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Microorganisms in lakes are sensitive to salinity fluctuations. Despite 
extensive prior research on bacterial communities, our understanding of their 
characteristics and assembly mechanisms in lakes, especially in desert lakes 
with different salinities. To address this issue, we  collected three samples 
from freshwater lakes, six from brackish lakes, and five from salt lakes in the 
Badanjilin Desert. The 16S rRNA gene sequencing was applied to investigate 
the bacterial interactions with rising salinity, community coexistence patterns, 
and assembly mechanisms. Our findings suggested that the increased lake 
salinity significantly reduces the bacterial community diversity and enhanced 
the community differentiation. Significant variations were observed in the 
contribution of biomarkers from Cyanobacteria, Chloroflexi, and Halobacterota 
to the composition of the lake bacterial communities. The bacterial communities 
in the salt lakes exhibited a higher susceptibility to salinity limitations than those 
in the freshwater and brackish lakes. In addition, the null modeling analyses 
confirmed the quantitative biases in the stochastic assembly processes of 
bacterial communities across freshwater, brackish, and saline lakes. With the 
increasing lake salinity, the significance of undominated and diffusion limitation 
decreased slightly, and the influence of homogenizing dispersal on community 
assembly increased. However, the stochasticity remained the dominant 
process across all lakes in the Badanjilin Desert. The analysis of co-occurring 
networks revealed that the rising salinity reduced the complexity of bacterial 
network structures and altered the interspecific interactions, resulting in the 
increased interspecies collaboration with increasing salinity levels. Under the 
influence of salinity stress, the key taxon Cyanobacteria in freshwater lakes 
(Schizothrix_LEGE_07164) was replaced by Proteobacteria (Thalassobaculum 
and Polycyclovorans) in brackish lakes, and Thermotogota (SC103) in salt lakes. 
The results indicated the symbiotic patterns of bacterial communities across 
varying salinity gradients in lakes and offer insights into potential mechanisms 
of community aggregation, thereby enhancing our understanding of bacterial 
distribution in response to salinity changes.
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1 Introduction

Microorganisms, encompassing diverse types and ubiquitous 
distribution, play a crucial role in nearly all of Earth’s physicochemical 
cycles. Within lake ecosystems, bacteria are integral components of 
the microbial food web and serve as sensitive indicators of changes  
in the trophic status, reflecting alterations in lake health and 
environmental conditions (Newton et al., 2011; Pernthaler, 2017). In 
recent years, owing to the significant role of bacteria in lake 
ecosystems, there has been a growing emphasis on microbiome 
studies concerning the ecological structure and evolutionary processes 
of freshwater bacteria. The comprehensive investigations of the 
bacterial communities in lakes have substantially enhanced our 
understanding of microbial communities (Jakob, 2005; Williamson 
et al., 2009; Xiao et al., 2020). These investigations have demonstrated 
that the differences in habitat characteristics can significantly affect 
the bacterial community succession (Dang et al., 2022). For example, 
Gao et  al. observed higher α-diversity in sediment bacterial 
communities than in water column bacterial communities (Gao et al., 
2023). Zhang et  al. identified the dual regulation of the bacterial 
community on the Qinghai-Tibet Plateau by salinity and season 
(Zhang J. et al., 2022; Zhang X. L. et al., 2022). However, most recent 
studies have focused on individual lakes without systematically 
comparing the dynamics of bacterial communities across diverse 
environmental contexts. This has limited our understanding of 
variability in the structure and assembly processes of 
bacterial communities.

In recent years, with a warming climate and increased 
evaporation from lakes, salt enrichment that is compounded by 
anthropogenic activities has accelerated the changes in the 
environmental conditions of aquatic ecosystems (Paerl et al., 2018). 
The area of inland lakes with high salt contents has increased, now 
encompassing approximately 44% of the total inland lake area 
(Messager et al., 2016; Zhang J. et al., 2022; Zhang X. L. et al., 2022). 
Salinity generally exerts a confining effect on aqueous substances and 
creates substantial environmental disparities across lakes with 
varying salinity levels. Consequently, bacterial communities exhibit 
rapid responses to nutrient changes, altering the ecosystem by 
reshaping the composition and assembly patterns of the biological 
regions (Zhang J. et  al., 2021; Zhang X. et  al., 2021). Numerous 
studies have demonstrated that both stochastic and deterministic 
mechanisms contribute to the variations in the biogeographical 
patterns of microorganisms (David et al., 2021; Jing et al., 2023). 
Deterministic processes indicate the significance of biotic (microbial 
interactions) and abiotic (nutrient availability) factors (Pholchan 
et  al., 2013), which hypothesizes that microbial β-diversity is 
primarily influenced by the composition of the microbial community 
by environmental selection, including both homogeneous and 
heterogeneous selection. In contrast, stochastic processes 
demonstrate that species dynamics are not determined by competitive 
disparities but are governed by stochastic elements such as dispersal 
limitation, homogeneous dispersal, and undominated factors in 
community dynamics (Zhou and Ning, 2017). Researchers are 
striving to explore whether ecological processes mediated by bacteria 
conform to specific environmental gradients. However, they 
acknowledged that the differences in habitat types and microbial taxa 
may be in constant flux (Tang et al., 2020), rendering the mechanisms 

of community construction ambiguous. For example, the bacterial 
community formation in the Taihu Lake estuary is primarily 
dominated by stochastic processes, notably dispersal limitations 
(Jiang et al., 2024). Furthermore, the deterministic contribution of 
ecological assembly of soil bacterial communities has decreased in 
different watersheds (Jiao et al., 2020; Tang et al., 2020; Fodelianakis 
et al., 2021). Therefore, further exploration is required to quantify the 
contributions of various habitat conditions such as rising salinity to 
the deterministic and stochastic processes and ecological networks, 
to find a unified framework for describing the relative significance of 
the controlling factors, and in this way to improve the comprehensive 
prediction of the impacts of microbial ecological processes in lakes, 
and to provide an effective biodiversity conservation policies.

The sensitivity of bacterial communities to their environment 
alters their bioconcentration processes (Abrantes et al., 2006; Hahn, 
2006). Additionally, the ecological niche theory proposes that the 
relative ratios of different ecological assembly processes vary 
depending on the strength of environmental filtration (Goddard and 
Whittle, 2015). Various ecological selections, dispersal, and drifting 
effects can further lead to microbial communities exhibiting diverse 
metabolic profiles. We revealed the interactions and complexity of 
environmental bacteria by leveraging co-occurrence network 
relationships (Hu et al., 2017; Hui et al., 2022). Moreover, salinity that 
can be pivotal in governing the microbial dynamics in lake ecosystems 
is acknowledged as a significant factor that strongly influences 
microbial states. Hence, the environmental fluctuations associated 
with salinity may directly affect the functional stability mediated by 
the bacteria in lake ecosystems (Yannarell and Paerl, 2007; 
Egamberdieva et  al., 2010). It is crucial to understand how the 
ecological relationships and interspecific interactions of 
microorganisms in lakes with varying salinities respond to changes in 
salinity. Although habitat conditions can significantly affect the 
dynamic mechanisms of the bacterial community assembly in lakes, 
numerous studies have only examined the impact of salt levels on the 
bacterial community composition in individual lakes. Few 
investigations have explored the symbiotic patterns and assembly 
mechanisms of bacterial communities across large spanning salinity 
gradients, causing a lack of systematic comparisons of study results. 
The Alashan region in northern China is characterized by scarce 
precipitation and significant climatic differences, which leads to large 
variations in salinity in different lakes, making it an ideal location for 
our study.

In this study, we  examined the microbial community 
characteristics, focusing particularly on salinity distribution within 
lakes, with the aim of addressing the existing knowledge gaps. This 
report outlines the bacterial diversity observed in 14 lakes located in 
the Badanjilin Desert, Inner Mongolia, China, covering salinity levels 
from 0.88–168.15. The 14 lakes were categorized as freshwater (A7, 
A8, and A14), brackish (A1, A2, A6, A9, A10, and A13), or saltwater 
(A3, A4, A5, A11, and A12). Using the 16S rRNA gene high-
throughput sequencing, we  investigated the bacterial community 
structure, assembly processes, and molecular ecological network 
structures in lake ecosystems across varying salinity gradients in the 
Inner Mongolia Plateau. The objectives of this study were (1) to 
uncover and compare the alterations in the bacterial community 
diversity and composition across salinity gradients, (2) to examine the 
variations in the bacterial community assembly processes along these 
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gradients, and (3) to assess interspecies interactions across salinity 
gradients, with the aim of understanding differences in bacterial 
community responses within freshwater, brackish water, and salt 
lake ecosystems.

2 Materials and methods

2.1 Study lake and sample collection

The Badanjilin Desert, situated in the northwestern part of the 
Alashan Plateau in China, lies north of the Yabulai and Heishantou 
Mountains (Zhang et al., 2023). Bordered by mountain ranges to the 
south and southeast and encompassing low-lying areas of the Gulinai 
grasslands and the Guezhi Lake plains, it spans an area of approximately 
50,000 km2, ranking as the fourth largest desert in China (Dong et al., 
2004). Characterized by an extreme continental climate, the region 
experiences scorching summers and cold, dry winters, with annual 
rainfall ranging from 68 mm to 172 mm (Gates et al., 2008; Zhang J. et al., 
2021; Zhang X. et al., 2021). The samples were collected in July 2023 from 
three freshwater lakes (A7, A8, and A14, salinity ≤1 g/L), six brackish 
lakes (A1, A2, A6, A9, A10, and A13, 1 g/L < salinity ≤50 g/L), and five 
salt lakes (A3, A4, A5, A11, and A12, salinity >50 g/L) (Figure 1). A 

preliminary survey was conducted before the main study began. All the 
freshwater, brackish, and salt lakes are situated in the Badanjilin Desert, 
and precipitation is the primary source of recharge for these lakes (Yang 
et al., 2010; Zhang et al., 2023). They are all minimally affected by human 
activities, with salinity variations presenting the greatest distinction. This 
offers an ideal opportunity to investigate the effects of varying salinity 
gradients on bacterial community characterization. At each sampling 
site, 2 L of the water samples were collected using specialized devices, and 
prewashed sterile polyethylene bottles were adopted for the collection. 
Various physicochemical indicators were measured during sample 
collection. Collected samples were stored in tanks for refrigeration and 
quickly transported to the laboratory for processing. All water samples 
were filtered through a 0.22 μm polycarbonate membrane and stored at 
−80° C for subsequent DNA extraction. Concurrently, samples were 
stored at 4°C for the determination of their physicochemical properties, 
and subsequent laboratory processing was completed within 12 h of the 
end of each sample collection.

2.2 Environmental information

The salinity of the samples was determined using a mobile 
multiparameter water quality monitor. In addition, the pH, salinity 

FIGURE 1

(A) Geographic location of Badanjilin Desert in Alashan, Inner Mongolia, China, (B) map of lake sampling sites in Badanjilin Desert, and (C) live photos of 
each lake.
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(SAL), and dissolved oxygen (DO) were measured using the same 
device. Nutrient concentrations, including free-state ammonia 
nitrogen (NH4

+-N), chlorophyll-a (Chl a), total nitrogen (TN), total 
phosphorus (TP), dissolved inorganic phosphorus (DIP), total organic 
matter (COD), and total dissolved phosphorus (DTP), were analyzed 
in the laboratory using standard methods (GB 3838-2002) (Shi et al., 
2023) (Supplementary Figure S1).

2.3 DNA extraction and processing of 
sequencing data

Microbial community genomic DNA was extracted from water 
samples following the manufacturer’s instructions. The DNA extract 
was checked on 1% agarose gel, and DNA concentration and purity 
were determined with NanoDrop 2000 UV–vis spectrophotometer 
(Thermo Scientific, Wilmington, United States). The hypervariable 
region of the bacterial 16S rRNA gene were amplified with primer 
pairs 515F (5’-GTGCCAGCMGCCGCGGGTAA-3′) and 806R 
(5’-GGACTACVSGGTATCTAAT-3′) by an ABI GeneAmp® 9,700 
PCR thermocycler (ABI, CA, United States) (Shi et al., 2023). The PCR 
products extracted from 2% agarose gels were purified using a PCR 
clean-up kit and quantified using a Qubit 4.0 (Thermo Fisher 
Scientific, United States) according to the manufacturer’s protocol. 
Purified amplicons were pooled in equimolar and paired-end 
sequenced on an Illumina MiSeq PE300 platform/NovaSeq PE250 
platform (Illumina, San Diego, United  States) according to the 
standard protocols by Majorbio Bio-Pharm Technology Co., Ltd. 
(Shanghai, China). The obtained sequences were quality-checked by 
filtering with fastp (0.19.6) and merged with FLASH (v1.2.11) (Mago 
and Salzberg, 2011; Chen et al., 2018). The sequences were denoised 
for the high quality using the DADA2 plugin within the Qiime2 
(version 2020.2) pipeline, utilizing the recommended parameters to 
achieve the single-nucleotide resolution based on the error curves 
within the samples (Callahan et al., 2016; Bolyen et al., 2019). The 
DADA2 denoised sequences are commonly known as Amplicon 
Sequence Variants (ASV).

2.4 Data analysis

Venn diagrams were created to tally and visualize the number of 
common and unique ASVs across different environmental samples 
using R language tools (version 3.3.1). α-Diversity indices, such as the 
Chao index, Shannoneven index, and Shannon index, were computed 
using the Mothur software (version v.1.30.2), with ASVs clustered at a 
97% similarity level for index evaluation. The Kruskal-Wallis rank sum 
test was used for statistical analyses (Wang et al., 2022). The correlations 
among the microbial community similarities, diversity, and salinity 
were assessed using the vegan package (2.4.3) in R (version 3.3.1) (Yi 
et al., 2021). The distinctiveness of bacterial community composition 
in the freshwater, brackish, and salt lakes was assessed using 
Non-Metric Multidimensional Scaling (NMDS) with ASV-based Bray-
Curtis Distance (Ziegler et al., 2017), and the R language (version 3.3.1) 
was utilized for drawing. Moreover, the LEfSe Analysis was employed 
to conduct the all-to-all (more stringent) difference tests at both the 
phylum and genus levels to analyze differential species among 

freshwater, brackish water, and saline lakes. On the basis of statistical 
significance (p < 0.05), phyla and genera with LDA values greater than 
4 were selected as potential biomarkers, the magnitude of the species 
influence on the observed differences was measured using the LDA 
value, indicating a potentially crucial role of these species in 
environmental change processes (Liu et  al., 2022). The impacts of 
environmental factors on the bacterial community composition in the 
investigated water bodies was studied using the R language vegan 
package (version 2.4.3), employing the analysis of the RDA and 
pheatmap. The goodness-of-fit statistic (R2) (p < 0.05) was adopted to 
evaluate the relative importance of the different environmental factors 
in explaining community variation.

2.5 Network analysis

To explore the molecular ecological network structure of bacterial 
communities across varying salinity gradients, Networkx (version 1.11) 
was utilized to calculate all potential correlations between genera. 
Statistically significant genera, determined using the Spearman 
method, were integrated into the network analysis. Using Gephi 
(version 0.9.2), the networks were constructed for the genera in the 
freshwater, brackish water, and saline lakes. The visualization 
encompasses the assessment of the mean node degree, modularity, 
mean path length, network diameter, and network density, with edges 
randomly assigned to any node with equal probability (Lieberman 
et al., 2005). Subsequently, Zi (intra-module connectivity) and Pi (inter-
module connectivity) were calculated based on the node characteristics, 
classifying nodes into Module hubs (Zi > 2.5 and Pi <0.62), Connectors 
(Zi < 2.5 and Pi >0.62), and Peripherals (Zi < 2.5 and Pi <0.62). The 
applications of Zi and Pi in the networks of coexisting microorganisms 
within lakes served as a foundation for identifying core microbial 
species in different habitats (Olesen et al., 2007).

2.6 Microbial community assembly 
processes

To advance our understanding of the microbial community 
assembly in the freshwater, brackish water, and saline lakes, 
we quantitatively inferred the community construction mechanisms 
through the phylogenetic split-box null model analysis implemented 
in the “Picante” package iCAMP in R (Iqbal et al., 2024). The observed 
ecological patterns were compared with randomly distributed patterns 
using null models, and the beta nearest taxon index (βNTI) was 
employed to characterize the turnover in the phylogenetic composition 
of the community. The normalization effect between the observations 
and the mean of the null model distribution was quantified using 
βNTI. The βNTI values represent the rates of phylogenetic turnover, 
where the values exceeding 2 denote the significantly higher turnover 
than expected, whereas the values below-2 denote the significantly 
lower turnover than expected, attributed to the heterogeneous and 
homogeneous selection by deterministic processes, respectively. 
Furthermore, the |βNTI| values less than 2 indicate the dominance of 
stochastic processes encompassing dispersal limitation, homogeneous 
dispersal, and undominated factors (Stegen et al., 2012; Dini-andreote 
et al., 2015).
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3 Results

3.1 Patterns of bacterial distribution in 
lakes of different habitat types

A total of 8,636 ASVs were identified across the freshwater, 
brackish water, and salt lake samples, with the ASV counts in 
individual samples ranging from 1887 to 4,352 (Figure 2A), where the 
salt lake exhibited the lowest count. Freshwater, brackish and salt lakes 
share only 77 ASVs, only 0.89% of the total number, suggesting that 
bacterial communities in lakes with different salinities vary 
considerably. The rank-abundance curves exhibited a gradual decline 
in species abundance across the freshwater, brackish, and saline lakes, 
which was consistent with the trend observed in the Chao index 
(Figures 2B,C). The Shannoneven index reached its peak in brackish 
water, indicating the most even distribution of species in this 
environment (Figure 2D). The species diversity remained relatively 
stable in freshwater and brackish lakes, both exhibiting Shannon 
values of approximately 4.00, whereas a significant decrease in species 
diversity was observed in saline lakes, with a Shannon value of 
approximately 3.20 (Figure 2E; Supplementary Table S1). This trend 

was further supported by the regression analysis between the salinity 
and species diversity (Figure  2G). Additionally, the Bray–Curtis 
dissimilarity of bacterial communities exhibited a positive correlation 
with the salinity differences, indicating that increasing salinity 
heightened community heterogeneity across salinity gradients 
(R2 = 0.559; p = 0.013) (Figure 2F).

3.2 Composition of microbial communities 
and discovery of biomarkers

The principal coordinate analysis (PCoA) revealed significant 
differences between the bacterial communities in lakes with varying 
salinities (Figure 3A, p = 0.002). A total of 89 bacterial phyla were 
identified across all water samples. In the freshwater lakes, the 
dominant phyla included Proteobacteria (mean relative abundance of 
approximately 45.06%), Cyanobacteria (mean relative abundance of 
approximately 17.12%), and Firmicutes (mean relative abundance of 
approximately 12.59%). In the brackish water lakes, the dominant 
phyla were Proteobacteria (mean relative abundance of approximately 
46.35%), Bacteroidota (mean relative abundance of approximately 

FIGURE 2

(A) Venn diagram showing shared and unique ASVs in freshwater, brackish and saline lakes, (B) rank-abundance curves, (C) Chao index responding to 
species abundance, (D) Shannoneven index responding to species uniformity, (E) Shannon index responding to species diversity, (F) relationship 
between SAL with Bray–Curtis dissimilarity, and (G) relationship between SAL with Shannon.
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14.62%), and Cyanobacteria (mean relative abundance of 
approximately 8.41%). In the Salt Lake, the dominant bacterial phyla 
shifted to Halobacterota (average relative abundance of approximately 
60.45%), Proteobacteria (average relative abundance of approximately 
20.90%), and Bacteroidota (average relative abundance of 
approximately 8.87%) (Figure  3B). Collectively, these dominant 
bacterial phyla accounted for approximately 70.00% of the total 
proportion across the lakes with various salinity gradients. 
Furthermore, the relative abundance of these dominant taxa varied 
significantly among lakes with different salinity gradients 
(Supplementary Table S2), confirming the distributional heterogeneity 
in the bacterial community composition of the water column, 
consistent with previous findings (Liu et al., 2022).

Figure 3C depicts the dominant microbial taxa at the genus level 
across the different sampling sites. In the freshwater lakes, 
Limnobacter, Acinetobacter, and Tychonema_CCAP_1459-11B were 
predominant, with average relative abundances of approximately 
11.59, 10.59, and 8.58%, respectively. The community distribution of 

the brackish lakes highlighted GKS98_freshwater_group, 
Flavobacterium, and Candidatus_Aquiluna, with average relative 
abundances of approximately 11.70, 5.26, and 3.94%, respectively. In 
the salt lake, the dominant genera included Halarchaeum (22.41%), 
Halonotius (19.88%), and Halorubrum (8.13%), which were primarily 
influenced by salinity. The distribution patterns across the lakes 
presented various trends (Supplementary Table S3).

This study further explored high taxon biomarkers in the 
freshwater, brackish, and salt lakes using the least discriminant 
analysis (LDA) method. Significant variations in the dominant species 
of bacterial communities were observed across different salinity 
conditions. The LDA method identified eight phyla and seven genera 
(LDA > 4.0, p < 0.05) as potential biomarkers (Figure  3D). In the 
freshwater lakes, the enriched bacterial taxa included Cyanobacteria, 
Planctomycetota, Firmicutes, Limnobacter, Tychonema_
CCAP_1459-11B, and Acinetobacter. Chloroflexi and Cyanobium_
PCC-6307 were prominent in the brackish lakes. In the salt lakes, 
Halobacterota exhibited the highest LDA scores, exerting the greatest 

FIGURE 3

(A) Bray–Curtis similarity-based NMDS analysis of water column bacteria in different lake samples. Ellipses indicate 95% confidence intervals. 
Taxonomic composition of bacterial communities in lake samples at the phylum (B) and genus (C) levels, respectively, showing only dominant phyla 
and genera with mean relative abundance ≥1% and those already classified. In contrast, those with mean relative abundance <1% are classified as 
“other.” (D,E) To map the evolutionary branching of bacterial communities associated with freshwater, brackish, and saline lakes on the phylum and 
genus levels, the LDA value was set to 4. Higher scores indicate an increased influence of the relative abundance of species on the differential effect.
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influence on differences in species community composition. The 
identified species may play pivotal roles in environmental change 
processes (Figure 3E).

3.3 Factors driving bacterial community 
structure

To further understand the impact of environmental indicators on 
microbial community structure across varying salinity gradients, 
we  conducted the RDA on the bacterial communities and 
environmental factors in the water bodies of the Badanjilin Desert. 
The results indicated that environmental factors accounted for 81.60% 
of the variation in the bacterial community structure (with 74.77% 
attributed to the RDA1 axis and 6.83% to the RDA2 axis) (Figure 4A). 
This suggested that the physicochemical parameters in the lakes with 
differing salinities effectively explained the variations in bacterial 
communities. Notably, pH, SAL, COD, and Chl a were significant 

factors influencing the changes in bacterial microbial community 
structure (R2  = 0.7249, R2  = 0.9424, R2  = 0.5223, and R2  = 0.4457, 
respectively; Figure  4B). pH significantly influenced the bacterial 
community structure in the freshwater and brackish lakes, promoting 
an increased relative abundance of Proteobacteria, Actinobacteriota, 
and Firmicutes. Conversely, the SAL, COD, and Chl a significantly 
(p < 0.05) affected the community structure of the saline lakes, 
positively correlating with the changes in the relative abundance of 
Halobacterota (Figure 4A).

Spearman correlation heatmap analysis revealed distinct 
environmental selection patterns among dominant genera across 
different habitats. In the freshwater lakes, pH exhibits significant positive 
correlations with Trichococcus (Firmicutes) and Acinetobacter 
(Proteobacteria). Conversely, Chl a was significantly negatively correlated 
with Tychonema_CCAP_1459-11B (Cyanobacteria) and Limnobacter 
(Proteobacteria), whereas COD led to inconsistent changes in the relative 
abundance of Enterococcus (Firmicutes) and LD29 (Verrucomicrobiota) 
(Figure 4C). In the brackish lakes, COD notably suppressed the variation 

FIGURE 4

Impact of environmental indicators on microbial community composition in freshwater, brackish, and saline lake waters. (A) RDA ordination plot 
showing the significant environmental factors influencing the variation of bacterial community groups on the phylum level; (B) RDA analysis results, 
assessing the extent to explain the variation of bacterial community groups by environmental factors; (C–E) Spearman analysis was used to identify the 
major environmental factors controlling the variation in bacterial community groups at the genus level. The color gradient indicates the Spearman 
correlation coefficients, blue indicates the positive correlation, and yellow indicates the negative correlation coefficients. *, p  <  0.05; **, p  <  0.01; ***, 
p  <  0.001.
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in the relative abundance of Acinetobacter (Figure 4D). The particularly 
noteworthy in saline lakes was the pronounced influence of 
environmental factors on Halobacterota, including Halarchaeum, 
Halonotius, and Halorubrum within this phylum (Figure 4E).

3.4 Mechanisms of bacterial community 
assembly in lakes with different salinity 
gradients

First, the ecological niche widths of freshwater, brackish, and salt 
lakes were calculated, with the brackish lakes exhibiting the highest 
average widths of approximately 18.47. This suggested potentially lower 
species specialization and enhanced competitive ability within these 
lakes (Figure 5D). Second, the mechanism of bacterial community 
assembly across the freshwater, brackish, and salt lakes was investigated 
using a null model. These results indicated that community formation 
can be  influenced by both deterministic and stochastic processes. 
Notably, approximately 93.66, 81.00, and 73.30% of the βNTI values in 
the freshwater, brackish water, and salt lakes, respectively, fell between-2 
and 2, indicating the critical role of stochastic processes in the bacterial 
community assembly (Figures 5A,B). During the stochastic processes, 

the bacterial community assembly under various salinity gradients was 
primarily influenced by a larger proportion of undominated factors, 
particularly in the freshwater lakes where undominated factors 
contributed approximately 50.00%. Moreover, dispersal limitation 
played a more significant role in controlling bacterial community 
assembly across the freshwater, brackish water, and saline lakes than 
homogeneous dispersal. Notably, despite the dominance of stochastic 
processes, the importance of deterministic processes increased with 
salinity, with the heterogeneous selection processes exerting the highest 
contribution in the saline lakes at approximately 20.00% (Figure 5C). 
In summary, the stochastic processes predominantly governed the 
bacterial community assembly in lakes across different salinity 
gradients in the Badanjilin Desert, whereas the deterministic processes 
held more sway in salt lakes than in freshwater lakes.

3.5 Patterns of network distribution of 
bacterial contributions in different types of 
lakes

We constructed the ecological network structures of bacterial 
communities in the freshwater, brackish, and saltwater lakes to 

FIGURE 5

Exploring the mechanism of bacterial community assembly in freshwater, brackish, and saline lakes using null model analysis. (A) Distribution of β-NTI 
values in different samples, (B) relative contributions of deterministic and stochastic processes to bacteria in lakes with different salinities, (C) relative 
contributions of deterministic and stochastic ecological processes (stochastic processes including dispersal limitation, homogeneous dispersal, and 
undominated; and deterministic processes including heterogeneous selection and homogeneous selection), and (D) bacterial community ecological 
niche width.
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investigate the effects of different environmental conditions on 
microbial interactions in the lake ecosystems. The results revealed that 
the freshwater lakes harbor a bacterial network structure comprising 
22,880 edges, with a graph density of 0.184. The brackish lakes 
exhibited a structure with 7,984 edges and a graph density of 0.064, 
whereas salt lakes demonstrated a structure with 14,281 edges and a 
graph density of 0.15. Notably, the freshwater lakes exhibited a higher 
number of edges in their bacterial network structure than brackish 
and saline lakes, providing the direct evidence of more intricate 
patterns of network structure in freshwater ecosystems 
(Supplementary Table S4). In the lakes across varying salinity 
gradients, collaborative relationships predominantly shaped the 
interactions between bacterial genera, accounting for 64.55, 75.75, and 
95.50% of positive correlations in the freshwater, brackish, and saline 
lakes, respectively (Figures 6A–C). Furthermore, the average path 
length serves as a crucial indicator of the information exchange speed 
among the genera within the network, with smaller values indicating 
a faster response of the biological community to environmental 
changes. Consequently, the ecological network structure of bacterial 
communities in freshwater lakes demonstrated greater sensitivity than 
those in the brackish and salt lakes. The freshwater bacterial 
communities exhibited the highest modularity value (0.763), 
indicating their “small-world” nature and high interconnectivity (Jiao 
et al., 2023) (Figures 6D–F; Supplementary Table S4). The genera with 
high connectivity were observed within the same modules, 
highlighting the modular structure of the bacterial networks in 
freshwater lakes.

To further analyze the topological roles of each genus under 
different salinity gradients, we categorized the nodes in the network 
structure based on intra-module connectivity and inter-module 
connectivity. Module hubs and Connectors, located at the network’s 
center, are key nodes critical for maintaining structural stability. In the 
freshwater lakes, Bdellovibrionota (Halobacteriovorax), Cyanobacteria 
(Schizothrix_LEGE_07164), and Bacteroidota (Cecembia) were 
identified as the module hubs (Figure 6G). Notably, connectors were 
predominantly identified in the brackish and salt lakes. In the brackish 
lakes, they included Proteobacteria (Thalassobaculum and 
Polycyclovorans) and Bacteroidota (Flavobacterium), while in saline 
lakes, Actinobacteriota (IMCC26207), Thermotogota (SC103), and 
Desulfobacterota (Desulfonatronovibrio) were notable (Figures 6H,I).

4 Discussion

4.1 Environment-specific differences in 
changes in bacterial community structure 
governed by salinity

Lakes have host diverse, intricate microbial communities that are 
home to millions of bacteria, serving as pivotal sites for studying 
microbial community structures, which are crucial for maintaining 
the microecosystem functions (Yang et al., 2019). The results revealed 
that the freshwater lake bacterial communities exhibited the highest 
α-diversity, which was consistent with prior research (Liu et al., 2022) 
(Figure 2E). One potential explanation is that higher salinities screen 
the lake bacterial community. This coercive environment may 
influence the competitive abilities of bacterial communities for limited 
nutrients, prompting salt-tolerant species to thrive as fast-growing 

opportunists. Consequently, heightened competitive exclusion among 
these species may decrease bacterial community diversity (Ibelings 
et al., 2021; Jiao et al., 2023). Environmental conditions in freshwater 
lakes are conducive to bacterial survival, potentially leading to more 
rapid establishment of bacterial diversity (Mo et  al., 2021). The 
reduced bacterial relative abundance in salt lakes supports the notion 
that salinity-driven environmental filtering selectively eliminates 
certain taxa (Jiao et al., 2023). Conversely, the brackish lakes exhibited 
a more uniform distribution of bacterial communities (with the 
highest mean value of Shannoneven’s index of about 0.61), likely 
influenced by varying salinity gradients that affected the bacterial 
dispersal (Figure 3A).

Additionally, the NMDS analysis confirmed the spatial variations 
in bacterial community structure across lake ecosystems with different 
salinity levels (Oren, 2011). Proteobacteria, Cyanobacteria, and 
Bacteroidota were predominantly present in the freshwater and salt 
lakes, accounting for approximately 45.71, 12.77, and 11.74% of the 
relative abundance, respectively (Figure 3B). Their dominance can 
be  attributed to their high reproductive capacity, biodegradability, 
robust metabolism, and strong motility, rendering them less susceptible 
to predation than other bacterial taxa in lakes (Newton et al., 2011; 
Brinkmann et al., 2022). Typically, Firmicutes represents less than 1% 
of lakes, but its proportion is about 12.59% of freshwater lakes 
(Firmicutes proportions were 6.2 and 1.78% in brackish and salt lakes, 
respectively) suggesting a higher susceptibility to external influences 
than the brackish and salt lakes (Jiao et al., 2020) (Figure 3B). Moreover, 
the high-salinity environment further screened the bacterial 
community, which was particularly evident in the dominance of 
Halobacterota in the salt lakes. The relative abundance of Halobacterota 
reached 60.45%, which was significantly higher than that in the other 
lakes (only 0.42 and 0.66% in freshwater and salt lakes, respectively). 
Halobacterota possesses the specialized cellular structures that enables 
the adaptation to high-salt environments by regulating internal salinity 
concentrations (Bräuer et al., 2020). At the genus level, although the 
members of Proteobacteria and Cyanobacteria were widespread in 
freshwater and brackish lakes (e.g., Acinetobacter, Limnobacter, and 
Candidatus_Aquiluna), slight increases in salinity often coincided with 
relatively high nutrient levels (Supplementary Figure S1), potentially 
promoting the growth of genera such as GKS98_freshwater_group (Li 
et al., 2021; Liu et al., 2022) (Supplementary Table S3). Interestingly, the 
dominant bacterial genera Halarchaeum, Halonotius and Halorubrum 
in the salt lake were all classified as the members of Halobacterota, 
aligning with the phylum-level study findings. Similarly, the LDA 
analysis further confirmed that the notable differences in bacterial 
community composition across salinity gradients were attributed to the 
enrichment of biomarkers such as Acinetobacter (Figures 3D,E).

Nitrogen, a vital nutrient for microbial survival, converts TN into 
NH4

+-N via electron transfer. Nitrogen was a key factor in explaining 
the bacterial community structure in the freshwater and brackish lakes, 
indicating heightened sensitivity to nitrogen levels in water bodies with 
lower relative salinity. In particular, the relative abundance of 
Proteobacteria, Firmicutes (Enterococcus), and Actinobacteriota 
(Candidatus_Aquiluna) was significantly promoted, probably due to 
their extensive metabolism and their ability to promote the 
transformation and degradation of substances, and the change in 
nitrogen content potentially accelerated bacterial community succession 
(Guan et al., 2022; Chen et al., 2023) (Figures 4C–E). SAL and COD, 
the predominant environmental factors in salt lakes, significantly 
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influenced the growth of Halobacterota (Halonotius) (Figure 4E). This 
effect may result from the environment’s strong filtering effect on the 
bacterial communities, leading to the removal of sensitive taxa and 
retention of salt-tolerant bacteria. For example, Regulation of salt 
concentration within Halobacterota cells and structural adjustment of 
cell membranes for specialized adaptive mechanisms to tolerate high 
salt concentrations (Liu et al., 2016; Zhong et al., 2016; Jiao et al., 2022). 
Environmental heterogeneity selectively favors bacterial taxa adapted 
to strict conditions, thereby increasing their environmental resilience. 
The limited ecological niche in Salt Lake could increase species 
vulnerability to ecological selection, shaping the distinct bacterial taxa 

patterns, such as those observed in Halobacterota and its highly 
environment-responsive members (Logares et al., 2020; Luan et al., 
2020) (Figure 5D).

4.2 Stochastic processes as key microbial 
community assembly processes

Ecosystem characteristics play a pivotal role in influencing species 
turnover and shifts in abundance (Karimi et  al., 2018). Although 
significant expertise has been gained from previous studies analyzing 

FIGURE 6

(A–F) Ecological network structure of freshwater, brackish, and saline lakes at the bacterial genus level. Node size is positively proportional to the 
degree value of the genus represented by that node, and nodes appearing in the graph are statistically significant (p  <  0.05). (A–C) Network nodes are 
colored according to the bacterial phylum to which they belong, and (D–F) network nodes are colored according to the module to which they belong. 
(G–I) Module hubs (zi  >  2.5, Pi ≤0.62) and connectors (zi  ≤  2.5, Pi >0.62). The name of each phylum is followed by parentheses representing the genera 
belonging to that phylum, and only the categorized genera are labeled in the figure.
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bacterial community structures in lakes, exploring the mechanisms 
governing bacterial community assembly in aquatic ecosystems across 
varying salinity gradients remains an intriguing challenge.

We frequently utilized the null models to predict the bacterial 
community assembly processes, a practice supported by iCAMP 
findings (Langenheder and Lindstrom, 2019). In the Badanjilin 
Desert, most β-NTI scores for bacterial community assembly 
processes across various salinity gradients fell between-2 and + 2 on 
the observed dates, indicating community assembly is dominated by 
stochastic processes (Figures 5A,B). Furthermore, we demonstrated 
that although stochastic assembly was prevalent, its occurrence 
decreased in the salt lakes. This could be attributed to the higher 
population dispersal rate in freshwater ecosystems, which may 
strengthen the ecologically undominated effect in lake waters (Jiao 
et al., 2023). Moreover, the relatively low salinity in freshwater lakes is 
more conducive to the growth of a wide range of microorganisms, 
resulting in a more diverse bacterial community structure, promoting 
microbial growth and reproduction, and thereby enhancing the 
ecological undominated effect. In contrast, the strong control exerted 
on the bacterial communities in highly saline lakes enhanced the 
stability alongside effective screening, thereby significantly reducing 
the prevalence of ecologically undominated processes (Zeng et al., 
2019). The dispersal limitation was the crucial ecological process that 
dominated the bacterial community in the lakes of the Badanjilin 
Desert. However, dispersal limitation significance underwent a shift 
from a dominant force in the freshwater lakes to a less dominant force 
in the brackish lakes (Figure 5C). This decline in dispersal limits can 
be  attributed to several factors. Isolated ecosystems could exhibit 
greater dispersal constraints, whereas decreasing environmental 
complexity correlates with a reduced prevalence of dispersal 
limitations, thus amplifying the importance of homogeneous 
dispersal. In summary, the elevated salinity levels in salt lakes 
augmented the dispersal capabilities of bacterial communities (Wang 
et al., 2013; Huber et al., 2020). Regarding the deterministic processes, 
the heightened salinity levels correlated with an increased prevalence 
of such processes. Serving as a pivotal factor in altering bacterial 
community structures within salt lakes, increasing the salinity may 
intensify the deterministic processes on bacterial communities, while 
reducing the occurrence of stochastic processes. This has been 
evidenced by the favorable response of Halobacterota and its 
constituents (Hofmockel, 2014; Ning et al., 2020) (Figure 5).

The equilibrium of diverse constructive mechanisms within lake 
bacterial communities is mainly determined by environmental 
conditions, including habitat features and nutrient status. The 
variations in environmental conditions could regulate the bacterial 
community composition, indicating divergent phylogenetic 
adaptations among bacterial taxa under heterogeneous environmental 
conditions (Tripathi et al., 2018; Jiao et al., 2020). In this study, a 
robust correlation was observed between the β-NTI values of 
freshwater lake bacterial communities and several environmental 
factors, notably, phosphorus components (TP, DTP, and DIP), DO, 
and SAL. This finding was consistent with prior research that has 
highlighted the influence of elements such as phosphorus and SAL on 
bacterial community taxa (Supplementary Figure S2). The increase in 
nutrients within in the lakes of Badanjilin Desert (the COD content is 
about 107.28 mg/L, 248.28 mg/L and 1406.90 mg/L in freshwater, 
brackish and salt lakes, respectively) suggested a transition from 
stochastic to deterministic in the bacterial community construction 
process, which was characterized by heightened phylogenetic 

clustering tendencies (Rousk et  al., 2010; Jiao et  al., 2019). 
Furthermore, as the salinity increased, the impact of phosphorus on 
bacterial community construction decreased progressively (for 
example, the R2 value of the correlation between elemental 
phosphorus, represented by DTP, and β-NTI was about 0.96  in 
freshwater lakes, whereas it decreased to 0.04 and 0.008 in brackish 
and saltwater lakes, respectively), leading to the bacterial communities 
gradually converging towards a less stochastic state 
(Supplementary Figure S2).

4.3 Characterization of bacterial ecological 
network structure under different salinity 
features

A crucial yet neglected aspect of studying the bacterial community 
structures in the lakes with varying salinities is the examination of 
species interactions and the identification of keystone species. Our 
analysis of microbial networks across freshwater, brackish, and saline 
lakes revealed that the freshwater ecosystems exhibited the highest 
complexity in microbial networks, promoting stronger integration, 
possibly because of the unstable assembly state of the bacterial 
communities, which encouraged the heightened species interactions. 
This notion was further supported by the high cohesion among 
microorganisms, as indicated by their shortest average path lengths 
(Jordan, 2009; Lv et al., 2022) (Supplementary Table S4). The robust 
interactions between species within the lakes drove various ecological 
functions, characterized by the reciprocal or antagonistic interactions. 
The bacterial ecological network structure in the water of Badanjilin 
Desert Lake was predominantly characterized by positive correlations. 
These positive correlations became increasingly pronounced with 
increasing salinity. In the salt lake environment, positive correlations 
constituted over 95.00% of the bacterial ecological network structure. 
Salinity significantly affected the microbial interactions, resulting in 
heightened microbial activity and facilitating collaborative 
relationships among organisms. This contributed to the development 
of a highly intricate network of bacterial communities within the salt 
lakes (Brown et al., 2004).

As previously discussed, the environmental heterogeneity was 
intricately integrated into the modules of an ecological network. These 
modules represented closely related species with strong internal 
interactions, but limited the interactions with species from other 
modules, a pattern that was particularly pronounced in the freshwater 
lakes. Although our study did not focus on key taxa acting as connectors 
in freshwater lakes, species from dominant phyla families, such as 
Cecembia and Schizothrix_LEGE_07164, served as central hubs for 
information transfer within each module. These organisms significantly 
shaped the structure and function of the microbial communities 
(Figure  6G). The presence of Polycyclovorans, Flavobacterium, 
IMCC26207, SC103, and Desulfonatronovibrio as the connectors in 
brackish and saline lake waters was associated with increased functional 
associations (Figures  6H,I), enabling the adaptation to the narrow 
trophic spectrum of the lake and playing significant roles within their 
respective “small worlds.” The Polycyclovorans family, distinguished by 
bubble formation on cell surfaces and unipolar flagella, demonstrates a 
preference for aliphatic and aromatic hydrocarbon compounds as well 
as small organic acids (Gutierrez et al., 2013). The unique phenotypic and 
genotypic traits of the connectors presented their significance. The key 
taxa determined the community composition and metabolic functions, 

https://doi.org/10.3389/fmicb.2024.1448919
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Xin et al. 10.3389/fmicb.2024.1448919

Frontiers in Microbiology 12 frontiersin.org

which were crucial for maintaining structural integrity. Their metabolic 
diversity influenced by environmental factors could enhance their 
dominance and play a pivotal role in lake microbial ecosystems (Banerjee 
et al., 2018).

5 Conclusion

In this study, we  systematically investigated the distribution 
characteristics, symbiotic patterns, and assembly mechanisms of 
bacterial communities in the water bodies of Badanjilin Desert lakes, 
offering fresh insights into the bacterial community distribution under 
varying salinity gradients. Our findings indicated a reduction in bacterial 
community diversity with increasing salinity. Significant differences in 
bacterial community composition were observed among the different 
habitats, primarily attributed to the varying abundance of Halobacterota, 
constituting 60.45% of the salt lake community. Across the freshwater, 
brackish, and salt lakes, pH, COD, and Chla levels emerged as the 
dominant factors driving bacterial community composition in the water 
column. Fluctuating salinity levels in lakes induced the shifts in the 
mechanisms governing bacterial community assembly. Despite the 
stochastic dominance in the bacterial community assembly in the lakes 
of the Badanjilin Desert, the influence of high-salinity screens against 
undominated occurrences emphasized the growing importance of 
homogeneous dispersal. Environmental preferences may dictate varying 
assembly patterns, with phosphorus and Chl a levels regulating the 
transition between deterministic and stochastic processes in bacterial 
community formation. Furthermore, the differences in key species 
within bacterial community coexistence networks were observed across 
water bodies with different salinities. The freshwater lake networks could 
exhibit higher complexity, promoting the development of more 
sophisticated modularized structures. In conclusion, this study offered a 
fresh perspective on how environmental variations across lakes with 
diverse salinity gradients influenced the characterization and 
construction of bacterial communities. These insights shed light on the 
response of lake microorganisms to ecological processes.
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