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Background: The gut microbiota has been demonstrated to have a significant 
role in the pathogenesis and progression of a variety of diseases, including 
prostate cancer, prostatitis, and benign prostatic hyperplasia. Potential links 
between prostate diseases, immune cells and the gut microbiota have not been 
adequately investigated.

Methods: MR studies were conducted to estimate the effects of instrumental 
variables obtained from genome-wide association studies (GWASs) of 196 gut 
microbial taxa and 731 immune cells on the risk of prostate diseases. The primary 
method for analysing causal relationships was inverse variance-weighted (IVW) 
analysis, and the MR results were validated through various sensitivity analyses.

Results: MR analysis revealed that 28 gut microbiome taxa and 75 immune cell 
types were significantly associated with prostate diseases. Furthermore, reverse 
MR analysis did not support a causal relationship between prostate diseases and 
the intestinal microbiota or immune cells. Finally, the results of the mediation 
analysis indicated that Secreting Treg % CD4 Treg, Activated & resting Treg % CD4 
Treg, and Mo MDSC AC inhibited the role of the class Mollicutes in reducing the 
risk of PCa. In prostatitis, CD8+ T cells on EM CD8br hinder the increased risk 
associated with the genus Eubacterium nodatum group. Interestingly, in BPH, 
CD28- CD25++CD8br AC and CD16-CD56 on HLA DR+ NK promoted the role 
of the genus Dorea in reducing the risk of BPH.

Conclusion: This study highlights the complex relationships among the gut 
microbiota, immune cells and prostate diseases. The involvement of the gut 
microbiota in regulating immune cells to impact prostate diseases could provide 
novel methods and concepts for its therapy and management.
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1 Introduction

Prostate diseases encompass a range of urinary system disorders 
that significantly affect the overall health of males. The prostate is a 
vital component of the male reproductive system and plays a pivotal 
role in diverse physiological processes. Prostatitis is a prevalent 
condition that affects the urinary system. The prevalence of symptoms 
related to prostatitis in males varies between 2.2 and 9.7%, with an 
average prevalence ranging from 8 to 8.2% (Krieger et  al., 2008). 
Benign prostatic hyperplasia (BPH) is a benign condition marked by 
the proliferation of prostate tissue. The prostate grows as people age, 
which can compress the urethra and cause urinary symptoms like 
frequency, urgency, and decreased flow. The prevalence of BPH has 
increased 17% over the course of the past 80 decades (Launer et al., 
2021), and this increase is expected to persist due to population aging. 
Prostate cancer (PCa), the second most prevalent cancer and the fifth 
leading cause of cancer-related mortality in men (Bray et al., 2018; 
Sung et al., 2021), varies with region and ethnicity (Siegel et al., 2020; 
Zhu et al., 2020; Abraham-Miranda et al., 2021; Graham-Steed et al., 
2013). PCa is one of the most common malignancies in males and 
usually grows slowly but can advance quickly in some circumstances 
(Czyż et al., 2012; Folcher et al., 2023). Hence, timely identification 
and intervention might mitigate the consequences of prostate disease 
on patients’ health.

The gut microbiota is essential for the immune response, 
metabolism, development, and other physiological functions. The 
relationship between the gut microbiota and prostate diseases has 
been a subject of increasing interest in research, with evidence 
suggesting that gut microbiota dysbiosis may contribute to immune 
system dysregulation and exacerbate inflammation in prostatitis 
patients (Wastyk et al., 2021). Studies have shown notable disparities 
in the gut microbiota composition between chronic prostatitis and 
controls (Shoskes et al., 2016; Wang et al., 2023). Moreover, the gut 
microbiota can generate metabolites that may affect prostatitis (Du 
et al., 2020; Qiao et al., 2023; Chen et al., 2020). Specific microbes can 
produce hormone-like compounds, including short-chain fatty acids, 
that can potentially disrupt the typical function of the prostate (Du 
et al., 2022). Despite some initial evidence and theoretical justification 
linking the gut microbiota to prostate diseases, more complete study 
is needed to determine the processes and causal links (Liu et al., 2021). 
Alterations in the composition of the gut microbiota and the 
abundance of various gut microbes have been documented in 
individuals diagnosed with BPH (Takezawa et al., 2021; Li et al., 2022). 
Recent findings have revealed a potential link between periodontitis 
and the development of BPH through the influence of the gut 
microbiota and its byproducts (Guo et al., 2023). Additionally, the use 
of sodium butyrate may relieve BPH symptoms (Dong et al., 2022), 
and an imbalance in the Firmicutes/Bacteroidetes ratio has been 
linked to prostate enlargement (Takezawa et al., 2021). These findings 
imply that alterations in the gut microbiota have significant 
implications for the diagnosis, treatment, and early prevention of 
BPH. Emerging evidence suggests a possible link between the gut 
microbiota and cancer susceptibility (Matsushita et  al., 2021; 
Matsushita et  al., 2023), with gut dysbiosis exacerbating cancer 
progression (Zhong et al., 2022). The modulation of the gut microbiota 
may contribute to PCa development by influencing the insulin-like 
growth factor 1 (IGF1) signaling pathway through short-chain fatty 
acids, as well as by inducing autophagy in cancer cells and promoting 

the polarization of M2 cells (Matsushita et al., 2021; Liu et al., 2023). 
Hence, it is imperative to adopt a novel methodology for investigating 
the causal relationships between the gut microbiota and 
prostate diseases.

Mendelian randomization (MR) is used to combine summary 
data from genome-wide association studies (GWASs) to determine 
causal associations between exposures and outcomes (Davies et al., 
2018). GWASs have played a pivotal role in the identification of 
genetic variants linked to diseases, particularly single nucleotide 
polymorphisms (SNPs), contributing to our comprehension of the 
genetic underpinnings of various complex traits in human diseases 
(Smith and Ebrahim, 2003). MR enables the estimation of causal 
effects between “exposure factors” and “outcomes” (Pierce and 
Burgess, 2013). The utilization of large-scale summary statistics in 
investigating the associations between the gut microbiota or immune 
cells and prostate diseases has significantly improved two-sample 
MR analysis.

The aim of this study was to investigate the possible causal 
connection between the gut microbiota, immune cells, and prostate 
diseases. Employing genome-wide association datasets for MR 
analysis will enhance the understanding of the intricate origins of 
prostate diseases and identify possible treatment targets. The 
involvement of gut microbes and immune cells may provide novel 
insights and methods for preventing, treating, and managing 
prostate diseases.

2 Materials and methods

2.1 Study design

This study encompasses three primary components, as depicted 
in Figure 1: the investigation of the causal effects of 196 gut microbial 
taxa on three categories of prostate diseases (Step 1A); the analysis of 
the causal effects of 731 immune cells on three types of prostate 
diseases (Step 2A); and the implementation of mediation analysis to 
examine the role of the gut microbiota in mediating the pathway from 
immune cells to prostate diseases (Step  3). SNPs were defined as 
instrumental variables (IVs) (Bowden and Holmes, 2019).

2.2 Data source

The GWAS summary data comprise 196 gut microbial taxa 
categorized into 119 genera, 32 families, 20 orders, 16 classes, and 
9 phyla. The genetic information for the gut microbiome was 
obtained from the latest GWAS summary data, which underwent 
meticulous curation and analysis by the esteemed MiBioGen 
consortium. The present analysis employed whole-genome 
genotype and 16S fecal microbiome data from a cohort of 18,340 
individuals across 24 distinct studies (Kurilshikov et  al., 2021). 
Accession numbers ranging from GCST0001391 to GCST0002121 in 
the GWAS Catalog provide public access to immune cell data (Orrù 
et  al., 2020). A comprehensive examination of 731 
immunophenotypes was conducted in this study. The summary 
data for prostatitis, PCa, and BPH can be  found in the GWAS 
Catalog under the accession numbers GCST90084104, 
GCST90079112, and GCST90081804, respectively. In this study, a 
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secondary analysis of publicly available GWAS summary statistics 
was conducted, with ethical approval obtained for each original 
GWAS. Furthermore, the study did not involve the use of 
individual-level data, thus obviating the need for additional ethical 
approval from an ethics review committee.

2.3 Selection of IVs

Initially, SNPs demonstrating significant associations with the gut 
microbiota (p < 1 × 10^-5) were chosen for analysis. SNPs exhibiting 
linkage disequilibrium (LD) were omitted, with a predetermined 
threshold of p < 5 × 10^−6. The LD between the identified SNPs and the 
gut microbiota was required to meet the criteria of r^2 < 0.001 and a 
distance exceeding 10,000 kb (Myers et al., 2020). A crucial component 

of MR analysis involves verifying that the impact of an SNP on an 
individual’s exposure aligns with the effect of the SNP on the outcome 
for the same allele. Following this comparison, palindromic SNPs 
(defined as those with A/T or G/C alleles) were subsequently excluded 
from the analysis.

2.4 MR analysis

2.4.1 Primary analysis
To evaluate the potential causal association between the gut 

microbiota and immune cells in relation to prostate diseases, 
we conducted independent two-sample MR analyses (steps 1A and 
2A in Figure  1). The analytic methods employed were IVW, 
MR-Egger, weighted median, simple mode, and weighted mode, and 

FIGURE 1

This research provides an overview of the causal impact of gut microbiota and immune cells on prostate diseases, with Step A2 illustrating the former 
and Step B4 illustrating the latter. Additionally, the bidirectional causal relationship between gut microbiota and prostate diseases is depicted in Step A1, 
while the same relationship between immune cells and prostate diseases is shown in Step B3. Step C involves the mediation analysis of immune cells in 
the pathway linking gut microbiota to prostate diseases. Specifically, Path 7 examines the overarching impact of gut microbiota on prostate diseases, 
Path 6 explores the causal relationship between immune cells and prostate diseases, and Path 5 investigates the causal effect of gut microbiota on 
immune cells.
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Wald ratio tests were conducted for variables featuring only one IVW 
result (Pierce and Burgess, 2013). In cases where discrepancies arose 
between these methods, the IVW results were considered the primary 
outcome. IVW is a method for calculating a weighted average for 
random variable analysis. One uses the variance of every random 
variable as a weight. This approach can help to lower the mean’s 
fluctuation. SNPs are employed to simulate the genetic grouping 
process. This randomizing strategy allows one to overcome the usual 
linear character of genetic variation and other potential factors, 
producing more exact causal inference. The MR–Egger test was 
utilized to identify outliers and assess horizontal pleiotropy. By 
considering the similarity in causality, a weighted model technique 
may categorize SNPs into distinct subsets and utilize the subset with 
the greatest number of SNPs to evaluate the causal connection 
between exposure and result. Thus, funnel plots were employed to 
assess potential directional pleiotropy. To mitigate the potential 
inaccuracies caused by SNPs, a leave-one-out study was conducted to 
evaluate the impact of individual SNPs on the MR estimates. 
Meanwhile, we use website tools1 to eliminate confounding factors. 
All Mendelian randomization analyses were performed via the ‘Two 
Sample MR’ (version 0.5.6) package in R version 4.3.1, setting 
statistical significance at p < 0.05.

2.4.2 Mediation analysis
By utilizing the two-sample analysis techniques outlined in steps 

3 and 4 of Figure 1, we integrated gut microbiota and immune cells 
that were significantly correlated with prostate diseases into a 
mediation analysis framework. Our investigation focused on 
determining the causal relationship between gut microbiota and 
immune cells (step 3 in Figure 1, path 5). Subsequently, to evaluate the 
potential mediating role of immune cells in the pathway linking the 
gut microbiome and prostate diseases, we  conducted multiple 
MR analyses.

2.4.3 Bidirectional causality analysis
To evaluate the bidirectional causal connections among gut 

microbiota, immune cells, and prostate diseases, we  designated 
prostate diseases as the “exposure” and identified gut microbiota 
linked to prostate diseases as the “outcome” (steps 1 and 3 in Figure 1). 
We specifically chose SNPs that exhibited significant associations with 
prostate diseases (p < 5 × 10^−8) as IVs.

2.5 Sensitivity analysis

Cochran’s Q test was utilized to evaluate heterogeneity for each 
SNP (Bowden and Holmes, 2019), and scatter plots were generated to 
illustrate the MR results of SNP-exposure and SNP-outcome 
associations. We employed the stepwise elimination method to assess 
the individual impact of each SNP pair on the outcomes, wherein 
we systematically excluded one SNP at a time and applied the IVW 
method to the remaining SNPs to evaluate the influence of the specific 
variants on the estimated values.

1 https://gwas.mrcieu.ac.uk/

3 Results

3.1 IV selection

After undergoing a rigorous quality control process, the F-statistic 
values for gut microbiota all exceeded the threshold of >10, suggesting 
a reduced susceptibility to weak instrument bias. In total, a total of 412 
SNPs were identified as being associated with 28 gut microbiota taxa 
at various taxonomic levels, with a significance level of p < 1 × 10−5 
(Supplementary Table S1). Additionally, a total of 1,650 SNPs were 
found to be associated with 75 immune cell types at a significance level 
of p < 5 × 10−6 (Supplementary Table S2).

3.2 Prostate cancer

3.2.1 Associations between the gut microbiota 
and PCa

Prostate cancer is associated with 10 distinct types of gut 
microbiota from three classes, two families, two genera, two orders, 
and one phylum. Detailed information regarding 124 SNPs for 
these 10 gut microbiota types can be  found in 
Supplementary Table S3. The MR analysis (Figure 2) indicated a 
correlation between genetic predictions of five gut microbiota (class 
Verrucomicrobiae, family Verrucomicrobiaceae, order 
Verrucomicrobiales, genus Akkermansia, and genus Butyrivibrio) 
and an elevated risk of PCa. The prevalences of the class 
Verrucomicrobiae [odds ratio (OR) = 1.2078, 95% confidence 
interval (CI) = 1.0410–1.4012, p = 0.0127], family 
Verrucomicrobiaceae (OR = 1.2078, 95% CI = 1.0410–1.4012, p = 
0.0127), order Verrucomicrobiales (OR = 1.2078, 95% CI = 1.0410–
1.4012, p = 0.0127), genus Akkermansia (OR = 1.2076, 95% CI = 
1.0409–1.4009, p = 0.0128), and genus Butyrivibrio (OR = 1.1068, 
95% CI = 1.029–1.1904, p = 0.0063) were found to be significantly 
elevated in cases of PCa. The identification of genetic markers 
within five distinct intestinal microbiota groups (class 
Erysipelotrichia, class Mollicutes, family Erysipelotrichaceae, order 
Erysipelotrichales, and phylum Tenericutes) has been linked to a 
decreased risk of PCa. The results indicated that the presence of 
class Erysipelotrichia (OR = 0.7762, 95% CI = 0.6418 ~ 0.9387, p = 
0.0090), class Mollicutes (OR = 0.7621, 95% CI = 0.6324 ~ 0.9182, 
p = 0.0042), family Erysipelotrichaceae (OR = 0.7762, 95% CI = 
0.6418 ~ 0.9387, p = 0.0090), order Erysipelotrichales (OR = 0.7762, 
95% CI = 0.6418 ~ 0.9387, p = 0.0090), and phylum Tenericutes (OR 
= 0.7621, 95% CI = 0.6324 ~ 0.9182, p = 0.0042) was associated with 
a significantly reduced risk of PCa. Importantly, our findings 
demonstrate heterogeneity, pleiotropy, and sensitivity, including in 
MR–Egger and weighted median (WM) analyses, which largely 
corroborated the primary results by consistently indicating the 
same trends (Supplementary Figures S1–S3). Conversely, reverse 
MR analysis did not yield any statistically significant findings, as 
evidenced by the results presented in Supplementary Table S4.

3.2.2 Associations between immune cells and 
prostate cancer

We initially selected 731 immune phenotypes for analysis of 
their impact on PCa (Supplementary Table S5). Our examination 

https://doi.org/10.3389/fmicb.2024.1445304
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://gwas.mrcieu.ac.uk/


Yue et al. 10.3389/fmicb.2024.1445304

Frontiers in Microbiology 05 frontiersin.org

FIGURE 2

Scatter plots for causal effects of gut microbes on prostate cancer. (A) Class Erysipelotrichia, (B) class Mollicutes, (C) class Verrucomicrobiae, (D) family 
Erysipelotrichaceae, (E) family Verrucomicrobiaceae, (F) genus Akkermansia, (G) genus Buutyrivibrio, (H) order Erysipelotrichales, (I) order 
Verrucomicrobiales, (J) phylum Tenericutes.
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https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yue et al. 10.3389/fmicb.2024.1445304

Frontiers in Microbiology 06 frontiersin.org

of the relationships between these immune phenotypes and PCa 
revealed several significant associations (Figure 3). In particular, 
we  observed that the maturation stages of T cells, specifically 
HVEM on CD8br (OR = 1.0589, 95% CI = 1.0048 to 1.11602, p = 
0.0322), were associated with increased susceptibility to PCa. In B 
cells, the presence of CD25 on IgD+ CD38- unswitched memory 
cells (OR = 1.0285, 95% CI = 1.0069 to 1.0505, p = 0.0093), as well 
as the percentage of IgD+ CD38br lymphocytes (OR = 1.0581, 95% 
CI = 1.0033 to 1.1159, p = 0.0373), were found to be correlated 
with an increased risk of PCa. Conversely, the presence of CD25 
on unswitched memory cells (OR = 0.9585, 95% CI = 0.9332 to 
0.9846, p = 0.0019) and CD24 on unswitched memory cells (OR = 
0.9710, 95% CI = 0.9465 to 0.9962, p = 0.0243) was associated with 
a decreased risk of PCa. Additional noteworthy associations were 
observed with exposures such as dendritic cells, regulatory T 
(Treg) cells, and myeloid cells. These findings underscore the 
intricate associations between prostate cancer and diverse cellular 
markers. However, our examination of pleiotropy and heterogeneity 
did not yield significant findings. Similarly, in the reverse MR 
analysis, no significant results were identified 
(Supplementary Table S6).

3.2.3 Mediation analysis
In this study, both the intestinal microbiota and immune cells 

were found to have causal relationships with prostate diseases. The 
gut microbiota appears to mediate the pathway between immune 
cells and prostate diseases. Based on the results from the analysis of 
immune cells on outcomes, we screened gut microbiota immune cells 
as mediators. We initially selected one intestinal microbial condition 
with the smallest p value for mediation, but as some intestinal 
microbial conditions with the smallest p values failed to identify 
specific immune cell mediators, we continued screening with the 
second smallest p value. Our results indicated that the class Mollicutes 
inhibited the role of Secreting Treg % CD4+ Treg, Activated & resting 
Treg % CD4 Treg, and Mo MDSC AC in reducing the risk of PCa 
(Table 1).

3.3 Prostatitis

3.3.1 Associations between the gut microbiota 
and prostatitis

According to the results of MR analysis (Figure 4), there exists an 
association between the genetic susceptibility of the Eubacterium 
nodatum group and the Ruminococcaceae NK4A214 group, both of 
which are intestinal microbial groups, and an elevated risk of PCa. The 
abundance of the genera Eubacterium nodatum (OR = 1.9154, 95% CI 
= 1.0560 to 3.4745, p = 0.0324) and Ruminococcaceae NK4A214 
group (OR = 1.9154, 95% CI = 1.0560 to 3.4745, p = 0.0324) was 
significantly increased in PCa patients. The genetic predisposition to 
two intestinal microbial taxa, the family Prevotellaceae and the order 
Rhodospirillales, was associated with a decreased risk of prostatitis. 
The family Prevotellaceae (OR = 0.3439, 95% CI = 0.1357 to 0.8715, p 
= 0.0244) and order Rhodospirillales (OR = 0.6693, 95% CI = 0.4543 
to 0.9861, p = 0.0042) were significantly associated with a decreased 
risk of prostatitis (Supplementary Table S3). Importantly, our results 
indicated heterogeneity and pleiotropy, and the results of sensitivity 
tests such as MR–Egger and WM supported the main findings, 
showing consistent results (Supplementary Figures S4–S6). No 
significant correlations were observed in the reverse MR analysis, as 
presented in Supplementary Table S4.

3.3.2 Associations between immune cells and 
prostatitis

We subsequently analyzed the correlation between these immune 
phenotypes and prostatitis, as shown in Figure 5. The maturation 
stages of T cells, specifically the expression of HVEM on CD4+ cells, 
were significantly associated with an elevated risk of prostatitis (OR = 
1.2328, 95% CI = 1.0157 to 1.4963; p = 0.0341). Similarly, in B cells, 
the presence of CD24 on IgD+ CD38- unsw mem cells (OR = 1.2797, 
95% CI = 1.0090 to 1.6231, p = 0.0419) and IgD on IgD+ CD38- cells 
(OR = 1.6871, 95% CI = 1.2058 to 2.3605, p = 0.0022) has also been 
shown to be  associated with an increased risk of prostatitis. In 
contrast, a lower percentage of CD20- B cells (OR = 0.5568, 95% CI = 
0.3900 to 0.7950, p = 0.0012) was correlated with a reduced risk of 
prostatitis (Supplementary Table S5). Additionally, significant 
associations were observed with other exposures, such as TBNK cells, 
Treg cells, and myeloid cells. These results highlight the intricate 
connections between specific cellular markers and prostatitis. No 
significant results were found in the analysis of pleiotropy or 
heterogeneity. In addition, no statistically significant findings were 
detected in the reverse MR analysis (Supplementary Table S6).

3.3.3 Mediation analysis
The presence of the Eubacterium nodatum group genus in 

instances of prostatitis might hinder the activity of CD8 on EM CD8br 
immune cells, leading to prostatitis (Table 1).

3.4 Benign prostatic hyperplasia

3.4.1 Associations between the gut microbiota 
and BPH

The MR analysis depicted in Figure  6 demonstrated that 
individuals with a genetic predisposition to three specific intestinal 

FIGURE 3

A volcano plot of the causal effects of gut microbes on prostate 
cancer.
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TABLE 1 In the context of mediation analysis, betaall is used to represent the overall effect from exposure to outcome, beta1 is employed to signify the direct effect from exposure to mediator, beta2 is utilized to 
denote the direct effect from mediator to outcome, beta12 is calculated as the product of beta1 and beta2 and represents the estimated mediated effect, while beta12_p indicates the p value associated with the 
mediated effect.
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Prostatitis genus. 

Eubacteriu 

mnodatumgroup

.id.11297

CD8 on 

EM 

CD8br

MR Egger 11 0.5372 1.4081 0.7117 −2.2227 3.2971 1.7112 0.1083 27.0344 0.6500 0.7277 −0.2464 −0.0778 −0.1196 0.3156 −0.1746 −0.2687 0.1156 0.0494 0.0191 0.0294 −1.5735

Weighted 

median

11 0.5953 0.4162 0.1526 −0.2205 1.4111 1.8136 0.8022 4.1006

Inverse 

variance 

weighted

11 0.6500 0.3038 0.0324 0.0545 1.2455 1.9155 1.0560 3.4745

Simple 

mode

11 1.0180 0.6817 0.1662 −0.3181 2.3542 2.7678 0.7275 10.5292

Weighted 

mode

11 0.7593 0.6981 0.3023 −0.6090 2.1276 2.1367 0.5439 8.3944

Benign 

Prostatic 

Hyperplasia

genus. 

Dorea.id.

1997

CD28- 

CD25++ 

CD8br 

AC

MR Egger 12 −0.0151 0.2926 0.9598 −0.5887 0.5584 0.9850 0.5551 1.7479 −0.2889 −0.2726 0.3355 −0.0163 0.0565 −0.0486 −0.1194 0.4133 0.7564 0.0526 0.0868 −0.3004 −0.3102

CD16-

CD56 on 

HLA 

DR+ NK

Weighted 

median

12 −0.2899 0.1394 0.0376 −0.5632 −0.0166 0.7484 0.5694 0.9836

Inverse 

variance 

weighted

12 −0.2889 0.0999 0.0038 −0.4847 −0.0932 0.7491 0.6159 0.9110

Simple 

mode

12 −0.3019 0.2494 0.2515 −0.7908 0.1870 0.7394 0.4535 1.2056

Weighted 

mode

12 −0.3101 0.2297 0.2041 −0.7603 0.1400 0.7334 0.4675 1.1503
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FIGURE 4

Scatter plots for causal effects of gut microbes on prostatitis. (A) Family Prevotellaceae, (B) genus Eubacterium nodatum group, (C) genus 
Ruminococcaceae NK4A214 group, (D) order Rhodospirillales.

microbial taxa (genus Sellimonas, genus Ruminococcaceae NK4A214 
group, phylum Verrucomicrobia) exhibited an elevated susceptibility 
to BPH. The abundances of the genera Sellimonas (OR=1.1253, 95% 
CI= 1.009~1.2550, p=0.0339), Ruminococcaceae NK4A214 group 
(OR=1.2176, 95% CI=1.0369~1.4299, p=0.0162), and phylum 
Verrucomicrobia (OR=1.2176, 95% CI=1.0369 ~ 1.4299, p=0.0162) 

significantly increased in the BPH group. The genetic predispositions 
of 11 intestinal microbial taxa, namely, the class Coriobacteriia, class 
Deltaproteobacteria, class Negativicutes, family Coriobacteriaceae, 
family Desulfovibrionaceae, genus Clostridium innocuum group, 
genus Dorea, genus Lachnospiraceae NC2004 group, order 
Coriobacteriales, order Desulfovibrionales, and order 
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Selenomonadales, were found to be  correlated with a reduced 
likelihood of developing BPH. The classes Coriobacteriia (OR=0.8302, 
95% CI=0.7076–0.9739, p=0.0223), Deltaproteobacteria (OR=0.8046, 
95% CI=0.6778–0.9551, p=0.01297), and Negativicutes (OR=0.8188, 
95% CI=0.6706–0.9998, p=0.0498), as well as the family 
Coriobacteriaceae (OR=0.8302, 95% CI=0.7076–0.9739, p=0.0223), 
family Desulfovibrionaceae (OR = 0.7949, 95% CI = 0.6566–0.9623, p 
= 0.0185), genus Clostridium innocuum group (OR = 0.8683, 95% CI 
= 0.7801–0.9665, p = 0.0097), genus Dorea (OR = 0.7490, 95% CI = 
0.6158–0.9110, p = 0.0038), genus Lachnospiraceae NC2004 group 
(OR = 0.8719, 95% CI = 0.7607–0.9993, p = 0.0489), order 
Coriobacteriales (OR = 0.8302, 95% CI = 0.7076–0.9739, p = 0.0223), 
order Desulfovibrionales (OR = 0.8030, 95% CI = 0.6710–0.9610, p = 
0.0166), and the order Selenomonadales (OR = 0.8188, 95% CI = 
0.6706–0.9998, p = 0.0498), were correlated with a reduced likelihood 
of developing BPH (Supplementary Table S3). Importantly, our results 
indicated heterogeneity and pleiotropy, and sensitivity tests such as 
MR–Egger and WM supported the main findings, showing consistent 
results (Supplementary Figures S7–S9). No significant correlations 
were found in the reverse MR analysis (Supplementary Table S4).

3.4.2 Associations between immune cells and 
BPH

Our analysis of the relationships between these immune 
phenotypes and BPH revealed several significant associations 
(Figure 7). This study revealed a significant association between the 
maturation stage of T cells, specifically HVEM on CD8br (OR = 
1.0799, 95% CI = 1.0170 to 1.1467, p = 0.0119), and an elevated risk 
of BPH. Additionally, an increased risk of BPH was also observed for 
Treg cells, specifically CD25hi CD45RA- CD4 not Treg %T cell (OR 
= 1.0364, 95% CI = 1.0029~1.0710, p = 0.0328), Lymphocyte AC (OR 
= 1.0671, 95% CI = 1.0055~1.1325, p = 0.0322), CD25 on CD45RA- 
CD4 not Treg (OR = 1.0424, 95% CI = 1.0124~1.0733, p = 0.0052), 
and CD25 on secreting Treg (OR = 1.0435, 95% CI = 1.0069~1.0816, 
p = 0.0194). This study revealed an inverse correlation between 

CD28- CD25++ CD8br AC (OR = 0.9603, 95% CI = 0.9239 ~ 0.9981, 
p = 0.0399) and CD127- CD8br %T cell (OR = 0.8837, 95% CI = 
0.8154 ~ 0.9576, p = 0.0025) and a decreased risk of BPH. Additional 
significant associations were observed with factors such as TBNK 
cells, the maturation stage of T cells, and myeloid cells. These findings 
underscore the intricate correlation between specific cellular markers 
and BPH. No significant findings were detected in the analysis of 
pleiotropy or heterogeneity. In addition, no statistically significant 
findings were detected in the reverse MR analysis, as indicated in 
Supplementary Table S6.

3.4.3 Mediation analysis
Interestingly, in BPH, the genus Dorea promoted the role of 

CD28- CD25++ CD8br AC and CD16-CD56 on HLA DR+ NK cells 
in reducing the risk of BPH (Table 1).

4 Discussion

The objective of this study was to investigate the impact of gut 
microbiota on prostate diseases, aiming to elucidate its potential 
therapeutic benefits or detrimental effects. Here, for the first time, 
we utilized gut microbiota as mediators between the immune cells and 
prostate diseases. The gut microbiota is a complex and ever-changing 
system that is impacted by several variables. Simultaneously, as stated 
in the literature, the disruption of the gut microbiota’s ecological 
equilibrium arises from the imbalance between the gut microbiome 
and the intestinal epithelium. Intestinal epithelial cells have a crucial 
function in preserving the mutually beneficial interaction between the 
gut microbiota and the host. They do this by creating a protective layer 
of mucus, releasing different immunological substances, and 
conveying bacterial antigens (Shi et al., 2017; Okumura and Takeda, 
2017; Liu et  al., 2020). On the other hand, our research findings 
indicate that alterations in the gut microbiota can impact the 
maturation of immune cells, specifically B cells, Treg cells, Myeloid 
cells, and Classical dendritic cells, thereby affecting prostate diseases 
(Figure 8). These findings align with the studies conducted by Ji-Eun 
Kim, Leonie Brockmann, Baichao Yu, and other scholars (Kim et al., 
2022; Brockmann et  al., 2023; Yu et  al., 2021). Using mediation 
analysis, we  revealed that various immune cell subsets, including 
Secreting Treg % CD4 Treg, Activated & resting Treg % CD4 Treg, Mo 
MDSC AC, CD8 on EM CD8br, CD28- CD25++ CD8br AC, and 
CD16-CD56 on HLA DR+ NK, exert both protective and detrimental 
effects on prostate diseases by modulating the abundance of specific 
bacterial taxa, such as class Mollicutes, genus Eubacterium nodatum 
group and genus Dorea.

While cancer has traditionally been regarded as a genetic disorder, 
emerging research indicates a potential association between the 
microbiome and cancer. Studies have demonstrated variations in gut 
microbiota profiles among individuals with PCa and BPH, with PCa 
patients exhibiting elevated levels of Bacteroides massiliensis compared 
with those with BPH (Golombos et al., 2018). Our findings revealed 
a correlation between the presence of Akkermansia and Butyrivibrio 
genera and susceptibility to PCa. Previous research findings have 
indicated that the levels of Akkermansia in the gut microbiota of PCa 
patients undergoing targeted androgen axis therapy, as well as those 
treated with abiraterone for castration-resistant PCa (CRPC), are 

FIGURE 5

A volcano plot of the causal effects of gut microbes on prostatitis.
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FIGURE 6

Scatter plots for causal effects of gut microbes on benign prostatic hyperplasia. (A) Class Coriobacteriia, (B) class Deltaproteobacyeria, (C) class 
Negativicutes, (D) family Coriobacteriaceae, (E) family Desulfovibrionaceae, (F) genus Clostridiuminnocuumgroup, (G) genus Dorea, (H) genus 
Sellimonas, (I) genus LachnospiraceaeNC2004group, (J) order Selenomonadales, (K) order Coriobacteriales, (L) order Desulfovibrionales, (M) genus 
RuminococcaceaeNK4A214group, (N) phylum Verrucomicrobia.

impacted (Tsai et  al., 2022; Daisley et  al., 2020). The influence of 
bacteria on susceptibility to PCa is likely complex and involves specific 
microbial functions, host reactions, and broader interactions within 
the microbiome (Fujita et al., 2022). Therapeutic approaches utilizing 
the immune system to target cancer cells have yielded diverse 
prognostic results for various solid tumors and blood-related cancers. 

Immunotherapy plays a pivotal role in the management of PCa, 
particularly in the treatment of CRPC (Cha et al., 2020).

Our research revealed a notable inverse relationship between 
CD24/CD25 expression on naive mature B cells and susceptibility to 
PCa. This discovery is consistent with the findings of Hao (Hao et al., 
2024). Our study results revealed a negative correlation between 
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CD25-expressing regulatory T cells and genetic susceptibility to PCa 
in Treg cells. Additionally, our results provide further support for the 
notion that targeting Treg cells with anti-CD25 antibodies may have 
beneficial effects on the immune response against tumors (Villanueva, 
2021; Lee et  al., 2022). Conversely, the percentages of certain cell 
types, including secreting Treg % CD4 Treg and CD28- CD8dim AC, 
were positively correlated with the risk of PCa. Furthermore, myeloid 
cells and monocytes, along with other immune cells, display diverse 
risk associations with PCa. These findings underscore the intricate 
role of immune cells in the development and progression of PCa.

The connection between gut microbiota and prostatitis is 
complex, as evidenced by prior research demonstrating a significant 
reduction in gut microbiota diversity in individuals with chronic 
prostatitis (Shoskes et  al., 2016). The present study findings 
substantiated the relationship between four gut microbiota taxa 
(family Prevotellaceae, genus Eubacterium nodatum group, genus 
Ruminococcaceae NK4A214 group, and order Rhodospirillales) 
and susceptibility to prostatitis. Previous studies have established a 
correlation between dysregulated gut microbiota composition and 
depressive-like behavior in mice afflicted with experimental 
autoimmune prostatitis (EAP). The findings of subsequent 
investigations revealed that the gut microbiota can modulate short-
chain fatty acid production, thereby impacting Th17/Treg cell 
differentiation in mice with EAP (Du et al., 2022). This finding is 
further supported by findings from an EAP model in which 
hyperactivation of Th1 and Th17 cells was observed (Zhan et al., 
2020; Chen et al., 2022; Murphy et al., 2015). Alternatively, Th1 cells 
can exert their effects by migrating to the prostate site through the 
expression of CXCR3 (Breser et al., 2013; Yue et al., 2023). Our 
study findings revealed a positive correlation between myeloid cells 
and susceptibility to prostatitis, while CD4 Treg %CD4, Activated 
& resting Treg % CD4+, and CD25hi %T cell in Treg cells were 
identified as suppressors of this risk. These findings suggest that 
Treg cells play a protective role in prostatitis patients. Additionally, 
our results indicated that in prostatitis, CD8 on EM CD8br may 
impede the increased risk posed by the genus Eubacterium 
nodatum group.

Recent research has shown that changes in the gut microbiota 
significantly impact the pathogenesis, progression, diagnosis, and 
management of BPH. Specifically, the presence of Lactobacillus, 
Flavonifractor, and Acetatifactor in the BPH model has been linked to 

FIGURE 7

A volcano plot of the causal effects of gut microbes on benign 
prostatic hyperplasia.

FIGURE 8

Gut microbes influence the development of prostate diseases through immune cells.
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key indicators of this condition (An et al., 2023). Xia established a 
causal relationship between gut microbiota and BPH via MR analysis. 
These findings revealed significant associations between BPH and the 
presence of Eisenbergiella, Ruminococcaceae (UCG009), and 
Escherichia shigella (Xia et  al., 2023). The findings of this study 
revealed that the Ruminococcaceae NK4A214 group, Sellimonas 
genus, and Verrucomicrobia phylum did not exhibit a protective effect 
on BPH. Further investigation and confirmation are required to 
elucidate the mechanisms through which gut microbiota influences 
the pathogenesis of BPH. Chronic inflammation in BPH can 
perpetually stimulate the prostate gland, thereby impacting the onset 
and progression of BPH (Nickel et al., 2017). M2 macrophages are the 
predominant inflammatory cells that infiltrate and proliferate within 
the prostate gland. The secretion of cytokines and growth factors plays 
a crucial role in driving the pathogenesis of BPH (Gandaglia et al., 
2017). CD8+ T cells are commonly found in the periglandular region 
surrounding the epithelial tubes, whereas lymphoid aggregates 
consisting of B lymphocytes and follicular T lymphocytes are located 
within the fibromuscular stroma (De Nunzio et al., 2011). BPH cells 
can augment the inflammatory response by recruiting additional 
inflammatory cells through diverse mechanisms (Cao et al., 2022). 
Our study findings suggested that B cells play a protective role in the 
pathogenesis of BPH. Conversely, there is an intricate interplay 
between Treg cells, myeloid cells, and TBNK cells and BPH. Our 
findings demonstrate that in BPH, certain subsets of immune cells, 
such as CD28- CD25++ CD8br antigen-presenting cells and CD16-
CD56 natural killer cells expressing HLA DR+, contribute to a 
reduced risk of colonization by the genus Dorea. However, further 
investigation is required to identify how gut microbiota modulate 
immune cell responses and subsequently impact BPH.

This study has several limitations. The investigation focused 
exclusively on the impact of gut microbiota on prostate diseases in the 
presence of immune cell mediation, potentially overlooking biases 
arising from other variables. Currently, we merely depend on the 
GWAS database and do not incorporate additional population data in 
order to enhance the general applicability of our findings. 
Furthermore, individual-level variations were not considered for a 
more in-depth examination of the relationships among gut microbiota, 
immune cells, and prostate diseases. Finally, because MR analysis 
depends on unverifiable assumptions, more experimental and clinical 
evidence is needed to determine how gut microbiota affect prostate 
disorders through immune cells.

5 Conclusion

This study highlights the complex relationships among the gut 
microbiota, immune cells and prostate diseases. The involvement of 
the gut microbiota in regulating immune cells to impact prostate 
diseases could provide novel methods and concepts for its therapy 
and management.
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SUPPLEMENTARY FIGURE S1

In the study examining the causal relationship between the intestinal 
microbiota of 10 patients with prostate cancer, the Wald ratio was calculated 
for each SNP individually, while both the MR–Egger and IVW methods were 
employed for the combined analysis of all SNPs. (A) class Erysipelotrichia, 
(B) class Mollicutes, (C) class Verrucomicrobiae, (D) family 
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Erysipelotrichaceae, (E) family Verrucomicrobiaceae, (F) genus Akkermansia, 
(G) genus Buutyrivibrio, (H) order Erysipelotrichales, (I) order 
Verrucomicrobiales, (J) phylum Tenericutes

SUPPLEMENTARY FIGURE S2

A funnel plot was generated to identify SNP heterogeneity when evaluating 
the potential causal relationships between 10 intestinal microbiota and 
prostate cancer. (A) class Erysipelotrichia, (B) class Mollicutes, (C) class 
Verrucomicrobiae, (D) family Erysipelotrichaceae, (E) family 
Verrucomicrobiaceae, (F) genus Akkermansia, (G) genus Buutyrivibrio, 
(H) order Erysipelotrichales, (I) order Verrucomicrobiales, 
(J) phylum Tenericutes

SUPPLEMENTARY FIGURE S3

A leave-one-out analysis was conducted to examine the causal effects of 10 
intestinal microbiota on the development of prostate cancer. (A) class 
Erysipelotrichia, (B) class Mollicutes, (C) class Verrucomicrobiae, (D) family 
Erysipelotrichaceae, (E) family Verrucomicrobiaceae, (F) genus Akkermansia, 
(G) genus Buutyrivibrio, (H) order Erysipelotrichales, (I) order 
Verrucomicrobiales, (J) phylum Tenericutes

SUPPLEMENTARY FIGURE S4

To assess the causal impact of 4 intestinal microbiota on prostatitis, the Wald 
ratio was applied to each SNP individually, while both the MR–Egger and IVW 
methods were utilized when considering all SNPs collectively. Note: 
(A) family Prevotellaceae, (B) genus Eubacterium nodatum group, (C) genus 
Ruminococcaceae NK4A214 group, (D) order Rhodospirillales

SUPPLEMENTARY FIGURE S5

A funnel plot was generated to identify SNP heterogeneity in evaluating the 
causal impacts of 4 intestinal microbiota on prostatitis. (A) family 
Prevotellaceae, (B) genus Eubacterium nodatum group, (C) genus 
Ruminococcaceae NK4A214 group, (D) order Rhodospirillales

SUPPLEMENTARY FIGURE S6

A leave-one-out analysis was conducted to examine the causal effects of 4 
intestinal microbiota on prostatitis. (A) family Prevotellaceae, (B) genus 
Eubacterium nodatum group, (C) genus Ruminococcaceae NK4A214 group, 
(D) order Rhodospirillales

SUPPLEMENTARY FIGURE S7

To assess the causal effects of 14 intestinal microbiota on BPH, the Wald ratio 
was applied to each SNP individually, while both MR–Egger and IVW 

methods were utilized for the analysis of all SNPs collectively. (A) class 
Coriobacteriia, (B) class Deltaproteobacyeria, (C) class Negativicutes, 
(D) family Coriobacteriaceae, (E) family Desulfovibrionaceae, (F) genus 
Clostridiuminnocuumgroup, (G) genus Dorea, (H) genus Sellimonas, 
(I) genus LachnospiraceaeNC2004group, (J) order Selenomonadales, 
(Q) order Coriobacteriales, (M) order Desulfovibrionales, (N) genus 
RuminococcaceaeNK4A214group, (O) phylum Verrucomicrobia

SUPPLEMENTARY FIGURE S8

A funnel plot was generated to identify SNP heterogeneity in the evaluation 
of the causal impact of 14 intestinal microbiota on BPH. (A) class 
Coriobacteriia, (B) class Deltaproteobacyeria, (C) class Negativicutes, 
(D) family Coriobacteriaceae, (E) family Desulfovibrionaceae, (F) genus 
Clostridiuminnocuumgroup, (G) genus Dorea, (H) genus Sellimonas, 
(I) genus LachnospiraceaeNC2004group, (J) order Selenomonadales, 
(Q) order Coriobacteriales, (M) order Desulfovibrionales, (N) genus 
RuminococcaceaeNK4A214group, (O) phylum Verrucomicrobia

SUPPLEMENTARY FIGURE S9

A leave-one-out analysis was conducted to examine the causal effects of 14 
intestinal microbiota on BPH. (A) class Coriobacteriia, (B) class 
Deltaproteobacyeria, (C) class Negativicutes, (D) family Coriobacteriaceae, 
(E) family Desulfovibrionaceae, (F) genus Clostridiuminnocuumgroup, 
(G) genus Dorea, (H) genus Sellimonas, (I) genus 
LachnospiraceaeNC2004group, (J) order Selenomonadales, (Q) order 
Coriobacteriales, (M) order Desulfovibrionales, (N) genus 
RuminococcaceaeNK4A214group, (O) phylum Verrucomicrobia

SUPPLEMENTARY TABLE S1

1650 SNPs for 75 immune cells.

SUPPLEMENTARY TABLE S2

412 SNPs for 28 gut microbiota taxa.

SUPPLEMENTARY TABLE S3

Causal effect of gut microbiota on prostate diseases.

SUPPLEMENTARY TABLE S4

Causal analysis of prostate diseases on gut microbiota.

SUPPLEMENTARY TABLE S5

Causal effect of immune cells on prostate diseases.

SUPPLEMENTARY TABLE S6

Causal analysis of prostate diseases on immune cells.
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