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Multi-heme cytochromes (MHCs), together with accessory proteins like

porins and periplasmic cytochromes, enable microbes to transport electrons

between the cytoplasmic membrane and extracellular substrates (e.g., minerals,

electrodes, other cells). Extracellular electron transfer (EET) has been described

in multiple systems; yet, the broad phylogenetic and mechanistic diversity

of these pathways is less clear. One commonality in EET-capable systems is

the involvement of MHCs, in the form of porin-cytochrome complexes, pili-

like cytochrome polymers, and lipid-anchored extracellular cytochromes. Here,

we put forth MHCscan—a software tool for identifying MHCs and identifying

potential EET capability. Using MHCscan, we scanned ∼60,000 bacterial and

2,000 archaeal assemblies, and identify a diversity of MHCs, many of which

represent enzymes with no known function, and many found within organisms

not previously known to be electroactive. In total, our scan identified ∼1,400

unique enzymes, each encoding more than 10 heme-binding motifs. In our

analysis, we also find evidence for modularity and flexibility in MHC-dependent

EET pathways, and suggest that MHCsmay be far more common than previously

recognized, with many facets yet to be discovered. We present MHCscan as a

lightweight and user-friendly software tool that is freely available: https://github.

com/Arkadiy-Garber/MHCscan.
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Introduction

The ability of cells to either donate or accept electrons from external insoluble

substrates has been well-studied in several microbial groups [e.g., Shewanella oneidensis

(Myers and Myers, 1992, 2002; Pitts et al., 2003; Hartshorne et al., 2009; Clarke et al.,

2011; Kasai et al., 2015), Geobacter sulfurreducens (Shi et al., 2009; Merkley et al., 2015)

Rhodopseudomonas palustris (Jiao and Newman, 2007; Bird et al., 2014), and Ferroglobus

placidus (Smith et al., 2015)]. However, the importance of many of these microbe-

mineral interactions remain hidden in the to-be-discovered intricacies of energy exchange

and syntrophic interactions of the microbial world. Many of the known electrochemical

interactions have recently been outlined and reviewed by Lovley and Holmes (2022); there

are likely many more waiting to be discovered, as discussed below. Known mechanisms
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for EET include only a handful of protein families, many of which

consist of multi-heme cytochromes (MHCs) that are localized

to the periplasm and outer membrane of the cell (Shi et al.,

2009; Richardson et al., 2012; Shi et al., 2014; Liu et al., 2014;

He et al., 2017; Deng et al., 2018; Barco et al., 2015) (Figure 1).

This is particularly true in the case of Gram-negative bacteria,

and at least one Gram-positive species (Thermincola potens) is

known to encode MHCs that link the cytoplasmic membrane with

extracellular substrates through the cell wall (Carlson et al., 2012).

MHCs that are known to play a role in EET have been used

as queries to search for homologous proteins and mechanisms

in other microorganisms. For example, profile hidden Markov

models (HMMs) have been compiled for known MHCs with EET

function and are currently packaged in a bioinformatics tool called

FeGenie to predict genetic potential for iron-cycling (Garber et al.,

2020). However, many types of organisms are being discovered

that are known to generate electrical currents (Logan et al., 2019),

many of which do not appear to encode any of the related EET

machinery. It is, thus, possible that these microbes produce MHCs

with independently evolved EET pathways invisible to homology-

dependent searches.With this inmind, we hypothesized thatMHCs

can be used to predict EET capability without the use of homology-

dependent methods.

We searched the predicted proteomes of ∼60,000 sequenced

Bacteria and Archaea (from NCBI’s RefSeq database) for gene

neighborhoods encoding one or more MHC localized to the

periplasm, outer-membrane, and/or extracellular space. This

homology-independent approach (Supplementary Figure 1),

revealed thousands of MHC-encoding gene neighborhoods, some

predicted to have over a hundred heme-binding motifs, potentially

involved in EET. Using FeGenie as a reference, we were able to

identify novel MHCs for which gene markers are not yet publicly

available. While FeGenie includes 14 protein families representing

MHCs, sequence-based clustering of novel MHCs identified in

our survey resulted in an additional 76 protein families encoding

heme-rich (≥4 hemes) cytochromes that are localized to the

periplasm, outer membrane, or extracellular space. Additionally,

we found 42 novel protein families representing accessory genes,

likely encompassing porins and soluble electron shuttles.

Results and discussion

Validation of the homology-independent
approach

To validate MHCscan, we used it to analyze a set of genomes

frommodel organisms with characterized EET genes and pathways

[e.g., Rhodopseudomonas palustris (Jiao and Newman, 2007),

members of the Shewanella and Geobacter genera (Shi et al.,

2012), and others]. All genomes analyzed in this benchmark are

listed in Supplementary File 1, a select subset are listed in Table 1.

Our criteria for the inclusion of gene neighborhoods potentially

involved in EET were: (1) the presence of at least one MHC

with a signal peptide; (2) the presence of at least one heme-

rich (≥4 hemes) MHC; and, (3) the combined presence of at

least 15 hemes within the entire multi-gene cluster. The exact

parameters of the search can be tuned to include, for example,

FIGURE 1

Schematic of electron transport across the periplasmic space and

outer membrane. Outer membrane-bound multi-heme

cytochromes are labeled with “C”. The multimeric OmcS

cytochromes (shown in brown at the right of the figure) represent

multi-heme cytochromes that are bound to the inner membrane,

but extend out past the outer membrane. Accessory proteins are

labeled with “A”; these represent porins and soluble periplasmic

cytochromes that transport electrons from the inner

membrane-bound electron carriers (labeled with “R”) to the outer

membrane cytochromes. Arrows represent the flow of electrons.

TABLE 1 GenBank assembly accessions and publications associated with

the genomes used in validation of the homology-independent approach.

Genome GenBank
assembly
accession

Citation

Geobacter anodireducens GCA_014883105.1 Sun et al., 2014

Gallionella

capsiferriformans ES-2

GCA_000145255.1 Emerson et al., 2013

Ferrimonas balearica GCA_000148645.1 Nolan et al., 2010

Endosymbiont of Riftia

pachyptila

GCA_000224455.2 NA

Desulfuromonas sp. TF

3336

GCA_000472285.1 Kim et al., 2014

Shewanella colwelliana GCA_001735525.1 NA

Archaeoglobus veneficus GCA_000194625.1 NA

Candidatus

Syntrophoarchaeum

caldarius

GCA_001766815.1 Laso-Pérez et al., 2016

Ferroglobus placidus

DSM 10642

GCA_000025505.1 Anderson et al., 2011

Candidatus

Methanoperedenaceae

archaeon

GCA_003104905.1 Cai et al., 2018

the single-heme porin-cytochrome Cyc2 or other outer-membrane

cytochromes not matching the above criteria. Moreover, MHCscan

will also report type IV aromatic pili (T4AP), which generally do

not encode heme-binding motifs, but may nonetheless be involved

in EET (Vargas et al., 2013). Our search with MHCscan accurately

identified all known EET-related mechanisms in the subset of

electroactive and iron reducing/oxidizing microbes. Moreover,
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FIGURE 2

MHCs identified in 70 electroactive microbes as reviewed in Logan et al. (2019). In nearly all microbes, MHCScan identified more EET-related proteins

than FeGenie. These EET candidates may represent novel mechanisms for electroactivity. A phylogenetic tree was constructed using GToTree and

annotated using the Interactive Tree of Life (Letunic and Bork, 2021). Whether each microbe is an electrogen or electrotroph is denoted by the purple

circles or green triangles to the right of the tree. The heatmap shows, per genome, the number of hemes, as well as MHC-encoding gene clusters

potentially involved in EET. The number of MHC-encoding gene clusters identified with MHCScan (middle column) is generally higher than the

number of gene clusters identified through the homology-dependent FeGenie software, suggesting new EET candidate genes.
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within even these well-studied bacteria, we found additional gene

neighborhoods with as-of-yet unnamed genes encoding multiheme

cytochromes (Supplementary Figure 2, Supplementary Files 1, 2).

We note that MHCs encoded by as-of-yet unnamed genes may

have been described in previous research studies—nonetheless,

appear as “hypothetical” in public repositories. We also used

MHCscan to analyze genomes from 70 electroactive microbes

included in the review by Logan et al. (2019). We compared

predicted MHCs from MHCscan to EET-related genes identified

through the homology-dependent software tool FeGenie. In these

electroactive microbes, MHCscan detects more EET candidate

genes than FeGenie (Figure 2), possibly illuminating a greater

proportion of heme groups involved in facilitating extracellular

electrical currents.

Survey of bacteria and Archaea

We next turned our approach to all sequenced Bacteria and

Archaea, down-sampled to reduce the number of over-represented

genomes (e.g., E. coli, Streptococcus and Salmonella spp.). We

identified 1,475 bacterial genomes (220 unique genera) and 75

archaeal genomes (35 unique genera), each with at least one gene

neighborhood that encodes one or more clusters of MHCs. Most

of these genomes encode only one such gene neighborhood; many

encode a few, and a few genomes encode more than ten. In total,

we identified over two thousand gene neighborhoods with potential

involvement in EET (listed in Supplementary Files 1, 2 for Bacteria

and Archaea, respectively). Of these, 204 gene neighborhoods

encoded MHCs that can be identified using FeGenie’s HMM

library; 440 gene clusters were completely novel with no homologs

present in FeGenie’s library of HMMs (Figure 3). Species within

Vibrio, Shewanella, Geobacter, Geomonas, and Aeromonas (e.g.,

known electroactive microbes) make up the majority of the lineages

that we identified with our approach. These well-studied genera

contain both the greatest diversity and the total number of MHC-

encoding gene neighborhoods.

Novel MHC families

There are 14 EET-linked MHCs represented within

FeGenie’s library of HMMs. Adding the MHCs that were identified

by MHCscan, we identified an additional 118 protein families,

each representing either a heme-rich MHC or accessory protein

found within the cluster. Within this group of 118 novel HMMs,

76 represent MHCs that are predicted to bind five or more

hemes. Notably, the greatest number of identified MHC-encoding

gene neighborhoods were related to Shewanella’s MtrCAB iron

reductase complex (crystal structure in Edwards et al., 2020),

in addition to DFE_0462 and DFE_0449, which encode MHCs

in Desulfovibrio ferrophilus (Deng et al., 2018). It’s possible that

these pathways may be most efficient or most-easily transferred

between bacteria via lateral gene transfer (LGT), as previously

suggested for MtrCAB (Baker et al., 2021). Nonetheless, we

uncovered many species and genera with no previous evidence for

EET (Supplementary Files 1, 2) and suggest that EET is far more

common than previously realized.

Concluding remarks

Homology-dependent approaches that utilize sequence

alignment (e.g., BLAST) and hidden Markov models (e.g.,

HMMER) allow for identification of evolutionarily conserved

proteins. However, it’s possible for certain structures and functions

to arise independently. As an example, extracellular electron

transport mechanisms are found across all reaches of the bacterial

phyla; yet, only a handful of mechanisms are known. Our approach

leverages the structural features and motifs of known EET-related

enzymes to identify similar mechanisms in unrelated proteins,

which may have evolved independently or diverged beyond

where homology-dependent approaches can detect. The growing

reportoire of software tools for de novo protein folding (e.g.,

AlphaFold3 and ESMFold) will also provide a powerful approach

for the preparation of biochemical models for testing through in

vitro and in vivo experimentation.

Methods

Genome acquisition

Over 100,000 genome assemblies were downloaded from

NCBI’s RefSeq database (release 209). We down-sampled the

genome assemblies from well-studied, but over-represented,

species (e.g., Escherichia coli, Salmonella enterica, and Yersinia

pestis, etc.), and reduced the number of genomes to∼60,000.

Workflow

TheMHCscan pipeline, outlined in Supplementary Figure 1,

starts with prediction of genes and corresponding protein

sequences from genomes using Prodigal (Hyatt et al., 2010).

If annotation was done beforehand, annotated genomes can

be provided in the form of FASTA amino acid and GFF

files. Phobius (Käll et al., 2004) is used to predict signal

peptides and transmembrane helices. Heme c-binding motifs

are predicted using FindMeHemes (https://github.com/Arkadiy-

Garber/FindMeHemes). Output from Phobius and FindMeHemes

is then processed to identify gene neighborhoods encoding multi-

heme cytochromes that have signal peptides and appear to

be periplasmic, outer membrane-bound, or secreted. We then

removed the MHC gene clusters where the total number of

predicted heme groups (across all proteins encoded within each

cluster) falls below 15, an empirically derived number based on

MHCs in known electroactive microbes.

HMM development

To bring into light the novel MHCs potentially involved in

EET, we used the identified protein sequences to generate hidden
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FIGURE 3

Scatterplot showing the relationship between the number of individual MHCs, and total number of hemes predicted within each gene neighborhood.

Each dot represents a single gene neighborhood: those colored blue represent gene neighborhoods where all MHCs were predicted with FeGenie;

green dots represent neighborhoods encoding at least one MHC not included in FeGenie’s HMM library; red dots represent gene neighborhoods

where not a single MHC in the gene neighborhood is currently included in FeGenie’s HMM library. The high density of neighborhoods encoding

multiples of ten hemes (horizontal lines at 20, 30, 50, 60, and 70 hemes per neighborhood) represent the decaheme cytochromes (MtrA/MtrC)

encoded mostly in the Shewanella spp.; those encoding 22 and 27 hemes per neighborhood represent Mtr-encoding gene clusters in Vibrio and

Aeromonas spp., which also encode pentaheme and/or diheme cytochromes.

Markov models (HMMs). We performed clustering of identified

MHC protein sequences using MMseqs2 (Steinegger and Söding,

2017). These clustered protein sequences were aligned usingMuscle

(Edgar, 2004), masked to remove positions consisting of mostly

gaps, and used to generate hidden Markov models (HMMs) using

HMMER (Johnson et al., 2010). HMMs were only generated for

proteins families that were represented by at least three orthologs

among the roughly 60,000 surveyed genomes. The only custom

script used in HMM generated was masker.py, available here:

https://github.com/Arkadiy-Garber/BagOfTricks.
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