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Background: Multiple studies suggest a potential connection between the 
gut microbiome and asthma. Our objective is to use advanced genetic and 
metagenomic techniques to elucidate the causal relationships and underlying 
mechanisms between gut microbiota and asthma.

Methods: The study utilized comprehensive Linkage Disequilibrium Score 
Regression (LDSC) and Mendelian randomization (MR) analyses to examine the 
relationship between 119 gut microbiota genera and asthma, using publicly 
accessible genome-wide association studies (GWAS). The meta-analysis 
synthesized summary effect estimates obtained from LDSC, forward MR, and 
reverse MR. The MiBioGen collaboration, involving 18,340 individuals, identified 
genetic variations associated with gut bacteria. Asthma data were collected from 
the UK Biobank, FinnGen, and GERA, encompassing a total of 82,060 cases and 
641,049 controls.

Results: LDSC analysis revealed significant negative genetic correlations 
between asthma and RuminococcaceaeUCG004 (Rg  =  −0.55, p  =  7.66  ×  10−5) 
and Subdoligranulum (Rg  =  −0.35, p  =  3.61  ×  10−4). Forward MR analysis 
suggested associations between Butyricicoccus (OR  =  0.92, p  =  0.01), 
Turicibacter (OR  =  0.95, p  =  0.025), Butyrivibrio (OR  =  0.98, p  =  0.047), and 
reduced asthma risk. Conversely, Coprococcus2 (OR  =  1.10, p  =  0.035) and 
Roseburia (OR  =  1.07, p =  0.039) were associated with increased risk. Reverse 
MR analysis indicated significant associations between genetically predicted 
asthma and Eubacteriumxylanophilumgroup (Beta  =  −0.08, p  =  9.25  ×  10−7), 
LachnospiraceaeNK4A136group (Beta  =  −0.05, p  =  1.26  ×  10−4), and 
Eisenbergiella (Beta  =  0.06, p =  0.015, Rg_P =  0.043).

Conclusion: The findings underscore significant genetic correlations and causal 
relationships between specific gut microbiota and asthma. These insights 
highlight the potential of gut microbiota as both markers and modulators of 
asthma risk, offering new avenues for targeted therapeutic strategies.
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1 Introduction

Asthma affects approximately 300 million people worldwide and 
its prevalence has been increasing over the past few decades, especially 
in industrialized countries (Boulet et al., 2019). The condition is more 
common in children, with symptoms often beginning in early 
childhood, but it can develop at any age (Martinez and Vercelli, 2013). 
Clinically, asthma is characterized by recurring bouts of coughing, 
chest tightness, shortness of breath, and wheezing, often occurring at 
night or in the early morning (Balmes, 1993). Asthma also poses 
significant health burdens, including frequent hospital visits, 
decreased quality of life, and even death in severe cases (Fanta, 2002). 
Environmental factors like air pollution and tobacco smoke exacerbate 
asthma symptoms, such as more frequent hospital visits and 
worsening of symptoms like coughing, chest tightness, and shortness 
of breath. Additionally, the study found a correlation between 
increased exposure to environmental pollutants and elevated levels of 
inflammatory biomarkers in the lungs of asthmatic patients, 
suggesting a direct link between environmental triggers and asthma 
exacerbation (Comhair et al., 2011). The complex disease is influenced 
by genetic, environmental, and immunological factors. Traditionally 
considered a Th2-mediated allergic disorder, recent research indicates 
that asthma also involves Th17 responses and non-allergic pathways 
(Holgate, 2008). Environmental triggers such as allergens, viruses, and 
pollutants interact with genetic susceptibilities to cause airway 
inflammation and remodeling (Holtzman, 2012). This multifaceted 
pathogenesis underscores the importance of tailored therapeutic 
approaches targeting specific mechanisms underlying asthma.

Among the most promising domains in asthma research is the 
involvement of the microbiome as a potential environmental contributor. 
Viruses and fungi have been reported to be correlated with various 
allergic conditions. For example, temperate gut phage taxa, particularly 
the joint abundances of 19 caudoviral families, were associated with later 
development of asthma (Leal Rodríguez et al., 2024); Proteases and 
chitin, produced by fungi such as Alternaria, Aspergillus, and 
Cladosporium were capable of inducing type 2 immune responses via 
toll-like receptor 4 (Zheng and Dang, 2023). Insights into the gut 
microbiota’s role in modulating immune responses have opened another 
avenue for understanding asthma’s etiology. Studies suggest that the gut 
microbiota can influence immune responses and inflammation, which 
are critical in asthma pathogenesis (Frati et al., 2018; Barcik et al., 2020). 
The pathogenesis of asthma in relation to gut microbiota involves several 
mechanisms. For example, gut microbiota produce metabolites such as 
short-chain fatty acids (SCFAs), which can modulate immune responses 
and inflammation. Dysbiosis, or an imbalance in gut microbiota, may 
lead to altered production of these metabolites, contributing to asthma 
(Wang et al., 2018). Despite the growing body of evidence linking gut 
microbiota to asthma, several gaps remain. Most studies have focused 
on associations rather than causal mechanisms, and the specific 
pathways through which gut microbiota influence asthma are not fully 

understood. Our study aims to fill these gaps by employing Mendelian 
randomization (MR) to elucidate the causal relationships and underlying 
mechanisms between gut microbiota and asthma.

Understanding the genetic associations between gut microbiota 
and asthma is crucial as it can provide novel insights into the 
pathophysiology and potential treatment strategies for asthma. 
Asthma remains a significant public health concern, and traditional 
treatments often do not address the underlying causes of the disease. 
By focusing on the gut-lung axis (GLA), our study aims to uncover 
how gut microbiota composition and diversity influence asthma 
development and severity.

2 Materials and methods

2.1 Study design

The detailed structure of this investigation is shown in Figure 1. 
The study examined the relationship between 119 genera of gut 
microbiota and asthma through comprehensive analyses using 
Linkage Disequilibrium Score Regression (LDSC) and MR. The 
application of instrumental variables (IVs) in multiple regression 
analysis relies on three key assumptions: (1) the genetic variants used 
as instruments must have a significant association with the exposure 
being studied; (2) these variants must be unrelated to any potential 
confounding factors that could impact the outcome; and (3) the 
influence of the genetic variants on the outcome must be  solely 
through the exposure variable (Burgess and Thompson, 2015). A 
meta-analysis was conducted to evaluate asthma using multiple data 
sources, incorporating the overall impact estimates from LDSC, 
forward MR, and reverse MR. The analysis was conducted using 
summary-level data from published genome-wide association studies 
(GWASs) and the analytic process was in accordance with the 
STROBE-MR guidelines (Skrivankova et  al., 2021). Consent was 
obtained from all participants in all studies included in this research, 
as approved by the appropriate institutional review boards and 
ethics committees.

2.2 Instrumental variable selection

The MiBioGen team conducted the most extensive genome-wide 
meta-analysis to date to identify genetic variants associated with the 
composition of the intestinal microbiota (Kurilshikov et al., 2021). 
This investigation included 18,340 participants, the majority of whom 
were of European descent, from 24 cohorts (n = 13,266). The lowest 
taxonomic level examined was genus, revealing 131 genera with a 
mean abundance of more than 1%, including 12 unidentified genera. 
Consequently, the analysis encompassed 119 taxa at the genus level. 
When using a threshold of p < 5 × 10−8 and applying a stringent linkage 
disequilibrium (LD) clumping setting with a 10,000 kb distance and 
r2 < 0.001 between instrumental variables (IVs), we found that only 16 
genera had total of 17 SNPs meeting these criteria. To satisfy the first 
MR analysis assumption, the gut microbiota identified by GWAS was 
subjected to a significance threshold of p < 1 × 10−5 (Sanna et al., 2019). 
However, employing a threshold of p < 5 × 10−8 is still a significant 
association between the gut microbiome and asthma. To prevent weak 
IVs, the F-statistic of each intestinal microbiota (F = beta2/se2) was 

Abbreviations: SCFAs, Short-chain fatty acids; MR, Mendelian randomization; GLA, 

Gut-lung axis; LDSC, Linkage Disequilibrium Score Regression; IVs, Instrumental 

variables; GWAS, Genome-wide association studies; LD, Linkage disequilibrium; 

SNPs, Single nucleotide polymorphisms; MR-PRESSO, MR pleiotropy residual sum 

and outlier; GERA, Genetic Epidemiology Research on Aging; ICD, International 

Classification of Diseases; IVW, Inverse-variance weighted.
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calculated; those with an F-statistic of less than 10 were deemed weak 
and excluded (Bowden et  al., 2019; Xie et  al., 2023). SNPs in the 
exposure and outcome datasets were harmonized to match reference 
and alternative alleles, thereby eliminating mismatched SNPs to 
minimize discrepancies. Additionally, the MR analysis excluded 
ambiguous palindromic SNPs with minor allele frequencies of 
approximately 0.5. To identify significant pleiotropy, MR estimates 
with pleiotropy were excluded from the meta-analysis under the 
second assumption using the MR-Egger intercept test and the MR 
pleiotropy residual sum and outlier (MR-PRESSO) test (p for intercept 
<0.05 or p for global test <0.05). To ensure precise causal conclusions, 
SNPs substantially associated with the outcome (p < 1 × 10−5) were 
excluded from the MR analysis for the third assumption. A 
comprehensive list of the IVs associated with each taxon in the gut 
microbiota is provided in Supplementary Table 1.

2.3 Asthma data sources

Three primary sources provided summary-level data on asthma: 
the UKB GWAS (Sudlow et al., 2015); the FinnGen GWAS Release 10 
(Kurki et al., 2023); and the Genetic Epidemiology Research on Aging 
(GERA) (Guindo-Martínez et  al., 2021). The combined sample 
comprised 641,049 European-ancestry controls and 82,060 cases. The 
UKB GWAS included 500,000 participants, collected between 2006 
and 2010, in a major multicenter cohort study (Sudlow et al., 2015). 

We used the European ancestry summary data from the Lee lab’s 
GWAS, where phecode 495 was used to define asthma outcomes. 
Kurki et al. described the FinnGen GWAS as a comprehensive national 
genetic research project that integrates genomic data with electronic 
health information (Kurki et al., 2023). The International Classification 
of Diseases, Ninth Revision (ICD-9: 493), and Tenth Revision 
(ICD-10: J45, J46) codes were used to identify clinical endpoints such 
as asthma-related hospital admissions, emergency room visits, and 
prescribed medications for asthma management. The study 
highlighted that individuals with certain genetic markers were more 
likely to experience severe asthma symptoms, frequent exacerbations, 
and a higher need for corticosteroids or beta-agonists, indicating the 
genetic predisposition’s role in asthma’s clinical course. In the GERA 
data, asthma diagnoses also followed ICD-9 (493) (Guindo-Martínez 
et al., 2021). All the sources of outcome were applied exclusion criteria 
to rule out participants with known comorbid infections, malignant 
diseases, or other miscellaneous conditions that could potentially 
confound the associations being studied. Table 1 provides detailed 
summaries of the studies utilized.

2.4 Statistical analysis

Using LDSC, we examined the genetic correlation between the gut 
microbiota and asthma. The GWAS summary data were refined using 
HapMap3 references, which involved eliminating non-SNP variants 

FIGURE 1

Three assumptions of MR analysis and overview of the study design. MR, Mendelian randomization; GERA, Genetic Epidemiology Research on Aging; 
LDSC, Linkage Disequilibrium Score Regression; MR-PRESSO, MR pleiotropy residual sum and outlier; SNPs, single nucleotide polymorphisms.
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such as insertions/deletions (indels), ambiguous SNPs, duplicated 
SNPs, and those with a minor allele frequency below 0.01. LDSC can 
quantify genetic connections using GWAS summary data by assessing 
the relationship between LD and test statistics, determining if 
observed inflation is caused by genuine polygenic signals or other 
biases (Bulik-Sullivan B. et al., 2015). This approach is unaffected by 
sample overlap (Bulik-Sullivan B. K. et al., 2015). Genetic covariance 
is calculated by performing a regression analysis on the products 
obtained by multiplying the z-scores of variants associated with Trait 
1 by those associated with Trait 2, after multiplying the z-scores by the 
LD score (Wielscher et al., 2021). The genetic relationship becomes 
evident after applying SNP-heritability to this covariance. The genetic 
relationship between gut microbiota and asthma was estimated by 
integrating data from three different datasets using fixed-effects 
meta-analysis.

For causal analysis, the primary MR estimate was calculated 
using the inverse-variance weighted (IVW) method within a 
random-effects model. IVW method is best used when the MR 
assumptions are believed to hold true across all genetic variants. It 
provides the most precise estimate when there is no horizontal 
pleiotropy (Burgess and Thompson, 2015). To evaluate the presence 
of horizontal pleiotropy and confirm the reliability of the data, 
we performed three sensitivity analyses: weighted median, MR-Egger, 
and MR-PRESSO. The weighted median method is particularly 
useful when there is concern that some genetic variants may 
be invalid instruments due to pleiotropy. It provides a robust estimate 
that is less sensitive to invalid instruments compared to the IVW 
method (Bowden et al., 2016). MR-Egger is particularly useful when 
there is concern about directional pleiotropy. It provides a more 
conservative estimate and tests for the presence of pleiotropy through 
the intercept term. If the intercept is significantly different from zero, 
this indicates the presence of directional pleiotropy (Burgess and 
Thompson, 2017). MR-PRESSO is best used when there is evidence 
or suspicion of pleiotropy. It improves the reliability of causal 
estimates by removing the influence of outlier variants that violate 
the exclusion restriction assumption (Verbanck et al., 2018). To assess 
SNP heterogeneity, we  used the Cochran Q value. Horizontal 
pleiotropic effects were identified using the MR-Egger intercept test. 

The estimates derived from the IVW and sensitivity analyses were 
combined using fixed-effects meta-analysis. Exposures represented 
by fewer than four SNPs were excluded, as MR-PRESSO requires a 
minimum of four instrumental SNPs. Additionally, the meta-analysis 
excluded estimates indicating significant pleiotropy, defined by a 
p-value less than 0.05 for either the intercept test or the global test. 
The power of MR analysis was estimated using an online tool (Brion 
et al., 2013).

Bonferroni’s correction was applied separately to both LDSC and 
MR analyses in the meta-analyses to minimize the false discovery rate 
(Curtin and Schulz, 1998). LDSC correlations with p-values between 
6.41 × 10−4 (0.05/78) and 0.05 were suggestive, while those with 
p-values less than 6.41 × 10−4 were significant. MR associations were 
suggestive if IVW p-values were between 4.20 × 10−4 (0.05/119) and 
0.05, and significant if p-values were less than 4.20 × 10−4 or if both 
IVW and LDSC p-values were less than 0.05. The statistical analyses 
were performed using R software (version 4.3.1) and included the use 
of the GenomicSEM, meta, and TwoSampleMR packages.

3 Results

3.1 LDSC analysis

Constraints such as low heritability and limited sample sizes 
restrict the suitability of certain bacterial taxa for LDSC analysis. 
Through a meta-analysis of LDSC, we assessed the genetic correlation 
between 78 gut microbes and asthma (Figure 2). As shown in Table 2, 
significant negative genetic correlations were identified for 
RuminococcaceaeUCG004 (Rg = −0.55, p = 7.66 × 10−5) and 
Subdoligranulum (Rg = −0.35, p = 3.61 × 10−4) with asthma. 
Additionally, ChristensenellaceaeR7group and Sellimonas showed a 
suggestive negative correlation, whereas LachnospiraceaeUCG004, 
Eubacteriumruminantiumgroup, and Eisenbergiella displayed a 
suggestive positive correlation with asthma. No heterogeneity or mild 
heterogeneity was observed across most of the results. 
Supplementary Table 2 contains comprehensive details of all genetic 
correlation findings.

TABLE 1 Detailed information on used summary-level data.

Exposure 
or 
outcome

Consortium Participants 
included in 
analysis

Males 
(%)

Average 
age 

(years)

Adjustments Eligibility 
criteria

Web source

Gut 

microbiota
MiBioGen

18,340 multiple-

descent individuals
44 55 (32–89)

Age, sex, technical 

covariates and genetic 

principal components

https://mibiogen.gcc.rug.nl/

Asthma

Finngen

46,684 cases and 

219,734 controls of 

European ancestry

44 53 ± 18

Sex, age, genotyping 

batch and 10 principal 

components

ICD-10: J45, 

J46; ICD-9: 493
https://r10.finngen.fi/

UKB

26,167 cases and 

373,887 controls of 

European ancestry

48 55.1 ± 7.6

Age, sex, age*sex, age2, 

age2*sex, first 10 

genetic principal 

components

Phecode: 495
https://www.leelabsg.org/

resources

GERA

9,209 cases and 

47,428 controls of 

European ancestry

42
63 (19 to 

over 100)

Seven derived 

principal components, 

sex, and age

ICD-9: 493
http://cg.bsc.es/gera_summary_

stats/
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3.2 Forward MR analysis

Following the selection of instrumental variables, 119 meta-
analyses were performed, revealing that five bacterial genera had 
suggestive associations with asthma (Supplementary Table  3). 
According to the IVW method, genetically predicted Butyricicoccus 
(OR = 0.92, 95% CI 0.86–0.98; p = 0.01), Turicibacter (OR = 0.95, 
95% CI 0.91–0.99; p = 0.025), and Butyrivibrio (OR = 0.98, 95% CI 
0.95–0.99; p = 0.047) were associated with a reduced risk of asthma. 
Conversely, Coprococcus2 (OR = 1.10, 95% CI 1.01–1.20; p = 0.035) 
and Roseburia (OR = 1.071, 95% CI 1.003–1.144; p = 0.039) were 
associated with an increased risk (Figure 3). All sensitivity analyses 
supported the aforementioned connections. The MR estimates 
included in the meta-analysis did not show any heterogeneity 
according to the Cochran Q test, which assesses SNP estimates for 

heterogeneity. All Scatter plots and Leave-one-out plots were 
depicted in Supplementary material 2. This research excluded 
pleiotropy, as estimates exhibiting strong pleiotropy were 
eliminated. However, the meta-analysis for Roseburia and 
Turicibacter revealed significant heterogeneity. Figure 4 displays all 
combined estimates.

3.3 Reverse MR analysis

Employing the same instrumental variables selection as for gut 
microbiota, 119 meta-analyses indicated significant associations 
between asthma and three bacterial genera, with suggestive 
associations for seven additional genera (Supplementary Table 4). 
The IVW method showed that genetically predicted asthma was 

FIGURE 2

Circular heat map of meta-analysis of genetic correlation between gut microbiota and asthma. Rg, estimate of genetic correlation; Rg_P, p-value for Rg.
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associated with a significant decrease in the abundance of 
Eubacteriumxylanophilumgroup (Beta = −0.08, 95% CI −0.11 to 
−0.05; p  = 9.25 × 10−7) and LachnospiraceaeNK4A136group 
(Beta = −0.05, 95% CI −0.08 to −0.03; p  = 1.26 × 10−4), and an 
increase in the abundance of Eisenbergiella (Beta = 0.06, 95% CI 0.01–
0.11; p = 0.015, Rg_P = 0.043). Suggestive negative associations were 
found with Ruminococcus1, Collinsella, FamilyXIIIUCG001, 
Ruminiclostridium6, and Peptococcus, and suggestive positive 
associations with Dialister and Alistipes (Figure 5). These findings 
were consistent across all sensitivity analyses, with no detected 
heterogeneity or pleiotropy. No heterogeneity was detected in the 
aggregated MR estimates within the meta-analysis using the Cochran 
Q test. The majority of the findings showed either no heterogeneity 
or only a slight amount. Figure 6 displays the collective estimates. 
Additionally, the bidirectional MR analysis did not find any 
indication of a two-way causal relationship between gut microbiota 
and asthma.

4 Discussion

Our comprehensive meta-analysis combining LDSC and MR 
presents novel insights into the genetic associations between 
specific gut microbiota and asthma. The findings from this study 
underscore a significant genetic correlation between certain gut 
microbiota genera, such as RuminococcaceaeUCG004 and 
Subdoligranulum, and asthma, suggesting a potential role of these 
bacteria in the pathophysiology of asthma. Additionally, our 
analysis provides evidence for a causal relationship between 
several gut microbiota genera and asthma, highlighting the 
potential of gut microbiota as both a marker and a modulator of 
asthma risk.

In line with our analyses, research has shown that gut microbiota, 
including butyrate-producing bacteria like Butyricicoccus, 
Butyrivibrio, RuminococcaceaeUCG004, and Subdoligranulum play a 
crucial role in maintaining gut barrier integrity and modulating 

FIGURE 3

Forest plot of associations in forward MR analysis. IVs, instrumental variables; CI, confident interval; P_heterogeneity, p-value of heterogeneity for 
meta-analysis; P_Q, p-value for Cochran Q test; P_intercept, p-value for MR-Egger intercept test; P_global, p-value for Global test; *, excluded from 
the meta-analysis due to SNPs less than 4 or significant pleiotropy.

TABLE 2 Meta-analysis of genetic correlation between gut microbiota and asthma from three large databases.

Exposure Rg Rg_Se Rg_P P_heterogeneity

Genus RuminococcaceaeUCG004 −0.549 0.139 7.66E−05 0.692

Genus Subdoligranulum −0.346 0.097 3.61E−04 0.746

Genus ChristensenellaceaeR 7group −0.186 0.068 0.006 0.547

Genus LachnospiraceaeUCG004 0.217 0.097 0.025 0.514

Genus Sellimonas −0.194 0.090 0.030 0.922

Genus Eubacteriumruminantiumgroup 0.202 0.096 0.035 0.561

Genus Eisenbergiella 0.459 0.227 0.043 0.686
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immune responses. For instance, butyrate, an SCFA, has anti-
inflammatory properties and supports the development of regulatory 
T cells, which are essential for maintaining immune tolerance. 
Disruptions in the balance of butyrate-producing bacteria have been 
associated with various inflammatory conditions, including 
inflammatory bowel diseases and possibly asthma (Smith et al., 2013; 
Louis et al., 2014; Depner et al., 2020; Wan et al., 2023).

While SCFAs produced by certain gut bacteria are known for their 
anti-inflammatory effects, the relationship between gut microbiota 
and asthma is likely influenced by a multitude of factors beyond 
SCFAs alone (Di Cicco et al., 2018; Wang et al., 2018). Some bacteria, 
such as Roseburia, are SCFA producers yet are associated with an 
increased risk of asthma, indicating that other pathways may also 
be involved (Rutting et al., 2019; Singh et al., 2023). In addition to 

SCFAs, these bacteria may influence asthma through alternative 
pathways, such as modulation of the host’s immune system, interaction 
with other microbial metabolites, or through complex host-microbiota 
interactions influenced by genetic and environmental factors (Rutting 
et al., 2019; Lee-Sarwar et al., 2020; Singh et al., 2023). Future studies 
focusing on these complex interactions are warranted to better 
understand the multifaceted role of gut microbiota in asthma.

Bile acids, traditionally known for their role in digestion and 
absorption of fats, have emerged as significant immune modulators. 
They can influence the immune system through various receptors, 
including the farnesoid X receptor and the G protein-coupled bile acid 
receptor, which are expressed on immune cells. Activation of these 
receptors by bile acids can lead to anti-inflammatory effects and 
modulation of metabolic pathways. Turicibacter’s ability to modify 

FIGURE 4

Circular heat map of meta-analysis of forward MR analysis between gut microbiota and asthma. IVW, Inverse-Variance Weighted; ME, MR-Egger; WM, 
Weighted median; MP, MR-PRESSO. The color variations represented the size of the p-value. The scatter plots reflect OR, with OR  >  1 labeled red and 
OR  <  1 labeled green.
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bile acid profiles may impact the activation of these receptors, 
potentially leading to an environment less conducive to the 
development of allergic diseases like asthma. In addition, alterations 
in lipid metabolism, influenced by gut microbiota, including 
Turicibacter, can affect the body’s inflammatory status (Sayin et al., 
2013). Lipids serve as energy sources, structural components of cell 
membranes, and signaling molecules. Dysregulation of lipid 
metabolism can lead to altered production of pro-inflammatory or 
anti-inflammatory lipid mediators, such as eicosanoids, which are 
derived from fatty acids and have been implicated in asthma 
pathogenesis. By modulating host lipid profiles, Turicibacter could 
influence the production of these mediators, potentially reducing 
inflammatory responses associated with asthma (Norris and 
Dennis, 2012).

In the Multiethnic Cohort-Adiposity Phenotype Study, 
Coprococcus2 was indirectly linked to chronic low-grade systemic 
inflammation caused by diet and ectopic fat (Lozano et al., 2022). 
There is increasing evidence that asthma is associated with persistent 

low-grade inflammation, indicated by higher levels of inflammatory 
markers such as IL-4, IL-5, and IL-13 (Lambrecht and Hammad, 
2015). This study is the first to report a connection between asthma 
and Coprococcus2. This finding could provide new insights into how 
dietary modifications that reduce Coprococcus2 abundance might 
improve asthma outcomes.

Gut bacteria produce a diverse array of bioactive factors and 
metabolites, which can influence host physiology and disease risk 
through multiple pathways. These include not only SCFAs but also 
other bioactive compounds such as bile acids, tryptophan 
metabolites, and peptidoglycans. These compounds can modulate 
immune development and function, potentially influencing the risk 
of asthma. For example, some bacterial species produce metabolites 
that enhance the maturation of regulatory T cells, which are crucial 
for maintaining immune tolerance, while others produce factors that 
exacerbate inflammatory responses (Smith et al., 2013; Louis et al., 
2014). Within the same genus, different species or subspecies of gut 
bacteria may have varying impacts on asthma risk, depending on the 

FIGURE 5

Forest plot of associations in reverse MR analysis. IVs, instrumental variables; CI, confident interval; P_heterogeneity, p-value of heterogeneity for 
meta-analysis; P_Q, p-value for Cochran Q test; P_intercept, p-value for MR-Egger intercept test; P_global, p-value for Global test; *, excluded from 
the meta-analysis due to SNPs less than 4 or significant pleiotropy.
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specific bioactive compounds they produce. For instance, the genus 
Bacteroides includes species that produce anti-inflammatory SCFAs, 
while others may produce metabolites that promote 
pro-inflammatory pathways (Depner et al., 2020). These differences 
highlight the importance of considering specific bacterial species or 
subspecies when evaluating the role of gut microbiota in asthma. 
Moreover, variations in the production of bioactive metabolites 
within a species could lead to different effects on the host’s immune 
system and asthma risk (Gu et al., 2022). The interaction between gut 
microbiota-derived bioactive factors and host pathways is likely 
multifactorial. SCFAs, for instance, promote the differentiation of 
regulatory T cells and modulate inflammatory responses (Smith 
et al., 2013). However, other bacterial metabolites, such as tryptophan 
metabolites, can influence immune responses by interacting with the 

aryl hydrocarbon receptor, while bacterial peptidoglycans and 
lipopolysaccharides engage toll-like receptors on host immune cells, 
activating signaling pathways that may affect asthma risk (Louis 
et al., 2014). These interactions suggest that the effects of gut bacteria 
on asthma are mediated through complex, indirect pathways 
involving multiple steps of modulation (Barcik et al., 2020; Song 
et al., 2024).

The gastrointestinal tract and respiratory tract (including oral and 
nasopharyngeal cavity), although separate organs, are part of a shared 
mucosal immune system termed the GLA. Airway colonization with 
pathogenic bacteria in early life is associated with an increased risk of 
respiratory allergic conditions (Bisgaard et al., 2023). The oral and 
nasopharyngeal microbiomes are often dominated by bacteria such as 
Streptococcus, Neisseria, Prevotella, Rothia, and Haemophilus. These 

FIGURE 6

Circular heat map of meta-analysis of reverse MR analysis between gut microbiota and asthma. IVW, Inverse-Variance Weighted; ME, MR-Egger; WM, 
Weighted median; MP, MR-PRESSO. The color variations represented the size of the p-value. The scatter plots reflect Beta, with Beta  >  0 labeled red 
and Beta  <  0 labeled green.
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microbiomes are crucial in the upper airways and can impact the 
immune responses in both the upper and lower respiratory tracts. For 
instance, the presence of pathogenic bacteria in these regions, 
especially during early life, has been associated with an increased risk 
of developing asthma. Pathogens like Streptococcus pneumoniae and 
Haemophilus influenzae in the nasopharynx have been linked to 
severe wheezing episodes in children and are predictors of asthma 
(Pérez-Losada et al., 2023). The respiratory microbiome extends from 
the nasopharynx into the lower respiratory tract and lungs. In 
asthmatic individuals, this microbiome often shows increased 
bacterial burden and reduced diversity, with a dominance of 
potentially pathogenic bacteria like Haemophilus, Moraxella, and 
Neisseria. These changes are associated with airway inflammation and 
exacerbations, particularly in patients with neutrophilic asthma, 
which is often more severe and less responsive to standard treatments 
like corticosteroids (Campbell et al., 2023). The gut microbiome plays 
a critical role in shaping the immune system, including the immune 
responses in the lungs, through what is known as the GLA. Dysbiosis 
in the gut microbiome, characterized by reduced diversity and an 
imbalance of beneficial bacteria like Akkermansia and 
Faecalibacterium, has been linked to increased susceptibility to 
asthma. SCFAs produced by gut bacteria, such as butyrate, have anti-
inflammatory properties that can protect against asthma by enhancing 
the integrity of the gut barrier and modulating immune responses 
(Song et al., 2024). Rather than being direct causal agents of asthma, 
gut bacteria could also act as modulators or exacerbators of the 
immune responses initiated by the oral, nasopharyngeal, or respiratory 
microbiomes. For instance, an unhealthy gut microbiome could lead 
to a weakened immune response or promote systemic inflammation, 
which could exacerbate the inflammatory responses triggered by 
pathogens in the respiratory tract. Conversely, a healthy gut 
microbiome producing sufficient SCFAs might suppress these adverse 
responses, thereby reducing the severity or frequency of 
asthma exacerbations.

Although our study described a gut bacterial profile causally 
linked with the risk of asthma, some of the highlighted genera have 
also been linked with other systemic and respiratory illnesses. For 
example, RuminococcaceaeUCG004 and Subdoligranulum were found 
to have a negative genetic correlation with asthma, suggesting a 
protective role, but they are also involved in gut health and have been 
linked to other conditions such as inflammatory bowel diseases (Gu 
et al., 2022). Coprococcus2 have been implicated in conditions such as 
systemic inflammation and metabolic disorders (Lozano et al., 2022). 
Although direct evidence is lacking regarding the impact of the flora 
we identified on human respiratory diseases, it is reasonable to infer 
that their effects are not confined to asthma but extend to the 
entire system.

While our study primarily identified associations and potential 
causal links between specific gut bacteria and asthma, the 
interpretation of these changes should consider the context of disease 
progression. Changes in bacterial levels observed in patients with a 
prolonged history of asthma may represent an ongoing effort by the 
microbiome to counteract chronic inflammation or other pathological 
processes. This perspective highlights the importance of longitudinal 
studies that track microbiome changes over time in relation to disease 
progression and treatment responses. Future research should aim to 
distinguish between microbial shifts that are detrimental versus those 
that are protective or adaptive in chronic conditions like asthma.

Our research offers several advantages. First, the primary 
benefit is the MR design, which minimizes reverse causality and 
confounding factors (Burgess and Thompson, 2015). Furthermore, 
we mitigated the potential influence of population structure bias by 
primarily studying individuals of European descent. However, it is 
important to note that this approach may limit the applicability of 
our results to other ethnic groups. We used meta-analysis to bolster 
the robustness of our results, reducing any fluctuations that might 
arise from relying on a single database. Additionally, we enhanced 
the reliability of our findings by excluding MR estimates influenced 
by substantial pleiotropy from our meta-analysis. Finally, we used 
the LDSC correlation p-values method to lower the rate of false 
negatives and implemented Bonferroni’s correction to minimize the 
rate of false positives associated with multiple analyses.

It is important to recognize the limitations of our research to 
properly evaluate its findings. First, the GWAS data on gut 
microbiota were collected from a heterogeneous group of 18,340 
individuals from various ethnicities. However, the GWAS summary 
findings for asthma were derived solely from individuals of 
European ancestry. This disparity might limit the applicability of our 
findings to other ethnic and demographic cohorts. While nearly 
80% of the data on gut microbiota comes from people of European 
descent, additional research involving a more diverse spectrum of 
populations is needed to validate our results and ensure their 
broader relevance. Second, although MR methods help reduce 
confounding and reverse causation, potential biases still exist. For 
instance, population stratification can introduce bias if there are 
systematic differences in allele frequencies between subpopulations. 
We mitigated this by focusing on individuals of European ancestry, 
but residual confounding may still influence our results. 
Additionally, pleiotropy, where genetic variants influence multiple 
traits, could bias the causal estimates. We  used MR-Egger and 
MR-PRESSO to detect and adjust for pleiotropy, but these methods 
have limitations and may not entirely eliminate pleiotropic effects. 
Third, the power estimates for our overall MR analyses are relatively 
low. This low power could potentially lead to false-negative results 
where true associations may not be detected. The complexity of the 
genetic architecture underlying gut microbiota and asthma 
interactions may require even larger sample sizes or more refined 
genetic instruments to adequately capture the causal relationships. 
Fourth, our ability to investigate potential disparities across different 
demographics was limited by the lack of detailed data, which 
prevented stratified analysis by age and gender. Finally, although our 
rigorous study design helped identify some causal relationships, 
much remains to be  learned about the pathophysiology and 
complexity of the gut microbiota. This underscores the need for 
further research to clarify this field.

5 Conclusion

In conclusion, our study provides robust evidence of a causal 
relationship between specific gut microbiomes and asthma, 
laying a foundation for future research into gut microbiota-
targeted therapies. These findings open new avenues for 
exploring the gut microbiota’s role in asthma and developing 
novel preventative and therapeutic strategies for managing this 
complex condition.
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