs (Figure 1D). Compared to Firmicutes, Bacteroidetes has 
fewer genes for enzymes involved in carbohydrate and lipid 
metabolism, which play an important role in weight gain (Stephens 
et al., 2018). It has been reported that the gut microbiota of obese 
individuals typically exhibited a higher Firmicutes/Bacteroidetes (F/B) 
ratio compared to normal-weight individuals. Therefore, the F/B ratio 
frequently serves as a hallmark of obesity in humans and animals 
(Magne et al., 2020). In this study, it was observed that the F/B ratio 
of DP (F/B = 65.54) was remarkably higher than that of WB 
(F/B = 2.48), which may be more in line with the realistic demands for 
weight gain and livestock breeding efficiency in the pig farming 
industry. Additionaly, at the genus level (Figure 1E), DP contained 
more Clostridium sensu stricto 1, Terrisporobacter, Streptococcus, and 
Lactobacillus, while Pseudomonas, Escherichia-Shigella, Buttiauxella, 
and Enterobacter were more abundant WB. Previous studies have 
shown that domestication and modern feeding practices result in a gut 
microbiota dominated by Lactobacillus in domestic pigs (Ushida et al., 
2016; Yang et al., 2020). Dietary factors are highly probable to be an 
important contributor to the variability of the gut microbiome in 
domestic pigs and wild boars.

Similarly, LEfSe (Linear discriminant analysis effect size) analysis 
also revealed the significant differences in microbial species between 
DP and WB (LDA score > 3.0, p < 0.05) (Figures 1F,G). A total of 64 
significantly differential microbial taxa were identified in DP and WB 
(Figure 1G). Among those, Enterobacteriaceae, Pseudomonadaceae, 
Porphyromonadaceae, Coriobacteriaceae, Bacteroidaceae, 
Burkholderiaceae, Family_XIII, and Veillonellaceae were identified as 
WB enriched gut bacteria, whereas Clostridiaceae_1, 
Peptostreptococcaceae, Streptococcaceae, Lactobacillaceae, and 
Planococcaceae were significantly enriched within DP. Prior research 

has shown a dissimilarity in gut microbiota among wild boars, 
commercial pigs, and domestic pigs. Commercial pigs displayed 
higher levels of Streptococcaceae and Lactobacillaceae, whereas 
Ruminococcaceae and Prevotellaceae were more abundant in wild 
boars than in the other groups (Yang et al., 2020). In this study, some 
gut bacteria genus belonged to Ruminococcaceae and Prevotellaceae, 
include Ruminococcus_1, Ruminococcus_2, Ruminococcaceae_
UCG_013, Ruminococcaceae_UCG_014, Eubacterium_
coprostanoligenes_group, and Prevotellaceae_NK3B31_group were also 
observed to be significant enriched in WB (Figure 1G).

3.2 Dissimilarity of metabolic profiles in DP 
and WB

A non-targeted metabolomic analysis was performed to examine 
the metabolite profiles in fecal samples from domestic pigs and wild 
boars. A total of 164 metabolites were identified, belonging to 6 super 
classes (Supplementary Figure S1), including Benzenoids (4.88%), 
Lipids and lipid−like molecules (34.15%), Organic acids and 
derivatives (19.51%), Organic nitrogen compounds (7.32%), 
Organoheterocyclic compounds (21.95%), and Others (12.2%). The 
PCA score plot and OPLS-DA model demonstrated clear separation 
between DP and WB (Figure  2A), with a total of 41 differential 
metabolites identified (Figure 2B). Among these, it was observed that 
Adenine, L-Hexanoylcarnitine, (3R, 6’Z)-3,4-Dihydro-8-hydroxy-3-
(6-pentadecenyl)-1H-2-benzopyran-1-one, 3-Aminobutanoic acid, 
Dodecanoic acid, Histamine, L-Carnitine, 3-Carboxy-4-methyl-5-
propyl-2-furanpropionic acid, (Cyclohexylmethyl)pyrazine, Malonic 
acid, 4-Trimethylammoniobutanoic acid, Propionic acid, 2,5-Dihydro-
2,4-dimethyloxazole, 4-Acetylbutyrate, 5-Methylcytosine, 
Syringaldehyde, 10E,12Z-Octadecadienoic acid, Alanyl-Leucine, 
H-LEU-VAL-OH, Leucyl-Isoleucine, LysoPE (18:1 (9Z)/0:0), 
Riboflavin, Betaine, Denudatine, and L-Alanine were more abundant 
in DP, whereas Acetylleucine, D-Pantothenic acid, L-Valine, Phthalic 
acid, Uracil, Nicotinamide N-oxide, Lauroyl diethanolamide, 
Triethanolamine, PC (18:1 (11Z)/14:0), PC (20:1 (11Z)/14:0), Palmitic 
acid, Gingerol, Pyrrolidine, Stearoylcarnitine, 2-acetyl-1-alkyl-sn-
glycero-3-phosphocholine, and LysoPC (18:3 (6Z,9Z,12Z)) were more 
predominant in WB.

The pathway enrichment analysis of differential fecal 
metabolites between DP and WB (Figure 3A) revealed a significant 
enrichment in the Pantothenate and CoA biosynthesis pathway 
(p = 0.011942, impact value = 0). Compared to DP, WB harbor a 
higher gene number associated with Pantothenate and CoA 
biosynthesis (KEGG Pathway: map00770) (Figure 3B), particularly 
within the dominant Proteobacteria (including Citrobacter, Erwinia, 
Leclercia, Pseudomonas_E sp005233515, Pseudomonas_
Eazotoformans_A, Serratia liquefaciens, Erwinia billingiae, 
Enterobacter ludwigii, Escherichia flexneri) in WB. Pantothenate 
(also known as vitamin B5) is an essential vitamin precursor 
required for the synthesis of coenzyme A (CoA), a vital molecule 
involved in various metabolic pathways (de Villiers et al., 2013). 
Pantothenate and CoA biosynthesis plays a crucial role in various 
biochemical reactions, including fatty acid synthesis, amino acid 
metabolism, and the citric acid cycle (He et al., 2019; Naquet et al., 
2020; de Vries et  al., 2021). In this study, D-Pantothenic acid, 
L-Valine, and Uracil significantly enriched in WB were all associated 
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FIGURE 1

The composition of gut microbiome in DP and WB. (A) NMDS analysis based on Bray–curtis distance; (B) PCoA analysis based on Bray–curtis distance; 
(C) Composition of OTUs in DP and WB; (D) The relative abundance of the dominant phylum in DP and WB; (E) The relative abundance of the 
dominant genus in DP and WB; (F) LEfSe (Linear discriminant analysis Effect Size) was used to determine the significant difference in the abundance of 
gut microbiomes between DP and WB; (G) Histogram of LDA values of gut differential species of DP and WP (LDA value > 3.0, p  <  0.05).
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with the Pantothenate and CoA biosynthesis pathway (Wu et al., 
2018). L-Valine can synergistically regulate the Pantothenate and 
CoA biosynthesis pathway with pantothenic acid (Schicho et al., 
2012; Bai et al., 2022). 48-h fasting in pigs has been demonstrated 
to influence Pantothenate and CoA biosynthesis by significantly 
enhancing pantothenate metabolism (Liu et al., 2018). Additionally, 
other studies indicate that heat stress (HS) (He et al., 2019; Srikanth 
et al., 2020) and infection with classical swine fever virus (CSFV) 
(Liao et al., 2023) also exert significant effects on the Pantothenate 
and CoA biosynthesis pathway in pigs.

Notably, it was observed in this study that the Pantothenate and 
CoA biosynthesis pathway, the main differential metabolites were 
L-Valine and Uracil, with significantly higher expression levels in WB 
compared to DP (Supplementary Table S2; Supplementary  
Figures S2, S3). Further exploration of the association between gut 
microbiota and host metabolism revealed that, in comparison to DP 
(Figure  3C), certain bacterial taxa in WB (Figure  3D) exhibited 
significant positive correlations with L-Valine and Uracil. For instance, 
Turicibacter (p < 0.001), Kocuria (p < 0.05), Eubacterium (p < 0.05) 

showed significant positive correlations with L-Valine, while 
Bifidobacterium (p < 0.01), Turicibacter (p < 0.01), Eubacterium 
(p < 0.05) exhibited significant positive correlations with Uracil. Some 
evidence confirmed that the typical characteristic of gut microbiota in 
wild boars, compared to domestic pigs, is the high abundance of 
Bifidobacterium (Ushida et al., 2016; Patil et al., 2020; Yang et al., 
2020). Moreover, it has been suggested that a LF (low fat and high 
fiber) diet is more effective in increasing the levels of Bifidobacterium 
in the pig gut than a HF (high fat and low fiber) diet (Heinritz et al., 
2016). In order to improve the meat quality and farming efficiency of 
domestic pigs, protein feed is commonly added to their daily diet 
(Déru et al., 2022). While the diet of domestic pigs usually comprises 
consistent protein sources and low fiber content, wild boars 
predominantly consume high-fiber plants in their natural habitat, 
notwithstanding their occasional consumption of animal materials 
like small vertebrates, invertebrates, and carrion (Stillfried et al., 2017; 
Vedel et al., 2023). Therefore, we hypothesize that the differences in 
the metabolic profiles of domestic pigs and wild boars may partly stem 
from differences in their gut microbiota composition driven by dietary 

FIGURE 2

The metabolite profiles of DP and WB. (A) PCA (based on Bray–curtis distance) and OPLS-DA score of DP and WB; (B) Heat map of 41 metabolites with 
significant differences between DP and WB, red and blue represent higher and lower concentrations of metabolites in DP and WB, respectively.
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discrepancies, with the latter playing a role in subsequently influencing 
the metabolic profiles.

3.3 Gut virome composition variations in 
DP and WB

Metagenomic studies revealed that Uroviricota dominates the gut 
virome of DP and WB (Figures  4A, B). The most abundant viral 
families in DP were Chaseviridae (50.00%), Schitoviridae (15.79%), 
Autographiviridae (9.43%), and Schitoviridae (7.17%). In WB, the top 
four viral families were Drexlerviridae (28.88%), Ackermannviridae 

(23.07%), Adenoviridae (22.16%), and Alloherpesviridae (20.41%). 
Stamp differential analysis reveals significant differences between DP 
and WB for 11 viruses (at the family level) (Figures 4C, D), including 
Ackermannviridae, Autographiviridae, Autolykiviridae, Baculoviridae, 
Chaseviridae, Demerecviridae, Iridoviridae, Microviridae, Poxviridae, 
Schitoviridae, and Zobellviridae. All these viruses exhibit significantly 
higher relative abundance in DP compared to WB, particularly  
Chaseviridae.

Metagenomic studies revealed that Uroviricota dominates in the 
gut of DP and WB (Figure 4A). At the family level, the most abundant 
viral compositions in DP were Chaseviridae (50.00%), followed by 
Schitoviridae (15.79%), Autographiviridae (9.43%), and Schitoviridae 

FIGURE 3

Metabolism pathway analysis. (A) Metabolism pathway enrichment analysis between DP and WB, the size and color of the bubble indicate pathway 
enrichment and impact values; (B) Phylogenetic analysis of MAGs, the panels in the center circle display the maximum-likelihood trees created using 
the MAGs. The outer circle heatmap shows the relative abundance of each bin (MAG) in DP and WB, as well as the gene numbers in map00770 
(Pantothenate and CoA biosynthesis); (C) Correlation analysis of gut microbiota and metabolites in DP; (D) Correlation analysis of gut microbiota and 
metabolites in WB. The shade of color indicates the magnitude of the correlation coefficient, that green and red indicate positive and negative 
correlations, respectively. Significant correlations are indicated by black stars: *p  <  0.05, **p  <  0.01, ***p  <  0.001.
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FIGURE 4

Composition and dissimilarity of gut virome between DP and WB. (A) The relative abundance of gut virome (phylum level) in DP and WB; (B) The 
relative abundance of gut virome (genus level) in DP and WB; (C) Significantly different gut virome composition between DP and WB; (D) Heat map of 
gut virome with significant differences between DP and WB, red and green represent higher and lower concentrations of metabolites in DP and WB, 
respectively.
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(7.17%); whereas the top four abundant viral compositions in WB 
were Drexlerviridae (28.88%), Ackermannviridae (23.07%), 
Adenoviridae (22.16%), and Alloherpesviridae (20.41%). Stamp 
differential analysis showed significant differences between DP and 
WB for 11 viruses (family level) (Figure  4C), including 
Ackermannviridae, Autographiviridae, Autolykiviridae, Baculoviridae, 
Chaseviridae, Demerecviridae, Iridoviridae, Microviridae, Poxviridae, 
Schitoviridae, and Zobellviridae. All these viruses exhibited 
significantly higher relative abundance in DP than WB, particularly 
Chaseviridae. The Chaseviridae family is lytic phages with double-
stranded DNA (dsDNA) that primarily infect bacteria belonging to 
the Gammaproteobacteria class (Anany et al., 2022). Certain species 
within Chaseviridae family, such as MLP1, are capable of infecting 
multidrug-resistant Escherichia coli (antibiotic-resistant clinical 
isolates of uropathogenic E. coli) and pathogenic E. coli strains found 
in the gut, including enteroaggregative E. coli and diffusely adherent 
E. coli (Vera-Mansilla et al., 2022).

3.4 Antibiotic resistance genes composition 
in DP and WB

With the development of livestock and poultry farming, the use 
of antibiotics is common in animal husbandry (Xie et  al., 2016; 
Salerno et al., 2022). The addition of antibiotics can improve survival 
rates and reduce breeding costs, but their overuse can lead to intestinal 
microbial imbalance, decreased immune response, and antibiotic 
resistance (Li et  al., 2019). It has been reported that a significant 
portion of antibiotics added to livestock cannot be fully utilized by the 
organism. These residual antibiotics may enter other animals or 
human bodies through the food chain, consequently contaminating 
water sources and soil, posing a potential threat to the environment 
and host health (Pal et al., 2016; Qiao et al., 2018; Li et al., 2019). In 
this study, a total of 20 ARG types containing 254 subtypes were 
detected in WB and DP. study, a total of 20 ARG types containing 254 
subtypes were detected in WB and DP (Figure 5A). Among those, 
multidrug (24.01%), tetracycline (20.75%), aminoglycoside (8.91%), 
chloramphenicol (8.80%), macrolide-lincosamide-streptogramin 
(8.71%), and vancomycin (6.62%) are dominant ARGs types in 
DP. The pattern of ARGs in DP may be  largely associated with 
antibiotic usage in pig farms. Tetracyclines and penicillins are the two 
most commonly used antibiotics in global pig production (Lekagul 
et al., 2019), with other commonly used antibiotics in pig farming 
including aminoglycosides, macrolides, and chloramphenicol, and so 
on (Lekagul et al., 2020; Matheson et al., 2022). In WB, multidrug 
resistance genes (57.47%) were overwhelmingly predominant, 
followed by unclassified genes (12.66%), tetracycline resistance genes 
(5.81%), and macrolide-lincosamide-streptogramin resistance genes 
(4.46%). Previous studies have reported that wild boars are reservoirs 
and vectors for antibiotic resistant bacteria (ARB), and the tetracycline 
was the most abundant ARG type in European wild boar feces (Dias 
et al., 2022). At the subtypes level (Figure 5B), in the WB, the four 
most abundant subtypes of ARGs were multidrug_ompF (4.64%), 
bacitracin_bacA (4.06%), multidrug_acrB (3.77%), and unclassified_
cAMP-regulatoryprotein (3.29%); while in DP, the most abundant 
four ARGs subtypes were tetracycline_tetW (6.03%), 
chloramphenicol_chloramphenicolexporter (5.37%), multidrug_
multidrug_transporter (4.80%), and vancomycin_vanS (4.23%).

Stamp differential analysis revealed significant differences in 99 
ARG subtypes between DP and WB (Figure  5C). Specifically, 
tetracycline_tetW (p = 0.001993), chloramphenicol_
chloramphenicol exporter (p = 0.001441), and beta-lactam_PBP-1A 
(p = 0.013) were more abundant in DP, while tetracycline_tet37 
(p = 0.043), multidrug_ompF (p = 0.014), and multidrug_mexT 
(p = 0.0034) were significantly enriched in WB. As shown in 
Figure 5D, these 99 distinct subtypes can be mainly categorized into 
16 classes of ARG types. Among these types, aminoglycoside, 
bleomycin, chloramphenicol, quinolone, rifamycin, sulfonamide, 
trimethoprim, macrolide-lincosamide-streptogramin (including 
ereA, ermA, ermB, ermX, lsa, mefA, mphB, vatE), and tetracycline 
(including tet39, tet40, tet44, tetA, tetB, tetG, tetH, tetL, tetM, tetO, 
tetW, tetY, tetZ) exhibited enrichment in DP; whereas multidrug, 
polymyxin, fostomycin, fosmidomycin, kasugamycin, macrolide-
lincosamide-streptogramin (macA and macB), tetracycline 
(including tet34, tet35, tet37), and unclassified (including 
DNA-binding_protein_H-NS, cAMP-regulatory protein, cob(I)
alamin adenosyltransferase, rpsD_(ramA_or_sud2), sdiA, 
transcriptional regulatory protein CpxR cpxR) were more abundant 
in WB. The previous analysis of ARGs data from wild boar, coyotes, 
domesticated cattle, and the surrounding environment indicates 
that wild animals may possess a greater capacity to carry a higher 
abundance of ARGs or ARBs compared to livestock, potentially 
serving as a reservoir for the outbreak of antibiotic-resistant 
microbes (Lee et  al., 2022). Importantly, with the increasing 
likelihood of contact between wild animals and livestock or 
humans, monitoring and controlling antibiotic resistance becomes 
crucial to prevent potential epidemic outbreaks and spread. 
Therefore, it is imperative to strengthen research on the 
transmission pathways of antibiotic-resistant microorganisms in 
natural ecosystems to ensure public health and ecosystem integrity.

3.5 Human pathogenic bacteria 
composition differences between DP and 
WB

Animal feces may carry various human pathogenic bacteria 
(HPB). When the feces of domestic pigs and wild boars are left 
untreated and directly exposed in the human environment, 
especially when HPB enter the human body through contaminated 
water sources or food chains, this poses a potential threat to human 
health (Penakalapati et al., 2017; Delahoy et al., 2018; Li et al., 2020). 
Therefore, proper handling and disposal of animal feces are crucial 
for preventing disease transmission. At the phylum level (Figure 6A), 
Firmicutes (60.54%) and Proteobacteria (33.73%) were the 
predominant HPB in DP, while in WB, Proteobacteria (73.13%) 
dominated, followed by Chlamydiae (10.44%) and Firmicutes 
(9.71%). At the genus level (Figure 6B), the four most abundant HPB 
in DP were Streptococcus (37.36%), Salmonella (23.16%), Clostridium 
(10.07%), and Staphylococcus (7.59%), whereas in WB, the prevailing 
HPB were Serratia (42.95%), Salmonella (20.33%), Chlamydia 
(10.44%), and Bacteroides (5.68%). Salmonella was highly 
represented in both domestic pigs and wild boars in this study. 
Salmonella is one of the most common pathogens causing 
salmonellosis and other outbreaks of foodborne illness in humans 
(Mataragas et al., 2008).
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FIGURE 5

Composition and dissimilarity of ARGs between DP and WB. (A) The relative abundance of ARG types in DP and WB; (B) The relative abundance of ARG 
subtypes in DP and WB; (C) Significantly different of 99 ARG subtypes between DP and WB; (D) Heat map of 99 ARG subtypes with significant 
differences between DP and WB, red and green represent higher and lower concentrations of metabolites in DP and WB, respectively.
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FIGURE 6

Composition and dissimilarity of HPB between DP and WB. (A) The relative abundance of HPB (phylum level) in DP and WB; (B) The relative abundance 
of HPB (genus level) in DP and WB; (C) Significantly different of 7 HPB between DP and WB; (D) Heat map of 7 HPB subtypes with significant 
differences between DP and WB, red and green represent higher and lower concentrations of metabolites in DP and WB, respectively.
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Further differential analysis revealed significant differences 
among 7 HPB between DP and WB (Figure 6C). Streptococcus 
(p = 0.000994), Bacillus (p = 0.024), Erysipelothrix (p = 0.015), and 
Ureaplasma (p = 0.036) significantly enriched in DP. Streptococcus 
suis is commonly recognized an opportunistic pathogen for 
respiratory infections (Gajdács et al., 2020). Humans can become 
infected with porcine streptococcus through contact with or 
consumption of pork or other pig products, leading to severe 
illnesses such as meningitis, septicemia, streptococcal toxic 
shock syndrome, endophthalmitis, and arthritis (Camporese 
et  al., 2007; Huong et  al., 2014; Gajdács et  al., 2020). In DP, 
Bacillus cereus is the most abundant HPB in Bacillus genus 
(Supplementary Table S3). Bacillus cereus is an opportunistic 
pathogen renowned for its significant pathogenicity in foodborne 
illnesses (Ehling-Schulz et  al., 2019). Bacillus cereus strains 
exhibit a wide range of cytotoxic effects from no cytotoxicity to 
high cytotoxicity in cell culture (Stark et  al., 2013; Jeßberger 
et  al., 2015), and it is capable of inducing diverse systemic 
diseases, such as CNS infections, endocarditis, respiratory and 
urinary tract complications, wound infections, septicemia, as 
well as localized wound and ocular infections (Pinna et al., 2001; 
Bottone, 2010). In livestock, Streptococcus suis can induce 
mammary gland infections in cows and goats (Savini, 2016), as 
well as result in symptoms such as enteritis and renal failure in 
domestic pigs (Calvigioni et  al., 2022). Erysipelothrix 
rhusiopathiae, the principal pathogen of the genus Erysipelothrix 
in DP (Supplementary Table S3), is a zoonotic pathogen 
transmitted through aquatic skin infections, causing erysipelas 
in pig and avian (Wang et al., 2010; Vasagar et al., 2018; Zautner 
et al., 2022). Ureaplasma, the most prevalent genital Mycoplasma 
isolated from the urogenital tract of humans, is capable of 
causing urinary and reproductive tract infections, infertility, as 
well as triggering preterm labor and neonatal disorders, being 
commonly found in both humans and animals and transmitted 
through various means such as environmental contact and 
airborne droplets (Kokkayil and Dhawan, 2015). Human 
exposure to pig manure containing various HPB is common in 
livestock farming or household breeding, which may lead to the 
spread of pathogens in the population and increase the risk of 
disease. Therefore, it is important to take preventive measures to 
reduce health risks when humans come into contact with pigs 
and their environments.

In contrast, Bacteroides (p = 0.024), Streptobacillus (p = 0.034), 
and Yersinia (p = 0.033) were more abundant in WB (see 
Figure 6D). In comparison to Bacteroides and Streptobacillus, 
Yersinia has been more commonly reported in domestic pigs and 
wild boars. Enteropathogenic Yersinia genus is also commonly 
detected in wildlife including wild boars (Sannö et  al., 2023). 
Yersinia pestis, Yersinia enterocolitica, and Yersinia 
pseudotuberculosis were identified as the major HPB of the genus 
Yersinia in wild boars in this study (Supplementary Table S3). 
These three HPB represent the Yersinia genus’s pathogenicity 
toward humans (Chlebicz and Śliżewska, 2018; Augustyniak and 
Pomorska-Mól, 2023). Of these, Y. pestis is responsible for the 
highly lethal plague disease, while Y. enterocolitica and 
Y. pseudotuberculosis contribute to yersiniosis (Gupta et al., 2020; 
Augustyniak and Pomorska-Mól, 2023). Pigs serve as the primary 

reservoir for human pathogenic Yersinia enterocolitica (Råsbäck 
et al., 2018). While Streptobacillus typically transmitted through 
rat bites, leads to an infectious disease known as rat-bite fever 
(Elliott, 2007; Zhang et al., 2019).

4 Conclusion

In conclusion, this study reveals significant differences in gut 
microbial composition, metabolic profiles, virome composition, 
ARGs, and HPB between domestic pigs (DP) and wild boars (WB) 
in urban environments. DP showed a higher Firmicutes/
Bacteroidetes ratio and enrichment of bacterial genera linked to 
domestication and modern feeding practices. Metabolomic 
analysis identified differential metabolite profiles, especially in the 
pantothenate and CoA biosynthesis pathway, highlighting dietary 
influences. DP also exhibited a distinct gut virome, enriched with 
lytic phages like Chaseviridae. Variations in ARGs and HPB 
composition suggest potential health risks from pig feces contact. 
Future research should focus on understanding the mechanisms 
driving these differences and their implications for host health. 
Additionally, strategies to mitigate public health risks related to 
urban wildlife and domestic animals should be developed based 
on these findings.
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