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Background: The gut microbiota (GM) plays a pivotal role in influencing various 
health outcomes, including immune-mediated conditions, but its potential 
association with autoimmune thyroid disease (AITD) remains underexplored. 
We aimed to investigate the potentially pathogenic or protective causal impacts 
of specific GM on two types of AITD, namely Graves’ disease and Hashimoto’s 
thyroiditis, and analyzed the mediating effect of 731 immune cell phenotypes.

Methods: Leveraging pooled genome-wide association study (GWAS) data 
of 211 gut microbiota traits, 731 immune cell phenotypes, and two types of 
AITD (Hashimoto’s thyroiditis and Graves’ disease), we performed bidirectional 
Mendelian randomization (MR) analyses to explore the causal relationships 
between the GM and AITD. Subsequently, we  employed a multivariable MR 
analysis to discover potential mediating immune cell traits. Additionally, 
sensitivity analyses were utilized to ensure the reliability of the outcomes.

Results: Our analysis revealed that a total of 7 GM taxa were positively 
associated with AITD, and other 14 taxa showed a negative correlation with 
AITD. Furthermore, we  identified several immune cell traits that mediated the 
effects of GM on AITD. Most notably, Actinobacteria (p) presented protective 
effects on Hashimoto’s thyroiditis via CCR2 on myeloid Dendritic Cell (5.0%), 
and Bifidobacterium (g) showed facilitating effects on Graves’ disease through 
CD39+ CD4+ T cell %CD4+ T cell (5.0%) and CD14 on CD33+ HLA DR+ 
CD14dim (12.2%).

Conclusion: The current MR study provides evidence supporting the causal 
relationships between several specific GM taxa and AITD, and further identified 
potential mediating immunophenotypes.
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1 Introduction

Autoimmune thyroid disease (AITD), mainly including Graves’ 
disease (GD) and Hashimoto’s thyroiditis (HT), affects 5% of the 
general population, making it one of the most prevalent autoimmune 
diseases (Antonelli et al., 2015; Lee et al., 2015). Despite the different 
clinical manifestations, GD and HT share similar immune-mediated 
mechanisms of disease, even alternating from one to the other (Lee 
et  al., 2015). As already stated, the onset of AITD implicates a 
breakdown of immune tolerance towards the thyroid, through an 
autoimmune multifactorial process, involving environmental and 
endogenous factors in genetically susceptible individuals. The etiology 
of AITD is currently considered as a complex interplay of specific 
susceptibility genes and environmental exposures (Vargas-Uricoechea, 
2023). However, current treatments aim to control hormone-related 
symptoms, and have been proven ineffective in correcting the 
dysregulated immunity in patients, making it essential to develop 
novel targeted prevention and treatment strategies.

Gut microbiota (GM) refers to all micro-organisms that inhabit the 
human gastrointestinal tract and are considered as the largest reservoir 
of microbes in the human body (Lynch and Pedersen, 2016). Due to 
the intricate and symbiotic relationship with the host, the GM is closely 
related to various aspects of human health, not just intestinal diseases 
(Valdes et al., 2018). From the embryology aspect, the thyroid and gut 
share a common embryological origin, explaining some morphological 
and functional similarities between the gut and thyroid follicular cells 
(Lahner et al., 2020). Previous evidence for possible GM involvement 
in the onset and progression of AITD was based solely on retrospective 
measures of bacterial antibodies in AITD patients (Strieder et al., 2003; 
Larizza et al., 2006; Bassi et al., 2010). Until now, there is no direct 
evidence that AITD and gut microbiota have a cause-effect relationship.

Mendelian randomization (MR), using genetic variants as 
instrumental variables (IVs), is a widely accepted method to control 
potential confounding factors, which can avoid reverse causation bias 
and allow more robust causal inferences between exposure and clinical 
outcomes (Sekula et  al., 2016). Two-sample MR analysis utilizes 
single-nucleotide polymorphism (SNP)-exposure and SNP-outcome 
associations from independent genome-wide association study 
(GWAS) and combines them into a single causal estimate. As the 
number of GWASs on GM and diseases has increased rapidly, large-
scale summary statistics have become more widely available, allowing 
for boosting studies on GM MR analysis with significantly improved 
statistical power (Li et al., 2022; Gagnon et al., 2023; Xu et al., 2023).

Although previous observational studies have emphasized the link 
between altered microbial diversity and AITD, but a causal relationship 
has not been established. The present study aims to elucidate the 
specific gut microflora that potentially contribute to the onset of AITD 
and assess their potential as novel targets for treatment. We employed 
bidirectional MR dissect the causal impact of GM on two types of 

AITD (GD and HT), and further performed MR-based mediation 
analysis to ascertain the mediating role of of 731 immunophenotypes.

2 Materials and methods

2.1 Study design

We used a two-sample MR design: a genetic instrumental variable 
analysis based on summary-level data with SNPs as instruments for 
the risk factor. For causal estimates from MR studies to be valid, three 
assumptions must be met (Sekula et al., 2016): (1) the genetic variants 
are strongly associated with the exposure, (2) the genetic variants are 
not associated with any potential confounder of the exposure-outcome 
association and (3) the variants do not affect outcome independently 
of exposure. We first performed a two-sample bidirectional MR to 
assess the association of GM with AITD. Then, we applied a two-step 
MR analysis to assess whether immune cells have a causal role in the 
mediating pathway between GM and AITD. This study is reported 
following the Strengthening the Reporting of Observational Studies 
in Epidemiology Using Mendelian Randomization guidelines 
(STROBE-MR, S1 Checklist) (Skrivankova et al., 2021). The study’s 
design and progression are illustrated in Figure 1.

2.2 Data source

The summary statistics of GM were retrieved from the MiBioGen 
consortium,1 which serves as a vast database, diligently compiling and 
analyzing genome-wide genotypes alongside 16S fecal microbiome 
data. This dataset includes 18,340 participants from 24 unique cohorts, 
and the GWAS summary data included a total of 211 GM taxa (131 
genera, 35 families, 20 orders, 16 classes, and 9 phyla). The GWAS 
summary data of HT and GD were derived from the Finngen R10 
consortium. A public catalog (GCST0001391 to GCST0002121) 
containing GWAS data for 731 immunophenotypes was included in 
the study. A total of 731 immunophenotypes were examined, 
including relative cell counts (RC) (192), morphologic parameters 
(MP) (32), absolute cell counts (AC) (118), and median fluorescence 
intensities (MFI) representing surface antigen levels (389). Of these, 
MP features included CDC and TBNK panels, whereas MFI, RC, and 
AC features included B cells, CDC, T cell maturation stage, myeloid 
cells, monocytes, and TBNK (T cells, B cells, natural killer proteins).

The present study is a secondary analysis of publicly available 
GWAS summary statistics. Ethical approval was granted for each of 
the original GWAS studies. In addition, no individual-level data was 
used in this study. Therefore, no new ethical review board approval 
was required.

2.3 IVs selection

The following selection criteria were used to choose the IVs: (1) 
SNPs associated with each genus at the locus-wide significance 

1 https://mibiogen.gcc.rug.nl/

Abbreviations: AC, absolute cell counts; AITD, autoimmune thyroid disease; CCL2, 

chemokine ligand 2; CCR2, chemokine receptor 2; GD, Graves’ disease; GM, gut 

microbiota; GWAS, genome-wide association study; HT, Hashimoto’s thyroiditis; 

IV, instrumental variable; IVW, inverse variance-weighted; LD, linkage disequilibrium; 

MAF, minor allele frequency; MFI, median fluorescence intensities; MP, morphologic 

parameters; MR, mendelian randomization; MVMR, multivariable Mendelian 

randomization; RC, relative cell counts; SNP, single-nucleotide polymorphism.
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threshold (p < 1.0 × 105) were selected as potential IVs; (2) 1000 
Genomes project European samples data were used as the reference 
panel to calculate the linkage disequilibrium (LD) between the SNPs, 
and among those SNPs that had R2 < 0.001 (clumping window 
size = 10,000 kb), only the SNPs with the lowest p values were retained; 
(3) SNPs with minor allele frequency (MAF) ≤ 0.01 were removed; 
and (4) when palindromic SNPs existed, the forward strand alleles 
were inferred using allele frequency information.

2.4 Statistical analysis

We conducted a bidirectional two-sample MR analysis to assess 
the connection between GM and AITD. Our main analysis employed 
the inverse variance-weighted (IVW) meta-analysis method. To 
enhance the reliability of our findings, we also performed additional 
analyses using the weighted median, MR-Egger regression, simple 
mode and weighted mode methods. We  evaluated the potential 

FIGURE 1

Study flow chart. The entire workflow of MR analysis.
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influence of directional pleiotropy by examining the intercept value in 
the MR-Egger regression. MR-Egger intercept p-value exceeding 0.05 
indicated the absence of pleiotropy. The MR PRESSO was utilized to 
detect pleiotropy and outliers. We  gauged heterogeneity using 
Cochran’s Q test. When faced with heterogeneity, we chose a random-
effects IVW for our primary analysis.

The mediation analysis by a multivariable Mendelian 
randomization (MVMR) approach in this study focused on AITD-
related GM and immunophenotypes. In addition to the basic effect 
estimates of GM on AITD (beta*) obtained from the univariate MR 
analyses, two more estimates were calculated: (1) the effect of the 
immunophenotypes on AITD adjusting for bacteria (beta2), and (2) 
the causal effect of the exposure (significant GM on AITD in primary 
MR analysis) on the mediator (AITD-related immunophenotypes) 
(beta1). The mediation effect, which refers to the causal effect of GM 
on AITD via mediators, can then be calculated by using the following 
formula: beta1 × beta2. Thus, mediation proportion could 
be calculated as “indirect effect/total effect” ([beta1 × beta2]/beta*).

All statistical analyses were conducted using the R software, 
version 4.3.1. MR analyses were performed using the TwoSampleMR 
(version 0.5.6) and MR-PRESSO (version 1.0) R packages.

3 Results

3.1 Genetic causality and correlation 
between GM and AITD

The number of SNPs identified as IVs ranged from 3 to 26 
(median: 12) for the 211 GM taxa, and the median F-statistic was 
21.03 (ranged from 14.58 to 88.42) (Supplementary Tables S1, S2).

When evaluating the causal effects of GM on HT, six genera and 
one phylum were significantly associated with HT (Figures 2A, 3A, 
Supplementary Table S3). The abundance of Eggerthella (g) (IVW: OR 
0.94, 95% CI 0.89–0.99, p = 0.019), RuminococcaceaeUCG011 (g) 
(IVW: OR 0.95, 95% CI 0.90–0.99, p = 0.018), DefluviitaleaceaeUCG011 
(g) (IVW: OR 0.93, 95% CI 0.87–1.00, p = 0.036), Actinobacteria (p) 
(IVW: OR 0.91, 95% CI 0.84–0.98, p = 0.011), and Butyrivibrio (g) 
(IVW: OR 0.96, 95% CI 0.93–0.99, p = 0.016) presented protective 
effect on HT. Conversely, the abundance of Holdemanella (g) (IVW: 
OR 1.07, 95% CI 1.01–1.13, p = 0.026) and Intestinimonas (g) (IVW: 
OR 1.06, 95% CI 1.00–1.12, p = 0.040) increased the risk of HT. No 
heterogeneity and pleiotropy were found in (Supplementary  
ables S4, S5) SNPs.

When considering GD as the outcome, eight genera, two families, 
two orders, one class and one phylum showed a significant correlation 
(Figures 2B, 3B, Supplementary Table S6). Coprococcus1 (g) (IVW: OR 
0.78, 95% CI 0.61–0.99, p = 0.037), Akkermansia (g) (IVW: OR 0.77, 
95% CI 0.61–0.96, p = 0.023), Victivallis (g) (IVW: OR 0.82, 95% CI 
0.71–0.96, p = 0.010), Bacteroidaceae (f) (IVW: OR 0.75, 95% CI 0.57–
1.00, p = 0.046), Verrucomicrobiales (o) (IVW: OR 0.77, 95% CI 0.61–
0.96, p = 0.023), Bacteroides (g) (IVW: OR 0.75, 95% CI 0.57–1.00, 
p = 0.046), Verrucomicrobiae (c) (IVW: OR 0.77, 95% CI 0.61–0.96, 
p = 0.023), Verrucomicrobia (p) (IVW: OR 0.74, 95% CI 0.59–0.92, 
p = 0.008) and Verrucomicrobiaceae (v) (IVW: OR 0.77, 95% CI 0.61–
0.96, p = 0.023) had protective effect on GD, while the increased 
abundance of Ruminiclostridium5 (g) (IVW: OR 1.31, 95% CI 1.03–
1.67, p = 0.029), Catenibacterium (g) (IVW: OR 1.42, 95% CI 

1.10–1.82, p = 0.006), Rhodospirillales (o) (IVW: OR 1.21, 95% CI 
1.02–1.43, p = 0.031), Bifidobacterium (g) (IVW: OR 1.34, 95% CI 
1.09–1.65, p = 0.006) and LachnospiraceaeND3007group (g) (IVW: OR 
1.85, 95% CI 1.06–3.24, p = 0.030) were positively associated with the 
risk of GD. The above results also demonstrated an absence of 
heterogeneity and pleiotropy (Supplementary Tables S7, S8).

To avoid bidirectional effects, we  further valuated the causal 
effects of AITD on above-mentioned GM taxa (Supplementary  
Tables S9, S10). All included taxa did not exhibit significant variation 
after HT, while the relative abundance of one class, one order, two 
families, and three genera were significantly altered after GD (Figure 4 
and Supplementary Tables S11, S12). Therefore, after removing taxa 
with bidirectional effects, a total of six genera and one phylum were 

FIGURE 2

Circus plot of Mendelian randomization analyses of gut microbiota 
(GM) on autoimmune thyroid disease. (A) Mendelian randomization 
analysis between GM and Hashimoto’s thyroiditis. (B) Mendelian 
randomization analysis between GM and Graves’ disease. IVW_OR, 
the results of odds ratio of inverse variance weighted method. 
IVW_P, the p value for inverse variance weighted method. MR 
Egger_P, the p value for MR Egger method. SM_P, the p value for 
Simple mode method. WM_P, the p value for weighted median 
method. WMODE.P, the p value for weighted mode method.
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included for HT, and five genera, one order and one phylum were 
included for GD in further analysis.

3.2 Mediator screening

Aiming to identify potential mediators, we utilized 731 immune 
cell traits to investigate their effects on AITD. The number of SNPs 
identified as IVs ranged from 3 to 713 (median: 22) for the 731 
immunophenotypes, and the median F-statistic was 21.66 (ranged 
from 9.54 to 2380.38) (Supplementary Tables S13, S14).

In the analysis examining the association between immune cell 
traits and HT, we  found 46 immunophenotypes were positively 
correlated with HT and 16 were negatively correlated (Figure 5A and 
Supplementary Table S15). Furthermore, we explored the potential 
mediation effects of GM exposures on these significant mediators in 
HT (Figure 5B). Significant mediation effects were found in six GM 
taxa. Eggerthella (g) showed various mediation effect on HT via four 
different mediators: CD25++ CD8+ T cell %T cell (β = 0.18, p = 0.035), 
CD3 on activated CD4 regulatory T cell (β = −0.22, p = 0.015), CD3 on 
CD39+ activated CD4 regulatory T cell (β = −0.21, p = 0.019), and 
CD3 on activated & secreting CD4 regulatory T cell (β = −0.18, 

p = 0.049). RuminococcaceaeUCG011 (g) demonstrated a positive 
mediation effect through CD33-HLA DR+ Absolute Count (β = 0.27, 
p = 0.011) and BAFF-R on ID- CD27- B cell (β = 0.16, p = 0.045). 
Actinobacteria (p) showed positive effect on HT via four different 
mediators: CD28+ CD45RA+ CD8+ T cell %T cell (β = 0.23, p = 0.006), 
CD3 on Central Memory CD4+ T cell (β = 0.36, p = 0.026), CD3 on 
CD45RA- CD4+ T cell (β = 0.29, p = 0.024), and CCR2 on myeloid 
Dendritic Cell (β = 0.27, p = 0.044). Butyrivibrio (g) presented mixed 
mediation effect through CD39+ CD8+ T cell %T cell (β = −0.15, 
p = 0.043), CD39+ CD8+ T cell Absolute Count (β = −0.14, p = 0.046) 
and CD27 on lgD- CD38+ B cell (β = 0.21, p = 0.001). Holdemanella 
(g) also showed mixed mediation effect, via CD33-HLA DR+ Absolute 
Count (β = 0.18, p = 0.049) and CD28+ CD45RA+ CD8+ T cell %T cell 
(β = −0.15, p = 0.042), respectively. Strongest mediation effect was 
found in Intestinimonas (g) though CD27 on ID+ CD38- unswitched 
memory B cell (β = 0.40, p = 0.001), as well as CD27 on lgD- CD38- B 
cell (β = 0.20, p = 0.024), CD27 on unswitched memory B cell (β = 0.24, 
p = 0.004), CD28 on CD45RA+ CD4+ T cell (β = 0.23, p = 0.013) and 
CD4 regulatory T cell %CD4+ T cell (β = −0.22, p = 0.012).

In the analysis between immune cell traits and GD, 17 
immunophenotypes showed a positive correlation with GD and 20 
showed a negative correlation (Figure  6A and Supplementary  

FIGURE 3

Mendelian randomization analysis between gut microbiota (GM) and autoimmune thyroid disease. (A) Mendelian randomization analysis between GM 
and Hashimoto’s thyroiditis. (B) Mendelian randomization analysis between GM and Graves’ disease.
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Table S16). Investigation of the potential mediation effects of GM 
exposures on these mediators in GD unveiled two GM genera 
(Figure  6B). Victivallis (g) presented positive effect on GD via 
CD33dim HLA DR+ CD11b- Absolute Count (β = 0.16, p = 0.033), 
and Bifidobacterium (g) showed mixed effect though three mediators: 
CD39+ activated CD4 regulatory T cell %activated CD4 regulatory T 
cell (β = −0.38, p = 0.033), CD39+ CD4+ T cell %CD4+ T cell 
(β = −0.26, p = 0.045) and CD14 on CD33+ HLA DR+ CD14dim 
(β = 0.52, p = 0.005).

3.3 Mediation analyses of potential 
immunophenotypes

After pinpointing significant mediators influencing AITD and 
the subsequent effects of exposure on mediation, we quantified 
the mediation effect proportions (Table  1). As for HT, 
Intestinimonas (g) exhibited mediation effects via CD4 regulatory 
T cell %CD4+ T cell (11.2%), CD27 on IgD+ CD38- unswitched 
memory B cell (10.8%), CD27 on IgD- CD38- B cell (11.9%), 
CD27 on unswitched memory B cell (11.1%) and CD28 on 
CD45RA+ CD4+ T cell (30.2%). Eggerthella (g) mediated its 

effects on HT through CD3 on activated CD4 regulatory T cell 
(8.8%), CD3 on CD39+ activated CD4 regulatory T cell (7.9%) 
and CD3 on activated & secreting CD4 regulatory T cell (7.4%). 
Other notable mediation effects included Holdemanella (g) via 
CD33- HLA DR+ Absolute Count (3.3%), DefluviitaleaceaeUCG011 
(g) via CD28+ CD45RA+ CD8+ T cell %T cell (0.5%), 
Actinobacteria (p) via CCR2 on myeloid Dendritic Cell (5.0%) and 
RuminococcaceaeUCG011 (g) via BAFF-R on IgD- CD27- B cell 
(4.4%). When considering GD, Bifidobacterium (g) showed its 
mediation effects through CD39+ CD4+ T cell %CD4+ T cell 
(5.0%) and CD14 on CD33+ HLA DR+ CD14dim (12.2%), and 
Victivallis (g) showed effects on GD through CD33dim HLA DR+ 
CD11b- Absolute Count (3.3%).

4 Discussion

The intricate relationship between the GM and immune-mediated 
diseases has been a topic of burgeoning interest in recent years. The 
present large-scale MR study delved into the associations between 
specific GM taxa and AITD, and analyzed the mediating role of 
immune cell traits in this complex interplay. A total of 7 GM taxa were 

FIGURE 4

Reverse Mendelian randomization analysis between gut microbiota (GM) and autoimmune thyroid disease. (A) Reverse Mendelian randomization 
analysis between GM and Hashimoto’s thyroiditis. (B) Reverse Mendelian randomization analysis between GM and Graves’ disease.
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found to be  positively associated with AITD, suggesting that 
abundance of them might be linked to a higher risk of developing 
AITD. Other 14 taxa showed negative correlation with AITD, 
indicating a potential protective effect against the disease. Further 
analysis regarding mediation effects revealed that the above-
mentioned GM taxa could affect the onset of AITD through diverse 

immune cell traits, providing novel insights into the GM-immune 
system-AITD regulating axis.

As mentioned in the introduction, the gut-thyroid 
communication hints at a possible influence of the GM on AITD 
onsets. Previous studies demonstrated that the gut could influence 
the thyroid function through several microbial-related mechanisms. 

FIGURE 5

Mendelian randomization analysis between gut microbiota (GM) and mediator in Hashimoto’s thyroiditis (HT). (A) Volcano plot of immunophenotypes 
with significant association with HT. (B) Mendelian randomization analysis between GM and immunophenotypes.

FIGURE 6

Mendelian randomization analysis between gut microbiota (GM) and mediator in Graves’ disease (GD). (A) Volcano plot of immunophenotypes with 
significant association with GD. (B) Mendelian randomization analysis between GM and immunophenotypes.
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TABLE 1 Mediation analysis of immunophenotypes between gut microbiota and autoimmune thyroid disease.

Exposure Mediator Outcome Total 
effect

Direct 
effect

Mediation 
effect (95% 

CI)

P value Mediation 
proportion 

(95% CI)

g_Intestinimonas
CD4 regulatory T 

cell %CD4+ T cell

Hashimoto’s 

thyroiditis
0.0591 0.0525

0.0066 

(−0.0302,0.0435)
0.7249 11.2% (−51.1,73.5%)

g_Intestinimonas

CD27 on IgD+ 

CD38- 

unswitched 

memory B cell

Hashimoto’s 

thyroiditis
0.0591 0.0527

0.0064 (−0.0825, 

0.0952)
0.8882 10.8% (−140, 161%)

g_Intestinimonas
CD27 on IgD- 

CD38- B cell

Hashimoto’s 

thyroiditis
0.0591 0.0521

0.0071 (−0.0270, 

0.0411)
0.6849

11.9% (−45.7, 

69.6%)

g_Intestinimonas

CD27 on 

unswitched 

memory B cell

Hashimoto’s 

thyroiditis
0.0591 0.0525

0.0066 (−0.0334, 

0.0466)
0.7472

11.1% (−56.5, 

78.8%)

g_Intestinimonas

CD28 on 

CD45RA+ CD4+ 

T cell

Hashimoto’s 

thyroiditis
0.0591 0.0413

0.0179 (−0.0266, 

0.0623)
0.4313

30.2% (−45.0, 

105.0%)

g_Holdemanella
CD33- HLA DR+ 

Absolute Count

Hashimoto’s 

thyroiditis
0.0662 0.0640

0.0022 (−0.0313, 

0.0357)
0.8991 3.3% (−47.3, 53.9%)

g_DefluviitaleaceaeUCG011

CD28+ 

CD45RA+ CD8+ 

T cell %T cell

Hashimoto’s 

thyroiditis
−0.0708 −0.0705

−0.0004 (−0.0231, 

0.0224)
0.9740 0.5% (32.7, −31.6%)

g_Butyrivibrio
CD39+ CD8+ T 

cell %T cell

Hashimoto’s 

thyroiditis
−0.0393 −0.0428

0.0035 (−0.0178, 

0.0248)
0.7471

−8.9% (45.3, 

−63.2%)

g_Butyrivibrio

CD39+ CD8+ T 

cell Absolute 

Count

Hashimoto’s 

thyroiditis
−0.0393 −0.0420

0.0027 (−0.0174, 

0.0227)
0.7930

−6.8% (44.2, 

−57.9%)

g_Butyrivibrio
CD27 on IgD- 

CD38+ B cell

Hashimoto’s 

thyroiditis
−0.0393 −0.0536

0.0143 (−0.0121, 

0.0407)
0.2888

−36.3% (30.8, 

−104%)

p_Actinobacteria

CD28+ 

CD45RA+ CD8+ 

T cell %T cell

Hashimoto’s 

thyroiditis
−0.0959 −0.0965

0.0006 (−0.0380, 

0.0391)
0.9767

−0.6% (39.6, 

−40.8%)

p_Actinobacteria

CD3 on Central 

Memory CD4+ T 

cell

Hashimoto’s 

thyroiditis
−0.0959 −0.1045

0.0086 (−0.1070, 

0.1240)
0.8846 −8.9% (111, −129%)

p_Actinobacteria
CD3 on CD45RA- 

CD4+ T cell

Hashimoto’s 

thyroiditis
−0.0959 −0.1045

0.0086 (−0.0694, 

0.0866)
0.8284

−9.0% (72.3, 

−90.3%)

p_Actinobacteria
CCR2 on myeloid 

Dendritic Cell

Hashimoto’s 

thyroiditis
−0.0959 −0.0911

−0.0048 (−0.0771, 

0.0675)
0.8966 5% (80.4, −70.4%)

g_RuminococcaceaeUCG011
CD33- HLA DR+ 

Absolute Count

Hashimoto’s 

thyroiditis
−0.0548 −0.0580

0.0032 (−0.0536, 

0.0600)
0.9120

−5.8% (97.8, 

−109%)

g_RuminococcaceaeUCG011
BAFF-R on IgD- 

CD27- B cell

Hashimoto’s 

thyroiditis
−0.0548 −0.0525

−0.0024 (−0.0285, 

0.0237)
0.8578 4.4% (51.9, −43.2%)

g_Eggerthella
CD25++ CD8+ T 

cell %T cell

Hashimoto’s 

thyroiditis
−0.0644 −0.0696

0.0052 (−0.0269, 

0.0373)
0.7503

−8.1% (41.7, 

−57.9%)

g_Eggerthella

CD3 on activated 

CD4 regulatory T 

cell

Hashimoto’s 

thyroiditis
−0.0644 −0.0588

−0.0056 (−0.0452, 

0.0339)
0.7799 8.8% (70.2, −52.7%)

g_Eggerthella

CD3 on CD39+ 

activated CD4 

regulatory T cell

Hashimoto’s 

thyroiditis
−0.0644 −0.0593

−0.0051 (−0.0426, 

0.0325)
0.7920 7.9% (66.2, −50.5%)

(Continued)
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Dysbiosis of microbiota leads to the damaged intestinal barrier and 
increased intestinal permeability, allowing the antigens to pass into 
the circulation and activate the immune system (Cayres et al., 2021). 
In addition, the antibodies in the circulation may react with the 
bacterial antigen and enhance the activation of the inflammasome in 
thyroid, which can be modulated by the GM and its metabolism in 
turn (Tomasello et  al., 2015; Yao et  al., 2017; Guo et  al., 2018). 
Although many researchers have found that AITD patients have 
reduced α diversity and abundances of certain microbiota compared 
with healthy controls (Zhao et al., 2018; Liu et al., 2020), there is no 
direct evidence of the cause-effect relationship between AITD and 
GM. Our results revealed several GM taxa showing significant 
association with HT and GD. Among them, Actinobacteria (p) 
presented the most notable protective effects on HT. Actinobacteria 
is one the four major phyla of the GM and is pivotal in the 
maintenance of gut homeostasis (Binda et al., 2018; Byrd et al., 2021). 
Numerous Actinobacteria spp. participate in the maintenance of 
microbial homeostasis, with some being considered as probiotics that 
potentially exert a protective influence on hypothyroidism (Liu et al., 
2023; Xie et  al., 2023), which are in accordance with our result. 
Surprisingly, genus Bifidobacterium, as a probiotic strain within the 
phylum Actinobacteria, presented a significantly facilitating effects on 
GD. Bifidobacterium spp. is a widely used probiotic as it confers 
several physiological benefits to humans, and it was traditionally 
deemed as a protective genus against thyroid disease in previous 
studies (Butel, 2014). To be  noted, Bifidobacterium spp. may 
be  protective or progressive in autoimmune disorders, such as 
another MR study from Xu et  al. revealed that a higher relative 
abundance of the Bifidobacterium spp. genus was associated with a 
higher risk of type 1 diabetes (Xu et al., 2021). Thus, their involvement 
in immunopathogenesis is still unclear and requires future 
mechanistic studies. It is worth mentioning that even though 
dysbiosis is often used to indicate the discrepancy in microbiota 
between patients and healthy group, the notion of “dysbiosis” is a 

broad term used lately as a mental shortcut. It should be kept in mind 
that GM is an intricate ecosystem and there is no accepted definition 
of “healthy” or “detrimental” microbiota as we discuss the complex 
effect of GM (Hooks and O'Malley, 2017; Mitrea et al., 2022).

In addition to the generation of thyroid autoantibodies and 
abnormal thyroid hormone production, AITD histologically involves 
the infiltration of self-targeting T and B lymphocytes in the thyroid 
gland. Thus, our analyses also provided genetic evidence for the 
involvement of immune cells in the causal correlation between GM 
and AITD. The GM largely regulates the homeostasis as well as the 
development of immune cells. It modulates both the innate and the 
adaptive immune system, even outside the gut (Maslowski and 
Mackay, 2011), and is fundamental in the development of 
gut-associated lymphatic tissue, where more than 70% of the entire 
immune system is situated (Virili et al., 2018). The microbiome and 
immune system share a complex relationship, and disruptions in this 
balance can lead to immune disorders (Zheng et  al., 2020). Our 
mediation analysis find some immune cell trait can participate the 
effect of microbiota on AITD. The phylum Actinobacteria showed a 
mediating effect on HT via CCR2 on myeloid Dendritic Cell. 
Chemokine receptor 2 (CCR2) is the receptor of chemokine ligand 2 
(CCL2) and is involved in recruiting monocytes and macrophages to 
sites of inflammation. In autoimmune diseases like rheumatoid 
arthritis, multiple sclerosis, and inflammatory bowel disease, CCR2 
promotes the migration of inflammatory immune cells to the affected 
tissues, contributing to tissue damage and perpetuation of the immune 
response, but its role in AITD remains to be discovered. Results from 
the present study suggested that the phylum Actinobacteria influenced 
the onset of HT through the CCL2/CCR2 signaling axis, which might 
be  worth future investigation. In the mediation analysis for GD, 
Bifidobacterium mediated its effects mainly through CD14 on CD33+ 
HLA DR+ CD14dim. CD14 is a glycoprotein receptor expressed on 
the surface of various immune cells, including monocytes, 
macrophages, and neutrophils, and it plays an important role in the 

TABLE 1 (Continued)

Exposure Mediator Outcome Total 
effect

Direct 
effect

Mediation 
effect (95% 

CI)

P value Mediation 
proportion 

(95% CI)

g_Eggerthella

CD3 on activated 

& secreting CD4 

regulatory T cell

Hashimoto’s 

thyroiditis
−0.0644 −0.0597

−0.0048 (−0.0372, 

0.0277)
0.7747 7.4% (57.8, −43.1%)

g_Bifidobacterium

CD39+ activated 

CD4 regulatory T 

cell %activated 

CD4 regulatory T 

cell

Graves’ disease 0.2925 0.3320
−0.0396 (−0.1780, 

0.0990)
0.5757

−13.5% 

(−60.9,33.8%)

g_Bifidobacterium
CD39+ CD4+ T 

cell %CD4+ T cell
Graves’ disease 0.2925 0.2779

0.0146 (−0.0515, 

0.0806)
0.6659 5.0% (−17.6, 27.6%)

g_Bifidobacterium

CD14 on CD33+ 

HLA DR+ 

CD14dim

Graves’ disease 0.2925 0.2567
0.0358 (−0.1510, 

0.2230)
0.7074

12.2% (−51.6, 

76.1%)

g_Victivallis

CD33dim HLA 

DR+ CD11b- 

Absolute Count

Graves’ disease −0.1953 −0.1890
−0.0063 (−0.0320, 

0.0193)
0.6283 3.3% (16.4, −9.9%)
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innate immune response and is involved in the recognition and 
response to microbial pathogens (Wu et al., 2019). Jia et al. performed 
bioinformatics analysis and demonstrated the significant association 
between genetic variations in CD14 and GD, and further discovered 
that CD14 expression level was positively correlated with the 
proportion of macrophages M1 cell and M1/M2 ratio in GD thyroid 
tissues (Jia et al., 2018). CD14 may contribute to the recognition and 
presentation of self-antigens in GD, promoting the activation of 
immune responses against the thyroid tissue, but the specific 
involvement of CD14  in thyroid disease is still an area of 
ongoing research.

There are some drawbacks in the present study. First of all, the 
majority of patients in the GWAS summary data used in our study 
were European, which might introduce certain biases and restrict the 
broader applicability of our findings to other ethnic groups. Besides, 
the characterization of microbiome profiles in the MiBioGen 
consortium only allows resolution from the genus to phylum, which 
might result in lacking details on the species level. Furthermore, MR 
assumes a linear relationship between exposure and outcome, but the 
relationship may be more complex, involving nonlinear relationships 
and interactions with other environmental and genetic factors. 
Overall, future randomized controlled trials of AITD would be the 
next step in this study in order to reduce the potential impact of 
confounding factors and thus obtain a higher level of evidence 
for causality.

5 Conclusion

In summary, we comprehensively assessed the causal association 
between the GM and AITD and further analyzed the mediation effects 
of multiple immune cell traits. We demonstrated significant effects of 
phylum Actinobacteria on HT and genus Bifidobacterium on GD. The 
identified associations and mediation effects pave the way for future 
research, emphasizing the importance of the gut-immune axis in 
disease onset. Potential therapeutic interventions targeting the GM 
could be explored as novel strategies for managing AITD.
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