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Bacteriophages are the most prolific organisms on Earth, yet many of their

genomes and assemblies from metagenomic sources lack protein sequences

with identified functions. While most bacteriophage proteins are structural

proteins, categorized as Phage Virion Proteins (PVPs), a considerable number

remain unclassified. Complicatingmatters further, traditional lab-basedmethods

for PVP identification can be tedious. To expedite the process of identifying

PVPs, machine-learning models are increasingly being employed. Existing tools

have developed models for predicting PVPs from protein sequences as input.

However, none of these e�orts have built software allowing for both genomic

and metagenomic data as input. In addition, there is currently no framework

available for easily curating data and creating new types of machine learning

models. In response, we introduce PhageScanner, an open-source platform

that streamlines data collection for genomic and metagenomic datasets, model

training and testing, and includes a prediction pipeline for annotating genomic

and metagenomic data. PhageScanner also features a graphical user interface

(GUI) for visualizing annotations on genomic and metagenomic data. We further

introduce a BLAST-based classifier that outperforms ML-based models and an

e�cient Long Short-Term Memory (LSTM) classifier. We then showcase the

capabilities of PhageScanner by predicting PVPs in six previously uncharacterized

bacteriophage genomes. In addition, we create a new model that predicts

phage-encoded toxins within bacteriophage genomes, thus displaying the utility

of the framework.

KEYWORDS

bacteriophages, machine learning, phage virion proteins (PVP), protein prediction, deep

learning, PVP identification

1 Introduction

Bacteriophages (phages) are recognized as the most prolific organisms on Earth

(Guerin and Hill, 2020; Brown et al., 2022). Given that phages play an integral role in

shaping bacterial ecology (Braga et al., 2020; Dennehy and Abedon, 2021), they have

emerged as a potential therapeutic against infections caused by antibiotic-resistant strains

of bacteria. Phage therapy relies on phages to lyse and kill resistant bacteria rather than

on antibiotics (Lekunberri et al., 2017). Some of the studies, case reports, and clinical

trials that have tested phage therapy protocols (Liu et al., 2021) indicate possible issues

such as endocarditis and non-lethal reversible transaminitis. Additionally, phages can

also impact their bacterial hosts with effects such as (but not limited to) promotion of
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biofilm formation (Pseudomonas aeruginosa and phage pf4) or

enhancing antibacterial resistance (Salmonella spp. and a P1-like

phage) (Zajdowicz, 2022). That being said, there is a need for

the development of quality control practices to popularize phage

therapy as an alternative treatment for bacterial infections, and

most importantly, ensure its safety and efficacy (Zajdowicz, 2022).

We focus this work on phage virion proteins (PVPs) and phage

encoded toxins. PVPs are structural proteins (major capsid, tail

fiber protein, etc.), and they contribute to phage-bacterial host

interactions such as the infection process (i.e., a tail fiber protein

is responsible for a phage’s recognition and attachment to a viable

bacterial host) (Boeckaerts et al., 2021). Phage encoded toxins are

virulence factors that are encoded into the bacterial host’s genome

when the phage integrates its own DNA. While being lysed the

bacterial host can release these toxins, allowing them to further

damage the host organism (a human or animal) (Abedon and

Lejeune, 2007).

As phage therapy involves both the process of recognition and

infection, as well as possible outcomes from the lysing process

itself, this motivates interest in identifying both PVPs and phage

encoded toxins to further improve efficacy and safety of phage

therapy (Abedon and Lejeune, 2007; Fang et al., 2022).

Identifying PVPs traditionally involves experimental strategies

comprising of bioprotocols such as mass spectrometry (Lavigne

et al., 2009) and protein arrays (Jara-Acevedo et al., 2018; Yuan

and Gao, 2016; Mwale et al., 2020); consequently, these techniques

are labor-intensive and time-consuming (Kabir et al., 2022; Meng

et al., 2020). Therefore, there is a growing interest in leveraging

computational techniques to expedite the identification of PVPs

(Kabir et al., 2022; Meng et al., 2020).

Computational support in PVP identification first gained

traction in 2012 when Seguritan et al. utilized feed-forward

neural networks to predict proteins as either structural or

non-structural class (i.e., binary classification) (Seguritan

et al., 2012). To determine the accuracy of this computational

approach, the researchers examined the input proteins using

transmission electron microscopy (TEM). The tested protein set

was comprehensive and includes both capsid proteins and tail fiber

proteins. The most accurate prediction (over 80%) was obtained

by a model comprising of 160 networks that classified proteins

through a majority voting scheme (Seguritan et al., 2012).

Encouraged by the success of Seguritan’s approach, researchers

focused next on improving the binary classification of phage

proteins either as PVPs or as not PVPs, and used machine learning

(ML) algorithms like random forests (RFs) (Ahmad et al., 2022),

support vector machines (SVMs) (Manavalan et al., 2018), naive

Bayes (NB) (Feng et al., 2013), or ensemble methods (Barman et al.,

2023). In 2020, Cantu et al. (2020) released “PhANNs,” a software

that used multiclass classification to identify the specific type of

PVP among 10 different classes. Two years later, DeePVP, proposed

by Fang et al. (2022) built upon this approach by employing a

convolutional neural network (CNN) for PVP type identification.

Leveraging the PhANNs’ dataset, this work enhanced prediction

performance for both binary and multiclass PVP prediction. These

approaches were limited to directly using protein sequences,

ignoring the potential of genomic or metagenomic data.

Our research extends upon these studies by introducing

PhageScanner, an open-source tool that empowers users to easily

create classifiers from various input sources. As schematically

shown in Figure 1, PhageScanner is designed to be modular and

easily reconfigured by the user at the data curation, model creation

and training, and the prediction levels. Unlike existing software

which may only have one classification mode or limited accepted

input types, PhageScanner offers both binary and multiclass

detection capabilities, as well as accepting full genomes, protein

sequences, and metagenomic sequencing inputs. In this paper, we

demonstrate PhageScanner for the purpose of PVP and phage-

encoded toxin prediction.

First, the user can configure the data such that it is retrieved

from Uniprot and/or Entrez databases. Next, PhageScanner can be

run with user-defined models and feature extraction methods. At

the prediction level, PhageScanner integrates an existing workflow

for annotating Open Reading Frames (ORFs) within genomic and

metagenomic data. The code is released open-source, allowing

the community to contribute to the existing source code for new

machine learning models and methods. This includes adjusting any

part of the pipeline to implement a different approach. Our user-

focused approach extends beyond the expert user (i.e., that may be

able to edit the code). Specifically, at the input level, we provide

the user with configuration files that can be used to reproduce

the models presented here, or to create new models based on

protein classes of interest (e.g., “Toxic Proteins”). At the output

level, PhageScanner is paired with a graphical user interface (GUI)

that enables the user to visually scrap proteins of interest.

Apart from the user-centric approach, PhageScanner

demonstrates algorithmic improvements, as follows. We expanded

PhageScanner such that it can curate data from both UniProt and

Entrez. Due to the complexity of data curation in general, past

work has been focused on either one of the two databases, e.g., only

utilize Uniprot to source ground truth proteins (Manavalan et al.,

2018; Feng et al., 2013; Ahmad et al., 2022), or rely exclusively

on proteins obtained from Entrez (Cantu et al., 2020; Fang

et al., 2022). To enable a direct comparison between existing

approaches, which is essential for community engagement and

further community-based development of the open-source tool,

PhageScanner incorporates a BLAST classifier. This allows for

a direct comparison between previous ML-based classifiers and

solutions using sequence alignment.

As such, we use PhageScanner for testing models for prediction

of both binary and multiclass PVPs. We also use PhageScanner as a

tool to predict phage-encoded toxins, which may help in ensuring

the safety of future phage therapies. Last, we propose PhageScanner

as a simplified framework for data collection,model training,model

testing, and PVP prediction; this is shown with PhageScanner’s

ability to explore genomic and metagenomic data and with its

easy-to-use GUI.

The source code for the pipelines and the

GUI, as well as pre-trained models, are available at

https://github.com/Dreycey/PhageScanner.

2 Materials and methods

When running in its default mode, PhageScanner curates a

dataset based on user choices and interests, and it creates and

trains a machine learning models based on the user selection of 9
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FIGURE 1

Overview of the PhageScanner Machine Learning (ML) Pipeline. The ML pipeline is composed of three interconnected phases: (1) Data Curation, (2)

Model Training, and (3) Prediction and Visualization. Each step is designed to be executed from the command line, and each features a customizable

configuration file. The process of model curation is split into two stages. The Data Curation phase is responsible for curating data through adapters

connected to a protein database. Subsequently, Model Training phase extracts features and initiates model training as defined by the corresponding

configuration file. The Prediction and Visualization phase employs the trained model to predict bacteriophage protein classes found in genomes,

metagenomes, or proteins.

TABLE 1 Overview of models available in PhageScanner.

Name Configuration
file specifier

Support vector classifier SVC

Multinomial naive bayes classifier MULTINAIVEBAYES

Logistic regression classifier LOGREG

Gradient boosting classifier GRADBOOST

Random forest classifier RANDOMFOREST

Feed-forward neural network classifier FFNN

Recurrent neural network multiclass classifier RNN

Convolutional neural network CNN

BLAST classifier BLAST

All of the model architectures available in the PhageScanner package. Each model comes with

a unique specifier that can be referenced within the input configuration file used for the tool.

available ML models. Moreover, we implemented PhageScanner to

easily integrate a user’s preexisting model, and to utilize the trained

model based on the user’s reads, genomes, or protein sequences.

PhageScanner outputs classification predictions as a CSV file and

within an interactive GUI.

The wide variety of PhageScanner’s functionality is a result of

both our own contributions and existing popular bioinformatics

and machine learning frameworks such as CD-HIT (Fu et al.,

2012), Megahit (Li et al., 2015), BLAST (Altschul et al., 1997),

PHANOTATE (McNair et al., 2019), Keras (Gulli and Pal, 2017),

and Scikit-Learn (Pedregosa et al., 2011). Our contributions include

easy customization through configuration files, error-handling, and

logging to provide users with insight into code progress. We also

created custom classes to allow for seamless integration of a user’s

own ML model architecture using a custom configuration file.

We distinguish between three big phases of the process: data

curation, model training and PVP prediction. We decouple data

curation from model training to enable a modular approach that

can reduce the runtime needed to iterate through user-defined

models. With PhageScanner, data curation has to be run once,

while model training and testing can be run multiple times to

compare results from various models or to wrap the prediction

step into a seperate pipeline. The last phase, protein prediction, is

complemented by a visual GUI that allows post-processing of the

results even by external people (supervisors, collaborators).

2.1 Phase 1: data curation

PhageScanner can take multiple protein databases as

input [specifically only Uniprot (Consortium, 2015), only

Entrez (Maglott et al., 2005), or both] as opposed to being limited to

just one database like previously mentioned tools. It is important to

note that Uniprot has the advantage of containing experimentally

validated proteins, while Entrez may contain unvalidated proteins.

In our experiments, we utilize both databases. We specified the

Entrez queries to ignore proteins categorized as “hypothetical,”

“probable,” “unknown,” or “putative.” This was an approach
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used by PhANNs (Cantu et al., 2020), and we incorporated this

usage into our database pipeline to ensure all proteins retrieved

automatically ignore non-reliable proteins.Model performance,

especially for larger models such as the LSTM-RNN, is dependent

on the amount of training data available. We leave the choice of

what databases to use to the user’s discretion.

First, the proteins are retrieved from the input databases based

on the targeted prediction class. When we tested PhageScanner

on binary PVP prediction, the queries gathered proteins based on

various criteria as shown in the configuration files specifications

shown below:

c l a s s e s :

− name : PVP

un i p r o t : ‘ ‘ c a p s i d AND

c c _ s u b c e l l u l a r _ l o c a t i o n : v i r i o n

AND rev i ewed : t rue ’ ’

− name : non−PVP

un i p r o t : ‘ ‘ c a p s i d NOT

c c _ s u b c e l l u l a r _ l o c a t i o n : v i r i o n

AND rev i ewed : t rue ’ ’

After retrieval, proteins are clustered with the Cluster Database

at High Identity with Tolerance (CD-HIT) program (Fu et al.,

2012) using an identity threshold defined in the corresponding

configuration file, as shown below:

c l u s t e r i n g :

d e dup l i c a t i o n−t h r e s h o l d : 100

c l u s t e r i n g −p e r c e n t a g e : 90

k _ p a r t i t i o n s : 5

Following this, each protein cluster is divided into K partitions

for performing K-fold cross-validation. One partition is allocated

for testing, and the remainder for training. We used K = 5 (value

can be user-adjusted) to align with prior work (Rodriguez et al.,

2009).

2.2 Phase 2: model training

To complete model training and testing, the partitions and

user specifications are obtained as input. We removed all non-

canonical amino acids, as defined by Young and Schultz (2010),

and processed the protein sequences by removing all non-canonical

amino acids from the protein sequences. The features specified in

the configuration file are then extracted from each protein and

these extracted features are used to train downstream models using

the K-fold cross-validation partitions created during data curation.

Our method for machine-learning-based PVP identification aligns

with prior research (Meng et al., 2020).

Prior work demonstrating the use of machine learning models

for predicting PVPs used several different methods for obtaining

feature vectors from proteins (Seguritan et al., 2012; Ahmad et al.,

2022; Manavalan et al., 2018; Feng et al., 2013; Barman et al.,

2023). These feature vectors encode the sequence and functional

information of the protein in a format required for machine

learning models. We explain how we decided which feature

extraction method to use in Section 3.1.

In PhageScanner, we employ a factory design pattern (Welicki

et al., 2008), which is a software design approach that facilitates

the combination of different extracted features fn(pi) into a more

comprehensive feature vector F(pi) (Equation 1). This allows for

the user to easily create their own combinations out of the

available features. All available features are further described at

https://github.com/Dreycey/PhageScanner.

F(pi) =













f1(pi)

f2(pi)
...

fn(pi)













(1)

Next, the user can select a model from multiple options: they

can embed their own model architecture or they can modify

skeletons provided by PhageScanner. If the user chooses to

enter their own model architecture, they can utilize the base

PhageScanner, Sci-kit Learn, or Keras Model class templates which

include several intuitive class functions (load, predict, test, save,

etc.). Alternatively, PhageScanner provides the following model

skeletons in Table 1 that can be modified by the user.

Finally, using the partitions derived from the data curation

step, the selected feature vector, and the user’s chosen model,

PhageScanner trains and tests the selected model. PhageScanner

also provides functionality to save model results after K-fold cross

validation into a CSV file (time execution, confusion matrix,

F1-score, precision, recall, accuracy, etc.) and also saves the

trained model.

2.3 Phase 3: prediction and visualization

PhageScanner can utilize the user’s desired trained model to

make predictions about protein sequences. It can accept input as

either reads, genomes, or protein sequences. The user’s desired

trained model is then used for prediction, with the final output

being a CSV file containing accession IDs, lengths, start and

stop positions, ORF scores, associated protein sequences, and the

predicted classes.

For visualization, PhageScanner uses a combination of Python

based libraries, such as TKinter (Lundh, 1999) and the DNA

Features Viewer library (Zulkower and Rosser, 2020). As shown

in Figure 2, each used model (BLAST, Multiclass PVP, and Binary

PVP) is displayed on a separate row and in a different color along

the contig or genome and the ORFs created from PHANOTATE are

displayed at the bottom. The user can explore visually the annotated

contigs or genomes from the output CSV file.

2.4 Feature extraction method selection
and performance

For feature extraction, PhageScanner uses techniques

commonly applied for PVP identification (Meng et al., 2020).

These include the extraction of dipeptide (“DPC”; 200 features)

and tripeptide (“TPC”; 8000 features) frequencies from protein

Frontiers inMicrobiology 04 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1446097
https://github.com/Dreycey/PhageScanner
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Albin et al. 10.3389/fmicb.2024.1446097

FIGURE 2

Graphical user interface (GUI) for visual assessment of genomic and metagenomic annotations. The Prediction phase produces a comma-separated

(CSV) summary of features found from genomic and metagenomic annotations. This output can be studied using an open-source, graphical user

interface (GUI). The GUI provides a method for end-users to easily navigate across di�erent annotations while cross-referencing models with BLAST.

The contigs and/or genomes can be scrolled through, and the retrieval of proteins specified within a genomic range can be analyzed. The example

depicted can be run from the sample run instructions available at https://github.com/Dreycey/PhageScanner.

inputs. It also includes Biopython-based (Cock et al., 2009)

methods to derive chemical features and isoelectric points (“ISO”).

Expanding on the “PVP” vector used by PVP-SVM (Manavalan

et al., 2018), the 16-element “CHEMFEATURES” vector includes

information on polarity, hydrophobicity, aromaticity, charge

information, protein size, mass, isoelectric point, and secondary

structure frequencies. The atomic composition vector (“ATC”)

contains five elements representing frequencies of Hydrogen,

Carbon, Nitrogen, Oxygen and Sulfur in the protein. For CTD and

PseudoAAC, we utilize PyBioMed for the implementation (Dong

et al., 2018). The “AAC” measures the frequency of each amino

acid type in the protein, resulting in a 20-element feature vector.

We evaluated each feature extraction method for accuracy and

timing using a baseline one-vs-all logistic regression classifier, as

outlined in Table 2. In addition to the performance metrics (F1

Score, Precision, Recall), the execution time is displayed to compare

how the vector sizes impact model inference timing. Execution

time is of particular importance when using PhageScanner on large

metagenomic datasets.

Our findings are presented in Figure 3A, and show that

dipeptide and tripeptide frequency features were the most accurate

for multiclass PVP prediction with a F1 score of 87%. Additionally,

tail fiber proteins were the most difficult to predict with noticeably

lower F1 scores for the model utilizing the following standalone

features: TPC, DPC (g = 0), CTD, AAC, and Chemical

Features. When we combined features into a concatenated vector,

as shown in Equation 1, the combination of dipeptide and

tripeptide frequencies resulted in the highest F1 score out of

the combinatorial-predictors (87% shown in the mean F1 scores

among all classes in Figure 3B). Baseline models using feature

combinations had higher F1 scores compared to models using

one feature. However, the combination of dipeptide and tripeptide

features required the more time for extraction, due to the large

feature vector size (8,400 elements)—a crucial consideration for

users wishing to use PhageScanner for extensive metagenomic

dataset analysis.

3 Results

To demonstrate the capabilities of PhageScanner, we

utilize each phase (data curation, training, and prediction)

to perform PVP identification via both multiclass and binary

models. We discuss varying performance when comparing

different features. We perform benchmark testing comparing

PhageScanner models to existing PVP identification models.

We also create a new model for predicting phage-encoded

toxins.

Frontiers inMicrobiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1446097
https://github.com/Dreycey/PhageScanner
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Albin et al. 10.3389/fmicb.2024.1446097

TABLE 2 Performance metrics for various feature combinations.

Feature set F1 score Precision Recall Execution time (s)

AAC 0.725 0.865 0.732 0.000728

ATC 0.384 0.668 0.600 0.000875

ATC + CTD + AAC

+ ISO + CHEMFEATURES

0.790 0.892 0.721 0.002515

CHEMFEATURES 0.572 0.899 0.600 0.000973

CHEMFEATURES + DPC (gap_size=0) 0.574 0.902 0.640 0.004715

CTD 0.818 0.885 0.765 0.002101

DPC (gap_size=0) 0.823 0.895 0.865 0.005625

DPC (gap_size=0) + ATC + CTD 0.811 0.895 0.760 0.008700

DPC (gap_size=0) + TPC 0.873 0.905 0.942 0.112359

DPC (gap_size=1) 0.835 0.885 0.832 0.004104

DPC (gap_size=9) 0.818 0.895 0.848 0.004733

ISO 0.386 0.882 0.286 0.000815

TPC 0.909 0.912 0.981 0.063712

Presented are the metrics for the feature combinations used in model analysis, including the F1 score, precision, recall, and execution time in seconds for each feature set.

3.1 System requirements and model
architectures

PhageScanner is primarily available for Linux and Mac,

but provides support for Windows via Docker and WSL. The

model architectures for the Multiclass Support Vector Classifier

(SVC), Multinomial Naive Bayes Classifier, Logistic Regression

Classifier, Gradient Boosting Classifier, and Random Forest (RF)

Classifier used in the experiments are outlined in Table 3. The

architectures for the Feed-forward Neural Network (FFNN)

Classifier, Long Short-Term Memory (LSTM) Recurrent Neural

Network (RNN) Multiclass Classifier, and Convolutional Neural

Network (CNN) [based on DeePVP (Fang et al., 2022)] are

listed below, respectively. For more architecture details about

each model as well as the PhageScanner’s in-house BLAST

classifier, refer to the “models.py” file in the main folder at

https://github.com/Dreycey/PhageScanner.

3.1.1 Feed-forward neural network architecture
1. Input layer

• Description: Dense layer with ReLU activation

• Parameters:

◦ Units: 100

◦ Activation: ReLU

◦ Input Shape: feature_vector_length

◦ Kernel Initializer: random_uniform

2. Hidden layer 1,3,5

• Description: Dropout layer

• Parameters:

◦ Rate: 0.2

3. Hidden layer 2,4

• Description: Dense layer with ReLU activation

• Parameters:

◦ Units: 200

◦ Activation: ReLU

4. Output layer

• Description: Dense layer with softmax activation

• Parameters:

◦ Units: number_of_classes

◦ Activation: Softmax

5. Compilation

• Optimizer: Adam

◦ Learning Rate: 0.001

◦ Beta 1: 0.9

◦ Beta 2: 0.999

◦ Decay: 0.0

◦ AMSGrad: False

6. Loss function

• Sparse Categorical Crossentropy

7. Metrics

• Accuracy
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FIGURE 3

Protein feature extraction testing. (A) The F1 scores for standalone features using a baseline logistic regression (one-vs-all) classifier. Colors

correspond to the specified PVP class. (B) Mean F1 scores among all classes for di�erent feature combination approaches.

3.2 Recurrent neural network multiclass
classifier architecture

1. Input layer

• Description: LSTM layer

• Parameters:

◦ Units: 50

◦ Input Shape: (row_length, column_length)

◦ Return Sequences: False

2. Hidden layer 1

• Description: Dense layer with ReLU activation

• Parameters:

◦ Units: 1000

◦ Activation: ReLU

3. Hidden layer 2

• Description: Dense layer with ReLU activation

• Parameters:

◦ Units: 100

◦ Activation: ReLU

4. Output layer

• Description: Dense layer with softmax activation

• Parameters:

◦ Units: number_of_classes

◦ Activation: Softmax

5. Compilation

• Optimizer: Adam
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TABLE 3 Model details and altered parameters.

Model name Model details Altered
parameters

Multiclass support

vector classifier (SVC)

Default random_state = 0

tol = 1e-5

probability = True

Multinomial naive

bayes classifier

Default force_alpha = True

Logistic regression

classifier

Default random_state = 0

multi_class = “ovr”

Gradient boosting

classifier

Default random_state = 0

n_estimators = 10

learning_rate = 0.1

Random forest

classifier

Default random_state = 0

max_depth = 10

Each model used for binary classification, including the specific model details and the

parameters that were altered.

◦ Learning Rate: default

◦ Beta 1: default

◦ Beta 2: default

◦ Decay: default

◦ AMSGrad: default

6. Loss function

• Sparse Categorical Crossentropy

7. Metrics

• Accuracy

3.3 Convolutional neural network model
architecture

1. Convolutional layer

• Description: Conv1D layer with ReLU activation

• Parameters:

◦ Filters: 32

◦ Kernel Size: 3

◦ Activation: ReLU

◦ Input Shape: (row_length, column_length)

2. Max pooling layer

• Description: GlobalMaxPooling1D layer

• Parameters:

◦ Pool Size: 4

3. Batch normalization layer

• Description: BatchNormalization layer

4. Hidden layer

• Description: Dropout layer

• Parameters:

◦ Rate: 0.55

5. Flatten layer

• Description: Flatten the output from the previous layer

6. Fully connected layer

• Description: Dense layer with ReLU activation

• Parameters:

◦ Units: 64

◦ Activation: ReLU

◦ Kernel Regularizer: l1(0.01)

7. Output layer

• Description: Dense layer with softmax activation

• Parameters:

◦ Units: number_of_classes

◦ Activation: Softmax

8. Compilation

• Optimizer: Adam

◦ Learning Rate: default

◦ Beta 1: default

◦ Beta 2: default

◦ Decay: default

◦ AMSGrad: default

9. Loss function

• Sparse Categorical Crossentropy

10. Metrics

• Accuracy

Machine learning and deep learning models are shown to

have the capability of providing additional information to existing

methods of protein annotation (Seguritan et al., 2012; Ahmad et al.,

2022; Manavalan et al., 2018; Hochreiter and Schmidhuber, 1997;

Lecun et al., 1998; Bileschi et al., 2022), and PhageScanner seeks to

provide users a streamlined framework for users to easily approach

building their own machine learning and deep learning models.

Thus, we implemented PhageScanner to enable both building-

from-scratch as well as integration of existing architectures

that can be adjusted specifically to the PVP identification and

phage-encoded toxin identification (the results for 9 different
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architectures are presented in Figure 4). Generally, a model’s

success is dependent on various factors such as the task given, the

data provided, the model’s complexity, hyperparameter tuning, and

so on. Our experimental setup primarily built upon the LSTM-

RNN (Hochreiter and Schmidhuber, 1997), CNN (Lecun et al.,

1998), and BLAST (Altschul et al., 1990) classifier models as

they showed the highest performance in our preliminary tests (a

comparison is shown in Figure 4). Our insights as to why these

specific models may outperform the others, are based on the

following observations:

• LSTM-RNNs are generally well suited for sequential data,

handling sequences of various lengths, and maintaining

context over long sequences.

• CNNs can learn spatial hierarchies of features via

backpropagation as they were originally designed for

use in images and videos.

• The BLAST classifier utilizes the BLAST algorithm, widely

used to find regions of similarity between a provided input

protein or nucleotide sequence and a database of known

sequences.

Generally, a BLAST classifier is considered the first choice for

most bioinformatics research, while both LSTM-RNNs and CNNs

require additional data pre-processing, user customization, and

training to perform well. However, we see the value in integrating

LSTM-RNNs and CNNs as they can learn more complex patterns

and thus provide more flexibility to researchers.

3.4 Experiments

To demonstrate the capabilities of PhageScanner, we perform

the following experiments previously used for PVP prediction: (1)

multiclass prediction (for 10 PVP proteins as per Cantu et al., 2020),

and (2) binary prediction (determining if a protein is PVP or not as

per Seguritan et al., 2012).We also (3) create a newmodel for binary

prediction of toxic PVPs within phage genomes.

3.4.1 Multiclass PVP prediction
When we applied PhageScanner’s data curation step to collect

proteins corresponding to the 10 PVP classes (Fang et al., 2022;

Cantu et al., 2020), we find the following key observations. For

clarification, the 10 classes contain 9 known PVP classes, and

1 “Other” class, denoting a non-PVP. Initially, at a clustering

threshold of 90%, most clusters are composed of fewer than 400

proteins (Figure 5A). When the identity threshold for clustering

is decreased more strict (i.e., decreased), we observe a declining

trend in the number of total clusters (Figure 5B); this trend is

most notable when the identity drops from 100% to 90%. These

findings suggest more proteins belonging to smaller-sized clusters

and it indicates the existence of unique proteins within these

queries. In addition, there is a substantial difference in the initial

count of proteins between Uniprot and Entrez; Entrez holds

a significantly higher count of proteins per class compared to

Uniprot (Figure 5C). As such, using a combination of Uniprot

and Entrez along with clustering (as PhageScanner does) offers

an advantage in creating larger datasets for downstream model

training.

We then compared the performance of the BLAST classifier and

LSTM against a reimplementation of PhANNs’ feed-forward neural

network (FFNN) and DeePVP’s convolutional neural network

(CNN). Eachmodel was incorporated as an option in PhageScanner

by either referencing model descriptions in the corresponding

manuscripts or source code (when available, see Table 6). To do

so, we employed a logistic regression one-vs-all classifier as a

baseline. Upon evaluation, the BLAST classifier surpassed other

PVP prediction methods in accuracy (94%), with the FFNN

(86%) and LSTM (82%) models following behind (Figure 4A-top).

However, the BLAST classifier’s inference time was significantly

higher than the other prediction models (Figure 4A-bottom).

3.4.1.1 Testing PhageScanner on characterized

bacteriophage genomes

As outlined, PhageScanner incorporates a BLAST classifier and

an LSTM model for predicting PVP classes. However, it struggles

to accurately classify certain PVP classes, as illustrated by the

performance gap between it and the BLAST classifier (91% vs. 94%).

Further exploration into the LSTM’s performance per PVP class

revealed a few challenging categorizations (Figure 6A), specifically

with the model misclassifying Portal proteins as Minor Capsid

proteins, and Tail Fiber proteins as Collar proteins (and vice

versa). Such misclassifications are expected though, due to similar

functions of the proteins. These misclassifications are also seen in

the work of PhANNs (Cantu et al., 2020).

Furthermore, a significant number of proteins are falsely

identified as the negative class “Other.” This issue may be rooted

in PVPs being contained within the protein dataset corresponding

to the “Other” class. It can potentially be addressed by refining the

database queries. Figure 6A showcases the normalized confusion

matrix for the LSTM classifier for multiclass PVP prediction.

Interestingly, for the “Other” class, the model mistakenly predicts

“Portal” and “HTJ” classes the most often (18% and 11%,

respectively). Our analysis indicates the LSTM struggles most with

the “Other” category and “Tail Fibers” class. This conclusion is

based on the comparison of aggregated F1 scores across each PVP

class (Figure 6B).

3.4.1.2 Testing PhageScanner on the characterized

Mycobacteriophage PDRPxv Genome

PhageScanner was used to annotate the coding sequence (CDS)

regions in the Mycobacteriophage PDRPvx Genome to evaluate

end-to-end performance. We chose the Mycobacteriophage

PDRPvx Genome, a well-characterized reference genome

commonly used in PVP prediction analysis (Cantu et al., 2020;

Fang et al., 2022), because of its experimentally inferred putative

functions performed by Sinha et al. (2020). Using the assembled

genome (GenBank accession KR029087) directly, we were able

to compare the GenBank annotations with the predictions

from the PhageScanner LSTM-RNN, PhANNs, and BLAST

Classifier models.

As PhageScanner uses PHANOTATE (McNair et al., 2019)

to identify ORFs, we compared the CDS locations found by

PHANOTATE to those in GenBank, using a threshold of 10 base
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FIGURE 4

Testing performance among models for di�erent classification tasks. (A) In the context of multiclass PVP prediction, the upper panel displays the F1

score across various models, while the lower panel illustrates the inference time of di�erent multiclass classifiers. Inference timing was performed on

dataset sizes, post clustering, of 2,409, 2,783, 3,256, and 3,465 proteins. (B) For binary PVP prediction, the upper panel demonstrates the F1 score

across di�erent models, whereas the lower panel showcases the inference among various binary classifiers. Inference timing was performed on

dataset sizes, post clustering, of 474, 480, 536, 632, and 838 proteins.

FIGURE 5

Database retrieval and clustering. (A) When the proteins are clustered at an identity threshold of 90% using CD-HIT, all protein classes have a higher

frequency of small cluster sizes, while few clusters are larger than 400 proteins. (B) The number of clusters at di�erent identity thresholds using

CD-HIT. (C) The count of proteins from both Uniprot and Entrez before clustering.

pairs for the predicted start and end locations. We then compared

the F1 Scores for both the PhageScanner LSTM-RNN and PhANNs

across different probability cutoff thresholds, focusing on the

true positives identified by PHANOTATE. This analysis helped

determine the optimal balance between recall and precision for

each model (Figure 7A). This showed that the models had lower
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FIGURE 6

Analysis of the multiclass performance of PhageScanner on PVPs. (A) A confusion matrix displaying the frequency of the ground truth class (rows) to

the predicted class (columns). The cell color spectrum is adjusted to range between 0 and 0.1. (B) The F1 score per class for the LSTM model, with

the highest scoring classes arranged in descending order of F1 score.

FIGURE 7

Genomic analysis of PVPs in the characterized Mycobacteriophage PDRPxv Genome. (A) Evaluation of model performance on the

Mycobacteriophage PDRPxv genome at di�erent probability thresholds for a positive PVP classification (otherwise, classified as “Non-PVP”). The F1

scores are shown above each bar and an asterisk (*) denotes the top performing threshold for each model. (B) A Venn diagram illustrating the overlap

between PVP counts predicted between the PhageScanner LSTM-RNN, PhANNs, and the BLAST classifier. (C) A visual illustration showing the

color-coded PVPs predicted by each model laid across a linear representation of the Mycobacteriophage PDRPxv genome.
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TABLE 4 Predicted phage virion protein (PVP) counts across bacteriophage genomes.

AC171169 BK010471 GU339467 MF417929 MH552500 MH616963

Baseplate 3 16 9 5 8 13

Collar 0 0 20 4 4 1

HTJ 6 35 10 10 37 37

MajorCapsid 0 1 0 1 0 0

MajorTail 2 7 15 1 10 12

MinorCapsid 10 19 12 6 15 18

MinorTail 3 9 16 6 11 5

Portal 2 4 8 4 5 2

TailFiber 7 8 5 13 16 11

Shaft 2 7 5 3 1 6

Summary outlining the count of various PVP classes in each uncharacterized bacteriophage genome retrieved from the Phage Reference database (Cook et al., 2021).

FIGURE 8

Analysis of PVPs in uncharacterized genomes. (A) A Kernel Density Estimation (KDE) distribution for each predicted class, aggregated along the

normalized length of all genomes. (B) The frequency of di�erent PVP classes within each genome, calculated on a per-genome basis.

precision with no probability cutoffs and using higher probability

cutoffs effectively reduced the false positive rate for the models. The

highest performing probability cutoff thresholds were used in the

final analysis for both the PhageScanner LSTM-RNN and PhANNs.

For the CDS regions correctly identified by PHANOTATE,

most of the PVP CDS regions were correctly annotated by all three

models. However, the BLAST classifier struggled to annotate non-

PVP regions, leading to a significant number of false positives.

This is expected as the BLAST score was not used to tune the

BLAST classifier. The PhageScanner LSTM-RNN and PhANNs

models accurately predicted the correct PVP classes for all coding

sequences, except for two of the nine labeled with different

annotations (Figure 7B). The LSTM model incorrectly identified

Gp2 (Terminase Large Subunit) as a Major Capsid, while PhANNs

incorrectly labeled Gp12 (Major Capsid) as a non-PVP (Figure 7C).

All three models erroneously predicted Gp42 as being a minor tail

protein, despite it being cataloged in GenBank as “Hypothetical.”

However, an NCBI BLAST search using the Gp42 sequence

revealed significant alignments to many Mycobacterium Phage

proteins labeled as minor tail proteins.

3.4.1.3 Testing PhageScanner on uncharacterized

bacteriophage genomes

We also predicted PVPs along six uncharacterized

bacteriophage genomes retrieved from the Infrastructure for

a Phage Reference database (Cook et al., 2021). To do this, we used

six genomes sourced from the open-access archive of 25,152 phage

genomes from the Phage Reference database (Cook et al., 2021).

The genome accessions we analyzed were AC171169, BK010471,

GU339467, MF417929, MH552500, and MH616963. Each genome

was input into the prediction pipeline as a multi-fasta file, and

subsequent analyses were performed on an output prediction CSV

file. Table 4 shows the counts of each of the ten PVP classes among

each genome.

Through our analysis, we found that most of the PVP classes

tended to be located in specific regions across each genome, with

the Major Capsid class typically appearing at the start of the

genomes (Figure 8A). However, when we examined the occurrence

of different PVP classes within each genome, we did not find a

consistent pattern (Figure 8B), possibly due to our limited sample

size. We additionally tallied each class per genome and revealed
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TABLE 5 Bacteriophage-encoded toxins.

Phage toxin Disease Uniprot
count

Uniprot
query

CholeraToxin Cholera 14 “Cholera toxin”

AND CTX

ExotoxinCspeC Scarlet fever 71 “exotoxin C”

AND

(go:0090729)

ExotoxinA-speA Scarlet fever 4 “exotoxin A”

AND “(SpeA)”

AND

(go:0090729)

Verotoxin Hemorrhagic

diarrhea

192 “Verotoxin”

OR “shiga-like

toxin”

AND

(go:0090729)

BotulinumToxin Botulism 11 “Botulinum

toxin”

AND

(go:0090729)

DiptheriaToxin Diphtheria 27 “Diphtheria

toxin”

AND

(go:0090729)

ToxicShockProtein Toxic shock

syndrome

16 “Toxic shock”

AND

(go:0090729)

Cytotoxin-Ctx Nosocomial

infections

and sepsis

59 “Ctx”

AND

(go:0090729)

ShigellaToxin Shigellosis 2 “Shiga toxin Stx”

AND

(go:0090729)

GeneralToxin NA 33 bacteriophage

AND

(go:0090729)

Non-Toxin NA 401 bacteriophage

NOT

(go:0090729)

AND reviewed:

true

Overview of the bacteriophage-encoded toxins used for curating the toxin-positive training

and testing set. Each toxin is presented, along with the associated diseases and the Uniprot

protein count and query for each.

that some PVPs like tail fiber proteins were commonly observed

throughout the genomes, while others like the Major Capsid

protein were not observed frequently (see S1 Text for PVP counts

per genome).

3.4.2 Binary PVP prediction
For the binary prediction model which determines if a

protein is a PVP or not, the BLAST classifier outperformed

the learning methods with a mean F1 score of 94% (Figure 4B-

top). Each PVP binary classification model was incorporated as

an option in PhageScanner by referencing model descriptions

in the corresponding manuscripts. Both re-implementations

of PVP-SVM and LSTM showed comparable performance

with an average F1 score of 91%. Furthermore, all models

surpassed the baseline classifier that uses logistic regression.

As seen with the multi-class prediction models, the BLAST

classifier took the longest for inference, while all other classifiers

ran in less than a second on the test datasets (Figure 4B-

bottom).

3.4.3 Finding phage toxins
Phages can be used as an effective alternative to antibiotics

for treating bacterial infections, but there are safety concerns

that need to be assessed. For one, there have been instances

where phages aid in the pathogenicity of bacteria. Examples

of this phenomenon occurring in nature include Streptococcus

pyogenes and Vibrio cholerae developing toxigenicity after the

induction of toxin-encoding phages (Broudy and Fischetti, 2003;

Verheust et al., 2010). Here, we use PhageScanner to develop

models that can predict the presence of toxic proteins from phage

genomes.

Verheust et al. (2010) curated a set of phage-encoded toxins

associated with human diseases. We used this set, shown in Table 5,

to train ML models to predict toxins within phage genomes.

Specifically, nine phage-encoded toxins were defined in this set, and

we established Uniprot queries for downloading each type. We also

defined a negative class (i.e., non-toxin), consisting of all reviewed

phage proteins that are not associated with toxicity according

to the gene ontology database (Consortium, 2004) (Figure 9A;

see https://github.com/Dreycey/PhageScanner for the query files).

Following this process, we collated a set of 857 toxin proteins for

the positive class (i.e., Toxin), and 1989 non-toxin proteins for the

negative class (i.e., non-Toxin).

We tested the PhageScanner’s BLAST classifier, a support

vector machine (SVM), a long short-term memory (LSTM)

network, and a feed-forward neural network (FFNN), using

logistic regression as a baseline model for comparison. As a

positive control for these models, we tested PhageScanner’s

BLAST classifier and FFNN on coliphage 933W (NCBI ID:

NC_000924.1) which includes Shiga toxins 1 and 2 (Stx1

and Stx2). 933W contributes to the pathogenic potential of

Escherichia coli O157:H7 (Plunkett et al., 1999; Del Cogliano et al.,

2018).

In Figure 9B, we present a violin plot of the F1 scores for

the four provided PhageScanner models and PhANNs (FFNN).

All models displayed lower F1 scores compared to the multiclass

and binary PVP prediction models (80% compared to 94%)

(Figure 9B). The BLAST classifier and PhANNs had the highest

average F1 scores, indicated by the widened area of the violin

plot (Figure 9B).Furthermore, false positives were observed more

frequently than false negatives by the BLAST classifier. This is

desirable as false negatives would cause potentially toxic proteins

to be missed (Figure 9C).

Then, the GUI allows for the final prediction CSV to be visually

scanned for toxin-focused feature annotations. Once completed,

this reveals the Stx1 and Stx2 ORFs as predicted known toxins;

this is true for both the FFNN classifier and the BLAST classifier.

To confirm these predictions, the Stx1 and Stx2 proteins in the

expected region of the toxins were validated using the BLAST web

server (Ye et al., 2006) (Figures 9D, E).
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FIGURE 9

Using PhageScanner to create models for predicting phage-encoded toxins within phage genomes. (A) A pie chart depicting the distribution of the

biological functions and gene ontologies within the training data set for the positive class. The top 3 functions and their gene ontology (GO) IDs are

“killing of cells of another organism [GO: 0031640]”(35%), “proteolysis [GO:0006508]”(27%), and “modulation of host virulence by virus

[GO:0098676]”(11%). The remaining functions (not labeled on the chart) are, respectively: “hemolysis by symbiont of host erythrocytes [GO:

0019836]” (9%), “defense response to bacterium [GO:0042742]” (7%), “defense response to Gram-positive bacterium [GO:0050830]” (6%), and

“arachidonic acid secretion [GO:0050482]” (4%). (B) F1 Scores from several prediction models tasked with determining if a protein is a

phage-encoded toxin. These scores come from the PhageScanner BLAST classifier, a support vector machine (SVM), a long short-term memory

(LSTM) network, and a feed-forward neural network (FFNN). (C) Confusion matrix for the BLAST classifier comparing true labels (rows) and predicted

labels (columns). (D) BLAST web server screenshot validating the Stx1 (Shiga toxin 1) translated protein. (E) BLAST web server screenshot validating

the Stx2 (Shiga toxin 2) translated protein.

TABLE 6 Comparison table of PhageScanner capabilities.

Tool name Classification modes Input types accepted

Binary
PVP
detection

Multiclass
PVP
detection

Full
genome
annotation

Metagenomic
sequencing

Proteins

PhageScanner∗ X X X X X

PhANNs∗ X X

DeePVP X X X

PVP-SVM X X

SCORPION X X

Naive Bayes Classifier X X

iVIRIONs X X

Classification modes and input types accepted for PhageScanner and other well-known tools for PVP prediction. Tools with an asterisk “∗” denote that the tool has an available Github with

source code, enabling the user to run the tool locally and that the models can be retrained on a new dataset.

3.5 Summary of experimental results

The following section summarizes the results for each

experiment.

• Binary and Multiclass PVP prediction: The BLAST

classifier surpasses all other PVP prediction methods

in terms of accuracy (94%). However, this is at the

cost of efficiency as it has the highest inference time

(between 20–30 seconds, dependent on datasize). See

Figure 4.

• Characterized Bacteriophage Genomes: The BLAST classifier

surpasses the LSTM model with these characterized proteins

(Figure 4). The LSTM model struggles with misclassifying

certain classes such as incorrectly predicting Portal

proteins as Minor Capsid proteins (Figure 6A). These
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particular misclassifications occur in other models such as

PhANNs (Cantu et al., 2020).

• Mycobacteriophage PDRPx Genome: Provided higher

probability cutoff thresholds, the models (LSTM-RNN,

PhANNs, and BLAST Classifier) had lower false positive

rates. The BLAST Classifier struggled with the non-PVP

regions, while the LSTM-RNN and PhANNs models

were more successful in predicting the correct PVP

classes for all PHANOTATE-identified coding sequences.

See Figure 7.

• Uncharacterized Bacteriophage Genomes: Possibly due to

small sample size, there were no consistent patterns regarding

the appearance of different PVP classes within certain regions.

However, there were some PVPs that were more commonly

observed in all genomes. See Figure 8.

• Phage Toxin Prediction: Several models were tested with

a positive control for phage toxin prediction, but their

overall performance (measured by F1 score) was worse

than the previous task (PVP prediction) (Figure 9B). The

confusion matrix shows that the BLAST classifier has some

confusions (notably, it classifies non-toxins as toxins 44%

of the time) (Figure 9C). This implies there needs to be

more work done (either through training on additional data

and/or hyperparameter tuning) to improve the reliability of

these models.

4 Discussion

The concerns around phage therapy include aspects such as

phage selection, phage host-range limitations, and unfamiliarity

with phages (Loc-Carrillo and Abedon, 2011). Phage selection,

or the ability to select phages with high potential for killing the

target bacteria and low potential to harm the host organism, is

of critical importance to the acceptance and success of phage

therapy as a viable treatment. PhageScanner’s ability to predict

PVPs in characterized and uncharacterized genomes are crucial to

understanding how phages interact with their bacterial host and

thus, can assist in better informed decisions around selecting the

right phage for therapeutic use. Also, scientists’ ability to predict

phage-encoded toxins can guide the creation of safety protocols for

future applications of phage therapy.

PhageScanner introduces a framework that provides a strong

foundation for developing new protein annotation models.

Specifically, we developed the framework to allow different types

of protein feature annotations to occur simultaneously. Moreover,

PhageScanner supports many models and thus enables cross-

referenced predictions. For example, models can be used to predict

if an ORF consists of a PVP protein and/or a toxin. In doing so, we

present the first work which applies these PVP predictionmodels as

a foundation for phage genome annotation. As a proof-of-concept

illustrating this feature, we developed models for predicting phage-

encoded proteins with bacteriophage genomes (or metagenomic

data; not shown) as input.

PhageScanner is structured to be modular and address data

curating, model training and PVP prediction as schematically

depicted in Figure 1. When running on its default mode, this

framework allows users to assign proteins to predefined classes

and curate each class from their choice of the integrated databases

(UniProt, Entrez, or both) prior to training their chosen models.

Apart from the default mode, the user has the opportunity to

reconfigure PhageScanner at model level, by providing a specific list

of features, or even integrating their own model. We intentionally

designed PhageScanner to facilitate comparisons between ML-

based methods and our in-house BLAST-based classifier. The

rationale behind this is to promote community engagement, with

the projection that the more accessible the research tools are for

lab technicians to use in their experimental design, the faster we

can advance the computational methods for biology. We directly

outline the capabilities of PhageScanner to previously mentioned

tools in Table 6.

Going forward, our plan is to focus on enhancing the

performance of PhageScanner with the goal of making it highly

efficient for use on high-performance computing systems. Further

improvements that can be implemented include providing more

refined and optimizedmodels (for PVP and phage toxin prediction)

for users to characterize samples with multiple bacteriophage

genomes, inclusion of the PHROGs database (Terzian et al., 2021),

to enhance the set of proteins used for PVP prediction, and creating

a web-based application to allow users to upload their samples to a

community platform and receive annotations.

As mentioned, PhageScanner is open-source and can be

freely accessed and used, and it is licensed under the GNU

General Public License. The project is hosted on GitHub at

the following link: https://github.com/Dreycey/PhageScanner. The

GitHub page also offers options for subscribing or unsubscribing

to the PhageScanner mailing list. Since PhageScanner is an open-

source software, we anticipate that community feedback will play a

crucial role in steering PhageScanner’s future development.
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