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This review provides a comprehensive analysis of the classification, biology, 
and management of Drosophila species (Diptera: Drosophilidae) with a focus 
on entomopathogenic fungi (EPF) as a biocontrol strategy. Drosophila species, 
particularly Drosophila suzukii, and Drosophila melanogaster have emerged as 
significant pests in various agricultural systems, causing extensive damage to fruit 
crops. Understanding their taxonomic classification and biological traits is crucial 
for developing effective management strategies. This review delves into the life 
cycle, behavior, and ecological interactions of Drosophila species, highlighting the 
challenges posed by their rapid reproduction and adaptability. The review further 
explores the potential of EPF as an eco-friendly alternative to chemical pesticides. 
The mode of action of EPF against Drosophila species is examined, including 
spore adhesion, germination, and penetration of the insect cuticle, leading to host 
death. Factors influencing the efficacy of EPF, such as environmental conditions, 
fungal virulence, and host specificity, are discussed in detail. By synthesizing 
current research, this review aims to provide valuable insights into the application 
of EPF and to identify future research directions for enhancing the effectiveness 
of EPF-based control measures against Drosophila species.
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1 Introduction

Drosophila species, commonly known as fruit flies, belong to the family Drosophilidae and 
are widely recognized for their significance in both scientific research and agriculture. There 
are over 1,500 species within the Drosophila genus, with Drosophila melanogaster being the 
most extensively studied model organism in genetics, developmental biology, and 
neuroscience. These small flies are usually about 2–4 mm in length and are characterized by 
their rapid life cycle, which can complete in as little as 10 days under optimal conditions (Butt 
et al., 2016). In the wild, Drosophila species typically feed on fermenting fruits and organic 
matter, playing a key role in the decomposition process. However, certain species, such as 
Drosophila suzukii (spotted wing drosophila), have become significant agricultural pests. 
Unlike most fruit flies that target overripe or decaying fruit, D. suzukii can lay eggs in ripening 
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fruit, leading to substantial crop damage. Drosophila suzukii 
Matsumura, known as the spotted wing drosophila (SWD), is a pest 
of berries and soft-skinned fruits that has spread from Asia to Europe 
and North America (Butt et  al., 2016). The economic impact of 
D. suzukii damage in California alone has been estimated at 
$39.8  million, with an additional $8  million spent annually on 
pesticides in the raspberry industry between 2009 and 2014 (Bowen 
and McDonald, 1999). D. suzukii adults are highly migratory and are 
believed to move between crop and non-crop hosts (Klick et al., 2016). 
Their movement increases contact with treated plants, exposing them 
to lethal doses of insecticide, regardless of spray coverage (Noble 
et al., 2023).

The zero tolerance for fruit infestation by pests has significantly 
impacted fresh markets, frozen berries, and fruit export programs 
(Mazzi et al., 2017; Asplen et al., 2015). Larval feeding inside the fruits 
results in decay, making them unmarketable and lowering their 
quality when processed. Severe economic losses have been reported 
worldwide, particularly affecting high-value fruit crops such as 
raspberries, blackberries, blueberries, strawberries, and sweet cherries 
(De Ros et  al., 2015). To minimize fruit loss, broad-spectrum 
insecticides are applied multiple times during the season (Van 
Timmeren and Isaacs, 2013; Shawer et al., 2018a).

Larval feeding is the primary cause of fruit deterioration. 
Puncturing the fruit peel also facilitates secondary infections by 
bacterial and fungal pathogens (Walsh et al., 2012). This pest has 
been observed infesting a wide range of fruits and vegetables, 
including blackberries, blueberries, cherries, peaches, raspberries, 
strawberries, grapes, and kiwis (Kanzawa, 1939; Bolda et al., 2010; 
Lee et al., 2011). More than 50 wild host plants have been identified 
in Europe and the United States, providing the pest with a diverse 
reservoir of alternative hosts throughout the seasons (Baroffio et al., 
2015). Drosophila species are found globally, thriving in various 
environments due to their adaptability and reproductive capacity. 
They are also known for their ability to disperse rapidly, making 
them a challenge to control in agricultural settings. Understanding 
the biology and behavior of Drosophila species is crucial for 
developing effective management strategies, especially for those 
that pose a threat to fruit production.

Current chemical control of Drosophila species, particularly 
Drosophila suzukii, relies heavily on the use of insecticides, such as 
organophosphates, pyrethroids, and spinosyns. These chemicals are 
applied to protect fruit crops from infestation, often requiring frequent 
applications due to the rapid life cycle of these pests. While effective 
in reducing populations, chemical control has several 
significant disadvantages.

Over time, the frequent use of insecticides can lead to the 
development of resistance in Drosophila populations, diminishing the 
long-term efficacy of these treatments. Additionally, the non-selective 
nature of these chemicals poses risks to non-target organisms, 
including beneficial insects like pollinators and natural predators. The 
accumulation of chemical residues on fruits also raises concerns for 
consumer health and can lead to market rejections, particularly in 
regions with strict pesticide residue regulations. Furthermore, the 
environmental impact of repeated pesticide use, including potential 
contamination of soil and water, highlights the need for more 
sustainable pest management alternatives.

Entomopathogenic fungi (EPF) offer a promising, eco-friendly 
alternative to chemical insecticides for controlling Drosophila species. 

These fungi naturally infect and kill pests through spore adhesion and 
cuticle penetration, reducing reliance on harmful chemicals while 
minimizing risks to non-target organisms, environmental 
contamination, and pesticide resistance development. 
Entomopathogenic fungi (EPF) infect and kill insects by using them 
as hosts to complete a stage of their life cycle (Vivekanandhan et al., 
2018a; Shin et al., 2020; Swathy et al., 2024a,b; Vivekanandhan et al., 
2024a, 2024b, 2024c, 2024d). EPF is a successful pest management 
strategy in agriculture worldwide (Perumal et al., 2024a, 2024b) and 
is effective against various fruit fly species (Quesada-Moraga et al., 
2006; Yousef et al., 2017; Oreste et al., 2015). As biological control 
agents, EPF can serve as alternatives to chemical pesticides (Tarasco 
et  al., 2016). However, the virulence of entomopathogens varies 
significantly among species (Oreste et al., 2012). They offer potential 
for controlling fruit flies in the soil during adult and pupal stages, as 
well as in fruits during the larval stage (Oreste et al., 2015; Yousef 
et al., 2017).

Four fungal classes Ascomycota, Basidiomycota, Microsporidia, 
and Zygomycota contain entomopathogenic species (Bergman et al., 
2019). EPF can also act as endophytes, antagonists of plant pathogens, 
and promoters of plant growth (Vega et al., 2008). The diversity of EPF 
offers great prospects for integrated pest management (Vivekanandhan 
et al., 2023a).

Bio-fungicides and bioinsecticides are among the most advanced 
and widely produced formulations (Swathy et al., 2024a,b). Some of 
these products, such as those containing entomopathogenic fungi like 
Beauveria bassiana and Metarhizium anisopliae, are available 
commercially (Krutmuang et al., 2023). Due to the restricted use of 
conventional pesticides and the emergence of new bioproducts, the 
microbial-based biopesticides market was valued at USD 3.48 billion 
in 2018 and is projected to reach USD 7.38 billion by 2023 (Singh and 
Mazumdar, 2022). However, the ecological impact of these products 
remains unclear.

Several studies have reported positive effects from beneficial 
interactions with crops (Dara, 2017; González-Pérez et  al., 2022), 
neutral effects on soil and plant microbiome composition (Peng et al., 
2021), and negative impacts on certain bees and other insects (Toledo-
Hernández et  al., 2016). This review aims to analyze Drosophila 
species’ classification, biology, and the efficacy of entomopathogenic 
fungi as biocontrol agents, focusing on their mode of action and 
influencing factors.

2 Classification

The genus Drosophila, within the family Drosophilidae and order 
Diptera, comprises over 1,500 species, commonly known as Drosophila 
melanogaster and Drosophila suzukii. Drosophila melanogaster is 
crucial in genetic and developmental biology research due to its well-
documented genome, while Drosophila suzukii is known as an 
agricultural pest (Cini et al., 2012; Perveen, 2018). The genus was first 
described by Johann Wilhelm Meigen in 1830 and continues to be a 
focal point in scientific research due to its genetic accessibility and 
ecological importance.

Kingdom: Animalia.
Phylum: Arthropoda.
Class: Insecta (Insects).
Order: Diptera (True Flies).
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Family: Drosophilidae (Vinegar Flies, Pomace Flies, or 
Fruit Flies).

Genus: Drosophila.

2.1 Biology of Drosophila species

The biology of Drosophila species, one of the most extensively 
studied organisms, is rich and diverse. Its rapid life cycle, progressing 
from egg to adult in about 10 days, makes it ideal for studying 
development. The species undergoes complete metamorphosis, with 
distinct egg, larval, pupal, and adult stages, each offering unique 
insights into developmental biology. Behaviorally, Drosophila species 
exhibits complex mating rituals, sophisticated feeding habits, and 
well-defined circadian rhythms, making it a key organism in 
behavioral research. Genetically, it has been fundamental in 
understanding inheritance, gene function, and evolution, thanks to its 
fully sequenced genome. Ecologically, Drosophila species are adaptable 
and inhabit diverse environments, playing crucial roles in ecosystems. 
Their biology continues to provide critical insights across multiple 
scientific disciplines (Hoikkala and Poikela, 2022).

2.2 Life cycle and development of 
Drosophila melanogaster and Drosophila 
suzukii

Egg Stage: Female Drosophila lay their eggs in moist environments 
abundant with decaying organic material, such as overripe fruit or 
compost. These conditions provide an ideal habitat for the eggs. 
Within 24 h of being laid, the eggs hatch, releasing larvae that will 
immediately begin feeding on the surrounding microorganisms 
(Figure 1).

Larval Stage: The larvae progress through three distinct instar 
stages over a period of 2–3 days (Figure 1). During each stage, they 
vigorously consume microorganisms and organic matter within their 
environment, such as decaying fruit. This feeding behavior supports 
their rapid growth and development, preparing them for the 
subsequent pupal stage.

Pupal Stage: After the larval stage, the Drosophila transitions into 
the pupal stage, a critical phase where metamorphosis takes place. The 
pupal case gradually hardens and darkens, providing protection as the 
organism undergoes dramatic internal changes. Over the next 
3–4 days, the adult structures, including wings, legs, and eyes, develop 
and form (Figure 1).

Adult Stage: The adult Drosophila emerges from the pupal case, 
fully developed and ready to begin its brief but active life, typically 
lasting several weeks. Within 8–12 h of emergence, females are capable 
of mating and begin laying eggs, rapidly initiating the next generation 
and ensuring the species’ continued propagation (Figure 1).

Drosophila melanogaster offers advantages over vertebrate models, 
including faster growth, shorter life cycles, easier manipulation, lower 
maintenance costs, and fewer ethical and regulatory issues (Alarco 
et al., 2004; Lionakis and Kontoyiannis, 2010). The fruit fly primarily 
infests fruits, causing damage and spreading. Biological control of 
Drosophila species has traditionally focused on predators and 
parasites, but microorganisms and plant extracts are also important 
now (Schmutterer, 1990).

Drosophila suzukii thrives at temperatures from 10 to 30°C, with an 
optimal range of 18 to 25°C. It does not reproduce or shows decreased 
activity at temperatures below 10°C or above 30°C, where emerging 
males become infertile (Dalton et al., 2011). Under ideal conditions, it 
can complete 3 to 15 generations per year (Kanzawa, 1939). Females lay 
7 to 16 eggs daily, continuing for 10 to 59 days per generation.

According to Kanzawa (1939), female D. suzukii lay 350 to 400 
eggs during their lifetime. Eggs hatch in 1 to 3 days, and larvae mature 
in 5 to 7 days, often pupating inside fruits. The pupal stage lasts 4 to 
15 days. At 25°C, the full life cycle from egg to adult is around 
7–10 days, while at 15°C, it takes approximately 21–25 days (Kanzawa, 
1939). During summer, with peak reproduction, the population is 
about 90% juvenile stages (eggs, larvae, and pupae) and 10% adults 
(Wiman et al., 2014; Emiljanowicz et al., 2014; Grassi et al., 2018). 
D. suzukii can survive harsh winters and avoid detection, emerging in 
non-crop areas in spring and early summer.

Drosophila suzukii exhibits seasonal polyphenism, with smaller 
flies and reduced pigmentation in summer compared to winter 
(Hoffmann, 2003; Shearer et al., 2016). Larvae do not grow below a 
certain temperature threshold, but oviposition can occur at 
temperatures below 10°C (Rendon and Walton, 2019). Debate 
continues about adult overwintering success in northern climates 
(Rossi-Stacconi et al., 2016; Bal et al., 2017; Panel et al., 2018).

Current understanding suggests that D. suzukii forages during 
winter when temperatures permit, requiring a food source such as 
saprotrophic fungi (Stockton et al., 2019a). Dispersal includes both 
short- and long-distance migrations influenced by phenology, 
nutrition, and environmental conditions. During the growing season, 
the spread of D. suzukii is influenced by non-crop hosts near cultivated 
areas (Klick et al., 2016; Leach et al., 2019). Distribution patterns and 
migration to higher altitudes for better resources in spring and 
summer are also observed (Tonina et al., 2016; Tait et al., 2018).

2.3 Genetics and genomics

Drosophila melanogaster has a well-characterized genome 
consisting of approximately 14,000 genes across four pairs of 
chromosomes (Piergentili, 2010; Guruharsha et al., 2011). As one of 
the first organisms to have its genome fully sequenced, it has become 
a cornerstone of genetic research. Its relatively simple genome, 
combined with advanced genetic tools, makes it an indispensable 
model organism for studying gene function, genetic variation, and 
evolutionary processes. This genomic information has led to 
significant discoveries in genetics, developmental biology, and 
disease research.

The genetic makeup of Drosophila melanogaster provides a 
powerful platform for studying gene function, inheritance patterns, 
and mutations (Arias, 2008). Techniques such as gene knockouts and 
transgenesis are used to analyze gene roles and functions, while 
CRISPR/Cas9 enables precise genome editing to explore genetic 
mechanisms (Trivedi, 2021).

2.4 Behavior

Mating Behavior: Male Drosophila species perform a courtship 
dance to attract females, characterized by wing vibrations that produce 
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species-specific songs. This behavior includes visual displays, such as 
wing positioning, and the release of pheromones. Successful mating 
depends on the interplay of visual, chemical, and auditory cues 
(Mitoyen et al., 2019).

Feeding Behavior: Drosophila species primarily feed on yeast and 
microorganisms in decaying fruit, which provides essential nutrients 
for their growth and development (Bing et al., 2018). Their sensitive 
olfactory system, equipped with specialized sensory neurons in their 
antennae, allows them to efficiently locate these food sources.

Circadian Rhythms: Drosophila species exhibit circadian rhythms, 
internal biological cycles that regulate behaviors such as sleep, feeding, 
and mating over a 24-h period. These rhythms synchronize with 
environmental light and dark cycles, promoting survival and 
reproductive success (Johnson et al., 2023).

2.5 Drosophila melanogaster and 
Drosophila Suzukii: bio-ecology and 
habitat

Drosophila species are highly adaptable and can be found globally, 
thriving in diverse environments from tropical rainforests to 
temperate zones (Throckmorton, 1975). They are commonly 
associated with decaying fruit, which provides a breeding ground and 
food source, essential for larval development (Throckmorton, 1975).

Some species, like D. suzukii, have adapted to exploit fresh fruit, 
leading to significant ecological and economic impacts. Known as 
the spotted wing drosophila, it is a major agricultural pest affecting 
soft-skinned fruits such as berries and cherries. D. suzukii lays its 

eggs in the fruit, where the larvae cause substantial damage, resulting 
in economic losses for farmers and necessitating management 
strategies (Throckmorton, 1975). Beyond agriculture, Drosophila 
species are important for studying ecological interactions, serving as 
prey for various predators and involved in research on resource 
competition and microbial community interactions. Their 
adaptability and ecological roles make them valuable models for 
understanding ecological processes and evolutionary biology 
(Throckmorton, 1975).

2.6 Immune system and pathogenesis

Drosophila species have a sophisticated innate immune system 
that defends against bacteria, fungi, and viruses (Brennan and 
Anderson, 2004; Govind, 2008). This system includes both cellular 
and humoral responses. Cellular immunity involves phagocytosis, 
where immune cells engulf and digest pathogens. Humoral 
immunity features the production of antimicrobial peptides, which 
are secreted into the hemolymph to neutralize and 
kill microorganisms.

Drosophila species is also a valuable model for studying host-
pathogen interactions. Researchers use it to investigate how 
entomopathogens that specifically target insects interact with their 
hosts, evade the immune system, establish infections, and cause 
disease (Younes et al., 2020). These studies enhance our understanding 
of insect immunology and contribute to the development of biological 
control strategies and broader research on immune responses and 
pathogen interactions (Ortiz-Urquiza et al., 2015).

FIGURE 1

Life cycle of Drosophila fruit fly species.
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2.7 Reproduction and population dynamics

Female Drosophila species are highly fecund, laying hundreds of 
eggs over their several-week lifespan. Their short generation time 
around 10 days from egg to adult supports rapid population growth 
under optimal conditions. This rapid lifecycle allows Drosophila 
species to quickly exploit resources and adapt to environmental 
changes (Markow, 2015). In laboratory settings, these traits are 
advantageous for genetic studies, enabling observation of evolutionary 
processes and genetic variations across multiple generations.

Population dynamics in Drosophila species are influenced by 
environmental factors such as temperature, food availability, and 
predation (Khaliq et  al., 2014; Wiman et  al., 2016). Temperature 
affects development and metabolic rates, while food availability 
impacts growth and reproduction (Savage et al., 2004; Burton et al., 
2011). Predation pressures influence survival rates and population 
stability. Researchers study these dynamics to explore evolutionary 
biology principles, including natural selection, genetic drift, and 
adaptation mechanisms (Abrams and Matsuda, 1997; Cortez and 
Patel, 2017).

3 Current control methods and their 
disadvantage

Current chemical control methods for managing Drosophila 
species, particularly D. suzukii (spotted wing drosophila), rely heavily 
on the application of broad-spectrum insecticides. These insecticides, 
including organophosphates, pyrethroids, and spinosyns, are widely 
used due to their rapid knockdown effect and broad efficacy against a 
variety of insect pests. However, despite their effectiveness in reducing 
D. suzukii populations, these chemical control methods present 
several significant disadvantages that challenge their long-term 
sustainability and effectiveness.

One of the primary disadvantages of chemical control is the 
development of insecticide resistance. Continuous and repeated use 
of the same classes of insecticides can lead to the selection of resistant 
D. suzukii populations. Resistance development has been reported in 
other pest species subjected to similar management practices, and 
there is a growing concern that D. suzukii could follow the same trend 
(Bruck et al., 2011). The development of resistance not only reduces 
the effectiveness of chemical treatments but also necessitates higher 
doses or more frequent applications, further exacerbating the issue 
and increasing the financial burden on growers.

Another significant disadvantage of chemical control methods is 
the negative impact on non-target organisms, including beneficial 
insects such as pollinators and natural enemies of pests. Broad-
spectrum insecticides do not discriminate between target pests and 
beneficial species, leading to a reduction in the populations of 
predators and parasitoids that naturally help control D. suzukii 
(Desneux et al., 2007). This disruption of ecological balance can result 
in secondary pest outbreaks, where other pest species, previously kept 
in check by natural enemies, become problematic due to the 
diminished populations of these beneficial organisms.

Moreover, the reliance on chemical insecticides poses serious 
environmental concerns. The widespread use of these chemicals can 
lead to contamination of soil and water bodies, adversely affecting 
aquatic life and overall ecosystem health. Pesticide residues can persist 

in the environment, leading to long-term ecological damage and 
potential bioaccumulation in the food chain (Roubos et al., 2014). 
These environmental risks are particularly concerning in regions with 
intensive agricultural practices where repeated pesticide applications 
are common.

Human health risks associated with chemical control methods 
also represent a major disadvantage. Pesticide exposure, either 
through direct contact during application or through the 
consumption of pesticide residues on fruits, can pose health risks to 
farmworkers and consumers. Chronic exposure to certain insecticides 
has been linked to various health issues, including neurological 
disorders, respiratory problems, and even cancer (Mostafalou and 
Abdollahi, 2017). This concern has led to stricter regulations and 
Maximum Residue Limits (MRLs) for pesticides, complicating 
compliance for growers and potentially limiting market access for 
their products.

Finally, the economic implications of chemical control are 
significant. The cost of purchasing and applying insecticides, 
combined with the potential need for multiple applications throughout 
the growing season, can be substantial. In regions where D. suzukii is 
prevalent, growers may need to apply insecticides as frequently as 
every 7 to 10 days to protect their crops (Van Timmeren and Isaacs, 
2013). This not only increases production costs but also places a 
financial strain on smaller farms that may struggle to afford such 
intensive pest management programs.

4 Alternative control methods with 
entomopathogens

The use of entomopathogens as alternative control methods for 
Drosophila species, particularly D. suzukii, has gained increasing 
attention as growers seek more sustainable and environmentally 
friendly pest management strategies. Entomopathogens, including 
fungi, bacteria, viruses, and nematodes, offer promising potential as 
biological control agents due to their ability to target specific insect 
pests while minimizing harm to non-target organisms and 
the environment.

Entomopathogenic fungi, such as B. bassiana and M. anisopliae, 
are among the most widely studied for controlling Drosophila species. 
These fungi infect and kill their hosts by penetrating the insect cuticle 
and proliferating within the insect’s body, ultimately leading to the 
insect’s death (Vivekanandhan et al., 2018a, 2020a,b; Perumal et al., 
2024a,b). Research has shown that B. bassiana and M. anisopliae can 
effectively reduce D. suzukii populations in laboratory and field 
settings. For instance, Kim et al. (2020) demonstrated that these fungi 
significantly reduced the survival rates of D. suzukii adults when 
applied to infested fruits. Moreover, entomopathogenic fungi can 
persist in the environment, providing longer-term pest suppression 
compared to chemical insecticides.

Another promising group of entomopathogens for Drosophila 
species control are entomopathogenic nematodes (EPNs), particularly 
species from the genera Steinernema and Heterorhabditis species. 
These nematodes are capable of infecting and killing D. suzukii larvae 
and pupae by releasing symbiotic bacteria that cause septicemia in the 
host. EPNs offer the advantage of being applied directly to the soil, 
where they can target pupating larvae, a life stage often protected from 
other control measures.
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Bacterial entomopathogens also present opportunities for 
Drosophila species control. Bacillus thuringiensis (Bt), a well-known 
entomopathogenic bacterium, produces toxins that are lethal to 
various insect larvae upon ingestion. Although Bt is primarily used 
against Lepidoptera and Coleoptera, some studies have explored its 
potential against Drosophila species. While its effectiveness against 
D. suzukii has been limited compared to other pests, there is 
ongoing research into optimizing Bt formulations and delivery 
methods for better control of Drosophila larvae in fruit crops (Lacey 
et al., 2015).

Viruses, such as Drosophila C virus (DCV) and Sigma virus, are 
naturally occurring pathogens in Drosophila species populations and 
can cause high mortality rates under certain conditions. These viral 
pathogens are typically spread through contact or ingestion, making 
them suitable candidates for biological control when harnessed and 
applied appropriately. However, the application of viral 
entomopathogens in field settings remains challenging due to factors 
such as environmental stability and the need for precise delivery 
mechanisms (Riddiford and Truman, 2013).

Among the entomopathogens the entomopathogenic fungi 
offers several advantages over traditional chemical control and 
other entomopathogens based control methods. First, 
entomopathogenic fungi are often highly specific to their target 
pests, reducing the risk of harming beneficial insects, pollinators, 
and other non-target organisms. Second, they can be applied in 
various forms, including sprays, soil drenches, and bait 
formulations, allowing for flexible and targeted application 
strategies. Third, entomopathogenic fungi are generally considered 
safe for humans and the environment, making them suitable for use 
in organic farming systems and other environmentally sensitive 
areas (Vega et al., 2009).

5 Entomopathogenic fungi-based 
insect pest control

Estimates of fungal species on Earth range from 1 to 12 million 
(Wu et al., 2019). Of the approximately 100,000 known fungi, 750 to 
1,000 are entomopathogenic fungi (Blackwell, 2011; Mora et al., 2018; 
Wu et al., 2019). Fossil evidence of Paleoophiocordyceps coccophagus 
from Myanmar, dating back 100–110 million years, suggests that EPF 
have been associated with insects since the Cretaceous period (Sung 
et  al., 2008). EPF play a critical role in regulating natural insect 
populations and are valuable in integrated pest management (Wang 
et al., 2017; Perumal et al., 2023b; Vivekanandhan et al., 2023b). They 
have been successfully used to control arthropod pests (Ekesi et al., 
2005; Faria and Wraight, 2007; Vivekanandhan et al., 2022a,b,c,d).

Some opportunistic fungal infections found in deceased insects, 
such as Alternaria, Aspergillus, Cladosporium, and Penicillium species, 
were initially thought to be generalist fungi rather than specialized 
entomopathogens (Humber, 2005; Logeswaran et  al., 2019; 
Balumahendhiran et al., 2019). These fungi, with small conidia (2 μm), 
are widely distributed in soil, air, water, and other substrates (Visagie 
et al., 2014). EPF are facultative parasites with high survival rates 
(Litwin et  al., 2020). They belong to various taxonomic groups: 
Oomycetes (12 species), Chytridiomycota (65 species), Microsporidia 
(339 species), Entomophthoromycota (474 species), Basidiomycota 
(238 species), and Ascomycota (476 species; Woo et al., 2020). This 

diversity reflects the broad range of biology, phylogeny, morphology, 
and ecology within the EPF group (Litwin et al., 2020).

5.1 Metarhizium species

Metarhizium species (Hypocreales: Clavicipitaceae) are a genus of 
ascomycete fungi known for their role as biocontrol agents against 
various insect species (Peng et  al., 2022; Perumal et  al., 2023a,b; 
Perumal et  al., 2024a,b; Swathy et  al., 2024a,b). These fungi are 
commonly found in soils and plants, where they act as soil saprophytes, 
rhizosphere microorganisms, endophytes, and pathogens of insects 
and plants (Vivekanandhan et al., 2021; Vivekanandhan et al., 2020a; 
Vivekanandhan et  al., 2020b). Recent taxonomic revisions have 
included Metarhizium pingshaense, M. anisopliae, M. robertsii, 
M. brunneum, M. majus, M. guizhouense, M. lepidiotae, M. acridum, 
and M. globosum (Peng et al., 2022; Raven et al., 2019). The distribution 
of these species is highly variable. M. robertsii and M. anisopliae can 
infect a wide range of hosts, including wireworms, plants (as 
endophytes), fruit flies, and herbivorous arthropods (Vivekanandhan 
et al., 2020a; Vivekanandhan et al., 2020b; Peng et al., 2022).

M. anisopliae and M. robertsii have been shown to infect 
D. melanogaster (Lemaitre et al., 1997; Gottar et al., 2006; Peralta-
Manzo et al., 2014; Hunt et al., 2016). Research has focused on their 
virulence factors, temperature preferences, and pathogenicity in 
D. melanogaster and D. suzukii. M. anisopliae was the first 
commercially available entomopathogenic fungus used to control the 
cereal beetle Anisoplia austriaca and the beet weevil Cleonus 
punctiventris (Maniania, 1992). M. robertsii has shown various 
interactions, including use as a biocontrol agent against the root rot 
fungus Fusarium solani f. sp. Phaseoli, and as an endophyte promoting 
plant root growth (Sasan and Bidochka, 2012, 2013; Mukherjee and 
Vilcinskas, 2018; Sharma et al., 2018). After inoculation with both live 
and heat-killed M. robertsii spores, D. melanogaster preferred cooler 
temperatures, which likely slowed the growth rate of M. robertsii 
(Hunt et al., 2016).

5.2 Beauveria species

Beauveria comprises several ecologically and commercially 
significant species, with B. bassiana being the most notable (Rehner 
and Buckley, 2005; Vivekanandhan et al., 2018a, 2020a,b; Perumal 
et al., 2024a,b). B. bassiana has a broad host range and high heat 
tolerance, making it an effective microbial control agent (Fargues 
et al., 1997). Over 65 mycoinsecticide and mycoacaricide products 
derived from B. bassiana and B. brongniartii have been registered 
globally for insect pest control through inoculative applications (Faria 
and Wraight, 2007). The Beauveria genus includes approximately 50 
species (Rehner and Buckley, 2005) and has been used in various 
biological studies involving D. melanogaster. Under laboratory 
conditions, the insecticidal activity of B. bassiana has been linked to 
its higher chitinolytic enzyme activity compared to Trichoderma 
species (Vallejos Sirpa et al., 2014).

The Beauveria genus (Ascomycota) is found worldwide and 
includes four species: B. bassiana, B. brongniartii, B. amorpha, and 
B. caledonica (McGuire and Northfield, 2020). Among these, 
B. bassiana has exceptional pathogenic properties and affects over 700 
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insect species, including arthropods and flies (McGuire and 
Northfield, 2020). Infected flies showed that the protein GNBP3 is 
crucial for fungal pathogenesis and exhibits high inhibitory activity 
(Ekengren and Hultmark, 1999; Gottar et al., 2006). In D. melanogaster, 
the peptide Destruxin A modulates ion transport in renal and 
gastrointestinal tissues while also suppressing the innate immune 
response (Pal et al., 2007). The elevated chitinolytic enzyme activity of 
B. bassiana in laboratory settings is associated with its 
insecticidal virulence.

5.3 Isaria species

In 2005, the genus Isaria (Ascomycota) was taxonomically 
distinguished from Paecilomyces (Luangsa-ard et al., 2005). The genus 
currently includes four species: I. cateniannulata, I. fumosorosea, 
I. javanica, and I. farinosa. These species have been extensively studied 
and utilized as mycoinsecticides, for example, to manage aphids and 
whiteflies (Luangsa-ard et al., 2005). Members of this group typically 
have ellipsoidal to fusiform-elliptical conidia (Zimmermann, 2008). 
However, there is limited information in the literature regarding the 
metabolites and toxins produced by Isaria species 
(Zimmermann, 2008).

5.4 Verticillium species

In 2001, the genus Lecanicillium (previously Verticillium) was 
reclassified to include five species: L. lecanii, L. longisporum, 
L. attenuatum, L. muscarium, and L. nodulosum (Goettel et al., 2008). 
These species have been isolated from various insects and target a 
range of hosts (Goettel et al., 2008).

5.5 Entomophthora species

Entomophthora (Entomophthoromycota) comprises 21 highly 
host-specific species that cause epizootics in insects, including 
beetles, flies, midges, aphids, fungus gnats, and bugs (Elya and De 
Fine Licht, 2021). The most well-known species, E. muscae, primarily 
parasitizes adult houseflies (Musca domestica). Although 
Entomophthora is generally host-specific, in laboratory conditions, 
species like E. muscae have been shown to infect a variety of hosts, 
including D. melanogaster (Elya et al., 2018) and D. suzukii (Becher 
et al., 2018).

Flies infected with E. muscae laid fewer eggs at lower 
temperatures, suggesting that the fungus is more effective at lower 
temperatures (Koger et  al., 2020). E. muscae also induced cold-
seeking behavior in M. domestica, resulting in elevated spore levels 
throughout the infection (Kalsbeek et al., 2001). In D. suzukii, the 
fungus was effective at 23°C, infecting and killing both male and 
female flies (Becher et al., 2018). This indicates that E. muscae might 
be more effective against insect pests during cooler periods, such as 
at night and early morning.A recent study found that D. melanogaster 
differed in their genetic susceptibility to E. muscae-induced infections 
(Wang et  al., 2020). Similarly, resistance to M. anisopliae varied 
significantly among other wild-type Drosophila verities (Liu 
et al., 2017).

6 Field studies using different FPF 
against Drosophila species

Entomopathogenic fungi (EPFs) have been used to control fruit 
flies through various methods, including soil inoculation to target 
pupating larvae (Ekesi and Mohamed, 2011) and cover sprays to target 
adults (Genre et al., 2009; Daniel and Wyss, 2010). Other methods 
involve protein baits (Bedini et  al., 2018) and attractant-baited 
autoinoculators (Ekesi et al., 2007). For pests that respond to visual 
and olfactory stimuli, EPFs can be dispersed using lures to attract fruit 
flies to a pathogen focus point, where they pick up and spread the 
inoculum within the population.

Effective pest management using microbial pesticides should 
consider the ecological context of the biological agent (Evans, 1999). 
Integrating EPFs into an ecologically focused strategy could enhance 
long-term fruit fly reduction by facilitating the transport of inoculum 
from pupation sites in the soil (Ekesi et  al., 2002). EPFs can 
be introduced through inundative or augmentative releases, and foliar 
sprays are commonly used in conventional management to assess their 
efficacy against adult fruit flies.

For example, traps in trees treated with B. bassiana (Naturalis-L) 
captured about 23% fewer Rhagoletis cerasi flies compared to control 
trees (Daniel and Wyss, 2010). Flies typically become infected by 
ingesting pathogen-containing bait or absorbing conidia from treated 
foliage. Combining EPFs such as M. anisopliae and B. bassiana 
(WG-18) with entomopathogenic nematodes (EPNs) like 
Heterorhabditis bacteriophora (VS strain) and Steinernema carpocapsae 
(ALL strain) has shown higher mortality rates in Bactrocerazonata and 
Bactrocera dorsalis larvae, pupae, and pharate adults in laboratory, 
glasshouse, and field conditions. The combination of B. bassiana and 
H. bacteriophora consistently produced the most effective results 
(Wakil et al., 2022).

6.1 Effectiveness of EPF on Drosophila 
Suzukii and Drosophila melanogaster

Several commercially available formulations of entomopathogenic 
fungi from the genera Metarhizium, Beauveria, Lecanicillium, Isaria, 
and Paecilomyces species were tested for their effectiveness against 
D. suzukii (SWD; Cuthbertson et al., 2014; Naranjo-Lázaro et al., 2014; 
Woltz et al., 2015). When SWD-infested fruit was dipped in field-rate 
concentrations of L. muscarium (Mycotal, 0.1% solution) and 
B. bassiana (Naturalis, 0.3% solution), no significant effect on fly 
emergence was observed. However, a direct spray of B. bassiana 
caused 44% adult mortality after 7 days (Cuthbertson et al., 2014).

Cossentine et al. (2016) demonstrated that D. suzukii adults could 
easily acquire lethal fungal infections through contact with conidia by 
walking over contaminated surfaces or interacting with contaminated 
individuals. Most susceptibility trials use direct sprays to deposit 
conidia onto potential host organisms, confirming pathogenic 
infection after exposure to a known concentration of the fungus. 
However, laboratory contact assays may not accurately reflect how 
conidia are naturally acquired in the wild.

In direct spray trials, the exact number of conidia that attach to 
the insect cuticle is unknown since not all applied conidia may adhere. 
Conidia attachment depends on the inoculum not running off the 
surface due to excessive carrier use, and the surface must have the 
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required humidity and nutrients for conidia germination (Hajek and 
St Leger, 1994). Cossentine et al. (2016) confirmed via microscopy that 
D. suzukii acquired conidia after exposure to dried fungi, consistent 
with other exposure experiments.Of the three fungal isolates tested in 
temperature trials, M. brunneum was the only one that caused 
significant mortality in flies over a two-week period at 20°C. This 
isolate’s ability to infect and kill D. suzukii at lower temperatures 
enhances its potential as a field pest management technique.

The higher mortality rates observed at 30°C for all three isolates 
under high humidity conditions align with previous findings of 
shorter lifespans of D. suzukii adults at this temperature in both field 
and laboratory settings (Tochen et al., 2014). In our laboratory tests, 
the most effective isolate, M. brunneum, caused significant mortality 
in D. suzukii within 5 days at 30°C. D. suzukii is a prolific insect, laying 
5–12 eggs per day (Emiljanowicz et al., 2014). Therefore, the ability of 
a fungal infection to reduce oviposition before the insect die is a 
critical advantage in pest management.

The fecundity study showed that exposure to M. brunneum 
significantly reduced the D. suzukii pupae. From days 5 to 7 after 
exposure, the average number of pupae produced per female D. suzukii 
was significantly lower than that of the control, indicating that 
M. brunneum infection may affect oviposition. Although the total 
number of pupae produced by all females in the M. brunneum 
treatment was significantly less than that in the control from days 5 to 
14, the number of pupae per surviving female was not significantly 
different from the control from days 8 to 14. By this time, significant 
mortality had occurred among the females exposed to M. brunneum. 
The mean number of pupae per female was more influenced by the 
10% of surviving, uninfected females, whose fertility was not 
compromised by the fungal infection (Emiljanowicz et al., 2014).

The study by Cossentine et al. (2016) supports the susceptibility 
of D. suzukii to entomopathogenic fungi (Naranjo-Lázaro et al., 2014; 
Woltz et al., 2015) and confirms that D. suzukii adults can contract 
lethal infections through contact with dried conidia. The 
entomopathogenic fungal (EPF) strains tested showed varying levels 
of activity against different D. suzukii host stages, with pupae being 
more sensitive to EPF treatments than larvae or adults. Additionally, 
Ramírez-Camejo et al. (2014) found that D. melanogaster is susceptible 
to the virulence of A. flavus, an opportunistic pathogen affecting both 
humans and animals.

7 Successful studies showing 
pathogenicity against Drosophila 
species

Mortality and oviposition are commonly used laboratory criteria 
to confirm the effectiveness of EPF-biopesticides. The efficacy of these 
biopesticides against D. suzukii (SWD) depends on the EPF species, 
the targeted life stage of the insect (larvae, pupae, or adults), and 
factors such as dosage, frequency, and application method. Naranjo-
Lázaro et  al. (2014) found that adult D. suzukii showed varying 
susceptibility to different Isaria and Metarhizium strains: 
I. fumosorosea Pf21 had 85% mortality, Pf17 had 60%, and Pf15 had 
57.5%, while M. anisopliae had only 12.2% mortality.

Cahenzli et  al. (2018) demonstrated that commercial 
EPF-biopesticides significantly impact adult flies, with effectiveness 
depending on the EPF species/strain and the gender of the host 

(females are less affected than males). Cossentine et al. (2016) also 
noted that EPF effectiveness is influenced by dosage and abiotic 
factors like temperature. Higher dosages (10^8 conidia) resulted in the 
highest mortality rates for B. bassiana, M. brunneum, I. fumosorosea, 
and L. lecanii, with mortality increasing at higher temperatures (20°C, 
25°C, 30°C). Additionally, M. brunneum was found to reduce fly 
fecundity by decreasing oviposition.

Shawer et al. (2018b) showed that B. bassiana was highly effective 
against SWD in both laboratory and field conditions, achieving over 
90% efficacy when used with various insecticides in cherry orchards. 
Although EPF was less effective than chemical pesticides, it still had a 
significant impact on SWD control. The combined use of EPF with 
other biological or chemical agents (e.g., nematodes, bacteria) has 
shown potential compatibility and efficacy (Sharma et al., 2018; Sain 
et al., 2019). While some biological agents like T. longibrachiatum have 
shown potential in replacing chemical insecticides (e.g., Leucinodes 
orbonalis in India), research on EPFs specifically interacting with 
D. melanogaster is limited. For example, T. inhamatum has been 
studied for its insecticidal and chitinolytic activities (Vallejos Sirpa 
et al., 2014).

7.1 Comparative efficacy and cost of 
entomopathogenic fungi vs. chemical 
insecticides in pest management

The application of entomopathogenic fungi (EPF) in real-world 
agricultural settings offers a sustainable alternative to chemical 
insecticides (Vivekanandhan et  al., 2024a). However, comparative 
studies of EPF and chemical insecticides in terms of seasonal efficacy 
and cost-efficiency have revealed distinct differences in performance. 
Chemical insecticides, known for their rapid action, often provide 
immediate pest control, but this comes at the cost of environmental 
degradation, resistance development, and non-target effects. In 
contrast, EPF, although slower acting, provide long-term pest control 
with fewer ecological side effects (Shah and Pell, 2003).

In terms of seasonal efficacy, chemical insecticides are highly 
effective in the short term, often reducing pest populations within 
hours to days. However, repeated applications are necessary due to the 
pests’ ability to develop resistance. Over time, this leads to diminishing 
returns, requiring higher doses or new chemical formulations. On the 
other hand, EPF show a slower onset of action, typically taking several 
days to weeks to achieve significant mortality in pest populations 
(Vega et al., 2009). This delay can be a disadvantage during peak pest 
infestation periods when immediate control is crucial. However, EPF 
have been shown to provide residual control, with the ability to persist 
in the environment and continue infecting pest populations over 
extended periods, especially when environmental conditions are 
favorable (Shah and Pell, 2003). This seasonal persistence can reduce 
the frequency of applications compared to chemical insecticides.

In terms of cost-efficiency, chemical insecticides are initially more 
affordable due to their widespread availability and established 
production processes. However, the hidden costs associated with their 
use, such as the environmental damage they cause, the loss of 
biodiversity, and the development of pest resistance, make them less 
cost-effective in the long term (Faria and Wraight, 2007). Moreover, 
the need for frequent reapplication due to short residual effects 
increases the total costs over a growing season. EPF, while often more 
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expensive to produce and formulate, may offer greater cost-efficiency 
in the long run. For example, studies have demonstrated that the use 
of EPF can lead to sustained pest population suppression with fewer 
applications, which can translate into lower overall costs in multi-
season agricultural operations (Zimmermann, 2007). Furthermore, 
EPF reduce the need for additional pest management inputs by 
promoting a balanced ecosystem, leading to enhanced natural enemy 
populations that contribute to pest suppression.

Comparative studies in agricultural systems have shown mixed 
results depending on the specific pest and environmental conditions. 
For instance, in a study comparing EPF and chemical insecticides for 
the control of aphids, the chemical insecticides provided faster 
knockdown, but the EPF-treated fields showed longer-lasting pest 
suppression with minimal non-target effects (Roy and Pell, 2000). 
Another study on corn borer control highlighted that while chemical 
insecticides were more effective initially, EPF provided comparable 
long-term control with fewer environmental risks (Faria and Wraight, 
2007; Table 1).

EPF strains exhibited varying effectiveness against different life 
stages of D. suzukii, with pupae being more sensitive to EPF treatments 
than larvae or adults. Variable mortality rates in D. suzukii adults 
treated with EPF have been reported, but these differences are not 
consistently linked to inoculation methods such as direct spray or fruit 
dipping (Naranjo-Lázaro et al., 2014). In some studies, B. bassiana 
inhibited both oviposition on uninfected berries and adult emergence 
from infested berries, while in others, it had no effect (Gargani et al., 
2013; Cuthbertson et al., 2014).

The success of D. suzukii as an invasive species is partly due to its 
ability to tolerate a wide range of environmental conditions. It can 
travel long distances across continents in various life stages within 
fruit or shipping containers (Rossi-Stacconi et al., 2016). This species 
has a broad host range, high fertility, and significant potential for both 
passive and active dispersal (Emiljanowicz et al., 2014; Stockton et al., 
2019b; Thistlewood et al., 2019). Interestingly, female D. melanogaster 
is more susceptible to several strains of B. bassiana than males. This 
sexually dimorphic susceptibility is not solely due to external defense 
and persists even after the flies are injected with the pathogen 
(Shahrestani et al., 2018).

8 Mechanisms of action of 
entomopathogenic fungi

Fungi penetrate the insect cuticle through non-sclerotized 
regions, wounds, the trachea, and mouthparts. This process involves 
mechanical and enzymatic strategies, with the secretion of chitinases, 
proteases, and lipases facilitating entry into the host. These enzymes, 
such as those identified in Beauveria bassiana (Zimmermann, 2007), 
degrade the insect cuticle, allowing the fungus to infiltrate the host’s 
body. Metarhizium acridum, another well-known entomopathogenic 
fungus (EPF), employs similar methods, though the specific enzymes 
used remain less understood. Once inside the insect, EPF proliferate 
within the hemolymph, producing asexual spores called blastoconidia, 
which invade host tissues, causing physiological and pathological 
damage that typically leads to death within 3–7 days (Zimmermann, 
2007; Shahid et al., 2012).

To resist fungal infection, insects activate defense mechanisms 
such as the release of phenoloxidase, which catalyzes melanization, 

and the mobilization of hemocytes for phagocytosis and encapsulation. 
Additionally, insects produce antimicrobial peptides (AMPs) and 
other defense molecules (Amparyup et al., 2013; Lavine and Strand, 
2002). However, fungi have evolved countermeasures. For example, 
B. bassiana and Metarhizium anisopliae produce secondary 
metabolites, including destruxins, that suppress insect immune 
responses by inhibiting AMP production and interfering with 
hemocyte activity (Pedrini et al., 2007).

In Drosophila, the immune system primarily responds to fungal 
infections through the Toll pathway, which triggers the production of 
AMPs like Drosomycin. The Imd pathway, while primarily responsive 
to Gram-negative bacteria, also plays a role in fungal defense 
(Lemaitre and Hoffmann, 2007). By inhibiting Toll signaling, fungi 
like B. bassiana evade these immune responses, enhancing infection 
success (Gillespie et  al., 1997). Understanding the molecular 
mechanisms of these interactions is crucial for optimizing EPF use in 
pest control strategies (Figure 2).

9 Pathogenic prowess: the future of 
Drosophila pest management

In recent years, 58 EPF-biopesticides have been developed and 
commercialized in various countries, based on the following species: 
M. anisopliae (33 products), B. bassiana (20 products), B. brongniartii 
(5 products), L. lecanii (2 products), I. farinosa (1 product), and 
I. fumosorosea (1 product). Several commercial strains of 
entomopathogenic fungi (EPF) have been registered with the US 
Environmental Protection Agency as potential active ingredients, 
including six strains of B. bassiana (Mohammed et al., 2022). The 
formulation of EPF products significantly impacts their efficacy 
against insect pests. For example, formulations of B. bassiana with 
plant oils (e.g., Naturalis®) have shown higher mortality rates than 
those using wettable powders (e.g., Bb-Protec; Cahenzli et al., 2018). 
Oil formulations, compared to aqueous solutions, can extend the shelf 
life of conidia and protect them from abiotic stressors such as 
humidity and temperature (Paixão et  al., 2017). These findings 
highlight the importance of using oil co-formulations in commercial 
EPF products.

Fungi emit volatile organic compounds (VOCs) as byproducts of 
metabolism, which can impact other species and human health, 
though their mechanisms of action are not fully understood (Bennett 
and Inamdar, 2015; Vivekanandhan et  al., 2018b; Vivekanandhan 
et al., 2018a). Inamdar et al. (2014) used Drosophila species as a model 
organism to study the biological effects of fungal VOCs. They found 
that eight-carbon VOCs from fungi were significantly more lethal to 
Drosophila species than common industrial solvents like xylene 
(Inamdar and Bennett, 2014). Flies with immunological deficiencies, 
caused by mutations in both the Toll and Imd pathways, exhibited 
greater resistance to eight-carbon VOCs compared to wild-type flies 
or single mutants, suggesting that these compounds can affect 
immune responses (Almaliki et al., 2021). This highlights Drosophila 
species as a valuable model system for investigating the effects of 
volatile fungal metabolites on animals.

Examples of opportunistic entomopathogenic fungi include 
Aspergillus, Penicillium, and Trichoderma species. Bojke et al. (2018) 
identified some VOCs from M. anisopliae and B. bassiana, but their 
mechanisms of action remain unknown and have not been tested in 
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Drosophila. Given the potential for these VOCs to repel and control 
insect pests or pathogens (Lozano-Soria et al., 2020).

10 Eco-friendly solutions: sustainable 
drosophila control with 
entomopathogenic fungi

Growers rely on regular insecticide applications to manage adult 
D. suzukii populations in the field. Although new pesticides for 
controlling this pest in berry crops have been developed, growers 
often reach the seasonal maximum limit for important insecticides 
(Chouinard et al., 1992). There is an urgent need for sustainable pest 
management solutions that complement biological control efforts and 
reduce reliance on chemical inputs. Alternative methods such as 
alternating row sprays, border sprays, and mass trapping offer options 
to the widespread application of pesticides. These approaches aim to 
minimize damage caused by D. suzukii in berry crops, reduce pesticide 

residues, decrease the volume of pesticide used, and mitigate fruit 
damage from application equipment (Prokopy et al., 2003; Klick et al., 
2016). Border sprays, applied to the field perimeter, help prevent pests 
from neighboring areas from entering (Blaauw and Isaacs, 2015). 
Since D. suzukii can utilize wild hosts in adjacent woodland areas 
(Briem et  al., 2016; Klick et  al., 2016; Iglesias and Liburd, 2017), 
border sprays could be an effective management strategy. Additionally, 
Sain et  al. (2021) found that strains of B. bassiana, M. anisopliae, 
F. moniliforme, and I. javanica are compatible with several 
conventional pesticides, including spiromesifen, diafenthiuron, 
buprofezin, pyriproxyfen, and flonicamid. This compatibility opens 
new opportunities for integrating EPF into pest management 
programs in pesticide-exposed areas. Natural substances that act as 
repellents, toxicants, or deterrents have been primarily tested on 
D. suzukii adults (Dam et al., 2019).

Commercial entomopathogenic fungi have shown variable results 
against Drosophila suzukii, potentially due to suboptimal field 
conditions (Lee et al., 2019). This control strategy could be improved 

TABLE 1 Mortality of Drosophila melanogaster and Drosophila suzukii using entomopathogenic fungal isolates and commercially available 
entomopathogenic fungi-based formulations in direct and indirect methods.

Fungus Infection 
through 
direct or 
indirect 
method

Test 
concentration 

(spores/mL)

Mortality 
percentage

Exposure 
time (in 

days)

Target stage Reference

Mortality of D. melanogaster and D. suzukii using entomopathogenic fungi based commercially available formulations

I. fumosorosea Direct 1 × 106–1 × 109 57–90 14 adult (D. suzukii) Cossentine et al., 2016

L. lecanii Direct 1 × 106–1 × 109 62–77 14 adult (D. suzukii) Cossentine et al., 2016

M. brunneum Direct 1 × 106–1 × 109 71–100 14 adult (D. suzukii) Cossentine et al., 2016

B. bassiana Direct 1 × 106–1 × 109 54–96 14 adult (D. suzukii) Cossentine et al., 2016

E. muscae Indirect 2.25 × 106 ≤27.3 4–8 adult (D. suzukii) Becher et al., 2018

T. suzukii Indirect 101–105 spores/μl 71.2 19 larvae, pupae and adults 

(D. suzukii)

Biganski et al., 2021

M. anisopliae 

and I. fumosorosea

Indirect 1 × 109 ≥40 7 adult (D. suzukii) Cuthbertson and Audsley, 

2016

E. muscae Indirect 2.25 × 106–3.46 × 105 62.9 10 adult (D. suzukii) Becher et al., 2018

B. bassiana Direct sprays 1 × 107 60 14 adult (D. suzukii) Woltz et al., 2015

P. fumosoroseus Direct sprays 1 × 107 31.3 14 adult (D. suzukii) Woltz et al., 2015

M. anisopliae – 1× 107 12.5 – adult (D. suzukii) Naranjo-Lázaro et al., 2014

M. anisopliae Direct sprays 1 × 107 61.5 14 adult (D. suzukii) Woltz et al., 2015

I.fumosorosea Direct sprays 1×10 7 85, 57.5, 60 – adults (D. suzukii) Naranjo-Lázaro et al., 2014

Mortality of D. melanogaster and D. suzukii using Entomopathogenic fungi based commercially available formulations

L. muscarium Indirect 0.1% solution 93.3–95.3 7 adult (D. suzukii) Cuthbertson et al. (2014)

B.bassiana Direct spray 0.3% solution 44 7 adult (D. suzukii) Cuthbertson et al. (2014)

B.bassiana fruit-dip – 70–78 7 adult (D. suzukii) Rhodes et al., 2018

I.fumosorosea fruit-dip – 62–68 7 adult (D. suzukii) Rhodes et al., 2018

B. bassiana Mycotrol-O 80 10 adult (D. melanogaster) Shahrestani et al., 2018

M. anisopliae, and B. 

bassiana

Direct and indirect 2 × 105 20 10 larvae (D. suzukii) Ibouh et al., 2019

60 pupae (D. suzukii)

38–68 adult (D. suzukii)
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by using indigenous strains better adapted to local environments 
(Haye et al., 2016; Cossentine and Ayyanath, 2017). For example, 
BotaniGard, a bioinsecticide containing a high concentration of 
B. bassiana, was tested against D. suzukii, a major global pest of soft 
fruits (Cossentine et al., 2016). Another bioinsecticide, Mycotrol-O, 
also based on B. bassiana, achieved 80% adult mortality in strawberry 
experimental cages 10 days after application (Jentsch et al., 2014). 
Alternative EPF-based control strategies include lure-and-infect or 
lure-and-kill devices (Cossentine et  al., 2016; Yousef et  al., 2018), 
which feature fungal spores in baited auto-inoculators that protect the 
spores from environmental degradation. Trials with a noncommercial 
fungus strain resulted in 96% mortality after 24 h of exposure, 
demonstrating its potential for selective and cost-effective 
management of D. suzukii (Yousef et al., 2018). The use of EPF-based 
agricultural products can introduce EPF into agroecosystems, where 
they may interact with various organisms, plants, and microorganisms 
(Figure 3).

The full impact of EPF-based products on ecosystem functioning 
is not yet fully understood. Key challenges in researching the non-target 
impacts of EPF in agricultural environments include their persistence 
and spread in treated fields, the wide range of potential hosts, and 
interactions with or infections of non-target organisms. EPF persistence 
in agroecosystems varies due to environmental conditions such as UV 
radiation, temperature, humidity, and soil factors like pH, texture, 
organic matter, and rhizosphere composition. Some studies have found 
that commercial EPF has a shorter persistence in environments like 
soil, often less than 2 to 3 months (Lei et al., 2022; Yang et al., 2019), 
which may enhance their potential for field application in pest control.

Researchers are studying the effects of various EPF species on 
plants, invertebrates, and non-target insects, exploring their synergistic, 
antagonistic, or neutral interactions. EPF can serve as biopesticides for 
insects and also as potential biofertilizers or biostimulants, promoting 
plant growth and enhancing soil nutrient availability (Bamisile et al., 
2021). For example, M. anisopliae has been suggested as a biostimulant 
for Arabidopsis, tomato, and maize plants, increasing root length and 
fresh weight (González-Pérez et al., 2022). M. robertsii enhances root 
growth in Arabidopsis by increasing indole-3-acetic acid production, 
which also boosts its virulence against G. mellonella (González-Pérez 
et  al., 2022). Additionally, B. bassiana acts as a biostimulant for 
cabbages, positively impacting development under water stress 
conditions (Dara, 2017). M. brunneum has been shown to enhance 
iron availability in calcareous soil and in cucumbers and melons 
(Barelli et al., 2016; García-Espinoza et al., 2023). EPF strains have 
generally shown neutral effects on non-target microbiomes and biota.

11 Precision biocontrol: strategies for 
optimized application

Biological control primarily involves using predators or pathogens 
to regulate the population of Spotted Wing Drosophila (SWD). While 
promising, the success of using predators, such as sterile insects, has 
been limited. A well-researched form of biological control is the use 
of entomopathogenic fungi (EPF), which have proven effective against 
a range of insects, including D. suzukii (Woltz et al., 2015; Cossentine 
et al., 2016). Consequently, many EPF species are now used as active 

FIGURE 2

Entomopathogenic fungi mode of infections on Drosophila species.
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ingredients in biopesticide formulations. The minimal environmental 
risk associated with EPF-based biopesticides has generated significant 
interest in their development and application in agriculture.

11.1 Entomopathogenic fungi limitations 
and challenges in field application

Entomopathogenic fungi (EPF) are promising biological control 
agents for managing insect pests in sustainable agriculture. However, 
their field application faces several limitations and challenges that 
hinder their widespread adoption. One significant challenge is their 
dependency on environmental conditions. EPF require specific 
humidity and temperature ranges for successful spore germination 
and infection. In field conditions, low humidity and extreme 
temperatures can significantly reduce their effectiveness, as these 
fungi rely on high moisture levels to penetrate the insect cuticle (Shah 
and Pell, 2003).

Another limitation is the slow action of EPF compared to chemical 
insecticides. While chemical pesticides can kill pests within hours, 
EPF generally take several days to weeks to kill their hosts, allowing 
pests to continue damaging crops during this period. This delay in 
action often leads to hesitation among farmers seeking quick solutions 
(Vega et al., 2009). Additionally, the sporulation and production of 
infective units in large quantities remain a technical challenge. 
Ensuring spore viability during storage and application can 
be  problematic, as spores may degrade or lose virulence before 
reaching the target pests (Zimmermann, 2007).

Formulation and delivery are also complex. Spores need to 
be formulated in a way that enhances their stability and adherence to 
the insect cuticle in outdoor conditions, which often proves difficult. 

Moreover, scaling up the production of high-quality spores for 
commercial use is expensive and technically demanding, adding to the 
cost of using EPF compared to conventional insecticides (Faria and 
Wraight, 2007). Non-target effects also raise concerns, as certain 
strains of EPF can inadvertently affect beneficial insects, such as 
pollinators or natural enemies of pests, creating a risk of disrupting 
ecological balances (Roy and Pell, 2000).

11.2 Integration of insect pathogenic fungi 
into IPM programs

Entomopathogenic fungi (EPF) have been developed as an 
alternative pest control method in response to concerns about the 
harmful effects of synthetic pesticides on humans and the 
environment. As a result, they are increasingly integrated into pest 
management (IPM) systems. Fungicides, however, can negatively 
impact EPF by killing these beneficial fungi and contributing to pest 
outbreaks and resurgence. For instance, fungicides used to treat pecan 
scab have been shown to kill EPF that control pecan aphids, 
necessitating additional insecticide applications to prevent secondary 
outbreaks (Dutcher, 2007; Pickering et al., 1990).

Globally, microbial biopesticides represent approximately 
US$3.3 billion, about 8% of all pesticides sold (Glare et al., 2020). 
Their usage is expected to increase in the coming decades (Olson, 
2015). EPF is the second most widely used microbial biopesticide, 
accounting for about 9% of all microbial biopesticides sold worldwide 
(Glare et  al., 2020). Their popularity is due to their effectiveness 
against a range of insect pests (Dolinski and Lacey, 2007; Lacey and 
Shapiro-Ilan, 2008) and their suitability for organic and sustainable 
agriculture (Lacey et al., 2015).

FIGURE 3

The ecofriendly approaches of using biological control agents like entomopathogenic fungi subsequently enriches the environment and kills the target pest.
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EPF have also been shown to act as endophytes in host plants 
(McKinnon et al., 2017). They can be combined with attractants to 
create attract-and-kill pest management strategies (Navarro-Llopis 
et  al., 2015; Brandl and Andersen, 2017). Additionally, EPF may 
interact synergistically with beneficial arthropods, such as predators, 
parasitoids, and pollinators (Rossoni et al., 2014; Al Mazra'awi et al., 
2006), as well as with other entomopathogens, like bacteria and 
nematodes (Wraight et al., 2017), and synthetic insecticides (Wraight 
et al., 2016). Combinations of EPF with attractants, such as methanol/
ethanol mixtures, aggregation pheromones, or sex pheromones, have 
been tested against pests like Ceratitis sordidus (Tinzaara et al., 2007), 
Ceratitis formicarius (Lopes et al., 2014), and Hypothenemus hampei 
(Mota et al., 2017). A “sex pheromone” is a female-produced attractant 
that draws both sexes of the same species to a calling site, increasing 
the likelihood of mating (Landolt and Phillips, 1997). An “aggregation 
pheromone” is a male-produced attractant that lures both male and 
female individuals of the same species to a specific location to enhance 
mating chances.

The technique come to a thought to researcher Knipling (1955), 
that is the Sterile Insect Technique (SIT), which was used to control 
agricultural pest population. It basically relies on growing of individual 
pest and reproductively sterile them and release them in geographical 
environment. Procedure for sterile insect techniques here follows:

 • Exposing the insects to ionizing radiation, which ultimately 
causes the germ cell atrophy (Mutation in the sperm and 
complete ovary atrophy),

 • The ionized insects flooded in the agricultural environment,
 • when the sterile males meet the wild female the insemination 

process takes place,
 • and the zygote leads to die during embryogenesis and thereby, 

reduces the population of insects.

Some researchers have concluded that combining Sterile Insect 
Technique (SIT) with biological control agents can effectively control 
insect pests (Enkerlin, 2005; Toledo et al., 2017). When B. bassiana 
was combined with a collection pheromone (Cosmolure®—sordidin 
or (1S,3R,5R,7S)-1-ethyl-3,5,7-trimethyl-2,8-dioxabicyclo [3.2.1] 
octane), moderate to high mortality of Ceratitis sordidus adults was 
observed in the laboratory (Lopes et al., 2014). However, field trials 
showed only low to moderate mortality (Tinzaara et al., 2007; Tinzaara 
et al., 2015).

Further research into biological management strategies is essential 
for developing an integrated pest management (IPM) program for 
spotted wing drosophila (SWD). Recent efforts have focused on 
addressing major invasive pests in North America and Europe 
(Ragsdale et al., 2011; Zappala et al., 2013). While biological control 
of SWD may be effective in reducing populations in natural reservoir 
habitats, it may not have the same impact on cultivated crops, despite 
the fly’s high reproductive potential and multiple generations per year.

12 Next,-generation tools: developing 
entomopathogenic fungi and future 
directions and research gaps

During the internal growth stage, the insect intestine is 
compromised (Toledo et al., 2010), leading to alterations in the gut 
microbial community and significant changes in the composition and 

concentration of host hemolymph metabolites involved in the immune 
response (Hernández-Chávez et al., 2017; Shin et al., 2020). During 
host-entomopathogenic fungus (EPF) interactions, many fungal 
secondary metabolites (SMs) are produced from primary metabolite 
pools and major metabolic pathways. These secondary metabolites 
vary dynamically depending on the type of fungal infection and play 
an important role in fungal development and interactions with other 
species (Woo et al., 2020; Zhang et al., 2020; Pedrini, 2022). Many of 
these fungal secondary metabolites, also known as mycotoxins, are 
toxic to insects. For example, beauverolides, cytochalasins, destruxins, 
and oosporeins are essential for complete fungal virulence. They 
suppress or evade the host immune response and can cause muscular 
damage, such as destruxin A’s action on Locusta migratoria visceral 
muscles, allowing fungal multiplication in insect hosts (Vilcinskas 
et al., 1997; Feng et al., 2015). These mycotoxins are often specific to 
certain species, hosts, or infection stages and show promise for 
biological pest control (Mannino et al., 2021).

Several metabolites derived from entomopathogenic fungi (EPF) 
influence insect innate immunity. For instance, cordycepin 
(3′-deoxyadenosine), a secondary metabolite produced by the 
hypocrealean entomopathogenic fungus Cordyceps militaris, reduces 
immune-related gene expression in insects (Woolley et  al., 2020). 
Metarhizium acridum produces tryptamine, which induces the 
generation of reactive oxygen species in the host while suppressing the 
immune system by activating a host aryl hydrocarbon receptor 
(LmAhR; Tong et al., 2020). Further research is needed to explore the 
roles of fungal metabolites in regulating insect host immunological 
capacity and gut microbiome features. Specifically, the molecular 
biology of insect-fungal interactions and the mechanisms by which 
insect antagonists limit secondary metabolite production in model 
fungal diseases like Metarhizium species remain unresolved (Xu, 2016; 
Wang and Wang, 2017).

Future research should focus on insect-EPF interactions using 
molecular and biochemical methodologies, such as metagenomic and 
metabolomic techniques. Understanding pathogenicity mechanisms will 
aid in the development of novel biological formulations. Future efforts 
should prioritize: (a) reducing the lethal dose and application time, (b) 
enhancing EPF formulation tolerance to various climatic conditions (e.g., 
low/high humidity, temperature, and UV), and (c) improving EPF 
tolerance to agrochemicals (e.g., pesticides/insecticides). Enhancing EPF 
formulations will increase their effectiveness in agricultural systems and 
integrated pest management (IPM) methods.

13 Conclusion

The classification and biological understanding of 
entomopathogenic fungi (EPF) highlight their significant potential in 
managing Drosophila species. This review underscores the diverse 
modes of action of EPF, including their ability to penetrate, proliferate 
within, and ultimately kill Drosophila through various mechanisms. 
The effectiveness of EPF in pest management stems from their specific 
targeting of Drosophila while minimizing adverse effects on non-target 
organisms and the environment. EPF offer a promising alternative to 
chemical pesticides, contributing to sustainable pest control strategies. 
Continued research into optimizing EPF formulations and application 
methods will enhance their efficacy and integration into pest 
management programs. By leveraging the unique biological 
interactions of EPF, we can advance toward more environmentally 
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friendly and effective solutions for controlling Drosophila populations 
and reducing the reliance on chemical insecticides.
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