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Agricultural practices significantly influence microbial diversity and the distribution of 
virulence and antimicrobial resistance (AMR) genes, with implications for ecosystem 
health and food safety. This study used metagenomic sequencing to analyze 60 
samples (30 per state) including water, soil, and manure (10 each) from Alabama 
(a mix of cattle and poultry sources) and Tennessee (primarily from cattle). The 
results highlighted a rich microbial diversity, predominantly comprising Bacteria 
(67%) and Viruses (33%), with a total of over 1,950 microbial species identified. 
The dominant bacterial phyla were Proteobacteria, Cyanobacteria, Actinobacteria, 
Firmicutes, and Bacteroidetes, with the viral communities primarily represented by 
Phixviricota and Uroviricota. Distinct state-specific microbial profiles were evident, 
with Alabama demonstrating a higher prevalence of viral populations and unique 
bacterial phyla compared to Tennessee. The influence of environmental and 
agricultural practices was reflected in the microbial compositions: soil samples were 
notably rich in Actinobacteria, water samples were dominated by Proteobacteria 
and Cyanobacteria, and manure samples from Alabama showed a predominance 
of Actinobacteria. Further analyses, including diversity assessment and enterotype 
clustering, revealed complex microbial structures. Tennessee showed higher microbial 
diversity and phylogenetic complexity across most sample types compared to 
Alabama, with poultry-related samples displaying distinct diversity trends. Principal 
Coordinate Analysis (PCoA) highlighted notable state-specific variations, particularly 
in manure samples. Differential abundance analysis demonstrated elevated levels 
of Deinococcus and Ligilactobacillus in Alabama, indicating regional effects on 
microbial distributions. The virulome analysis revealed a significant presence of 
virulence genes in samples from Alabama. The community resistome was extensive, 
encompassing 109 AMR genes across 18 antibiotic classes, with manure samples 
displaying considerable diversity. Ecological analysis of the interactions between 
AMR gene subtypes and microbial taxa revealed a sophisticated network, often 
facilitated by bacteriophages. These findings underscore the critical role of agricultural 
practices in shaping microbial diversity and resistance patterns, highlighting the 
need for targeted AMR mitigation strategies in agricultural ecosystems to protect 
both public health and environmental integrity.
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Introduction

Antimicrobial resistance poses a grave and urgent threat to global 
public health in the 21st century. The World Health Organization 
(WHO) has identified it as one of the foremost challenges of our time 
(WHO, 2023). Projections suggest that by 2050, antimicrobial 
resistance could lead to an alarming 10 million deaths annually, with 
an estimated cumulative economic burden exceeding $100 trillion 
(Tang et  al., 2017). While antimicrobial resistance is a natural 
phenomenon, its acceleration and spread are exacerbated by 
multifaceted pathways, through which pathogenic bacteria can 
acquire resistance and disseminate resistance between animals and 
humans (Graham et  al., 2019; Machalaba et  al., 2015). These 
transmission pathways include the consumption of animal-derived 
foods, the use of manure as fertilizer, direct contact with farm animals, 
contamination of water bodies through surface run-offs carrying fecal 
matter, and soil contamination by antibiotic residues from animal 
waste products, among others. Previous studies have shown that a 
substantial proportion, ranging from 30 to 90% of veterinary 
antibiotics are released into the environment as unmetabolized waste 
products (Graham et al., 2019; Machalaba et al., 2015). Additionally, 
occupational exposures among farmworkers have been linked to an 
increased prevalence of antibiotic-resistance Escherichia coli in their 
guts microbiota (Graham et al., 2019; Machalaba et al., 2015).

Notably, antimicrobial-resistant bacteria possess the capacity to 
spread across diverse ecosystems (Li et  al., 2023; Ma et  al., 2021; 
Rasheed et al., 2014). The major components of the agroecosystem - 
animals, animal products, manure, soil, and water- serve as reservoirs 
of both pathogenic and commensal bacteria, particularly antibiotic-
resistant strains (Ma et al., 2021; Pandey et al., 2014; Miller et al., 
2022). The use of antibiotics in food-producing animals has emerged 
as a significant contributor to the ongoing emergence and progression 
of antibiotic resistance in humans (Mann et al., 2021; Economou and 
Gousia, 2015). Despite extensive research exploring the relationship 
between antimicrobial use in animal production and human 
infections, there remains a scarcity of data on the prevalence and 
spatial distribution of antimicrobial resistance determinants and 
antimicrobial-resistant foodborne pathogens and commensal bacteria 
in small- and medium-sized poultry and cattle farms. On the other 
hand, the microbial community within agricultural ecosystems plays 
a crucial role in shaping antibiotic resistance dynamics, influencing 
the emergence, spread, and persistence of resistant bacteria. As noted 
by Allen et  al. (2010), microbial communities exhibit intricate 
interactions that can facilitate the horizontal transfer of antimicrobial 
resistance (AMR) genes among diverse bacterial taxa. This horizontal 
gene transfer, occurring within the complex network of microbial 
populations, contributes significantly to the dissemination of 
antibiotic resistance in agricultural settings (Martínez, 2008). 
Moreover, the composition and diversity of microbial communities 
can impact the prevalence of antibiotic resistance. Studies have shown 
that diverse microbial communities tend to harbor a greater diversity 
of ARGs (Forsberg et  al., 2014). The presence of certain bacterial 
species within the microbiome may also influence the abundance and 

distribution of ARGs. For example, commensal bacteria such as 
Escherichia coli and Enterococcus spp. have been implicated as 
reservoirs of AMR genes in agricultural environments (Durso et al., 
2012; Karkman et al., 2016).

Additionally, microbial communities can act as hotspots for the 
co-selection of antibiotic resistance traits (Seiler and Berendonk, 
2012). Co-selection occurs when the use of one antibiotic selects for 
resistance to multiple antibiotics or other stressors, leading to the 
enrichment of multidrug-resistant bacteria (Wellington et al., 2013). 
This phenomenon is particularly relevant in agricultural settings, 
where the widespread use of antibiotics in livestock production can 
exert selective pressure on microbial communities, promoting the 
proliferation of antibiotic-resistant strains (Gaze et  al., 2013). 
Furthermore, the spatial distribution of microbial communities within 
farming systems can influence the dissemination of antibiotic 
resistance. Variations in microbial community structure and 
composition between different ecological niches, such as soil, manure, 
and water, can impact the transfer of AMR genes and resistant bacteria 
within the agricultural environment (Wang et al., 2014).

Recent research has highlighted that soil serves as a critical 
hotspot for antibiotic resistance, where antibiotic residues and 
resistant bacteria can accumulate and propagate resistance genes 
within microbial communities. Studies have elucidated the 
interactions between antibiotic residues in soil and the emergence of 
antimicrobial resistance genes, as well as the environmental impact of 
manure application on soil microbial ecosystems (Wang et al., 2015; 
Bao et al., 2024). The persistence of antibiotic residues in agricultural 
soil has been shown to promote horizontal gene transfer, which 
enhances the spread of AMR genes across bacterial species (Han et al., 
2022; Baquero et al., 2022). Additionally, soil bacteria, including both 
pathogenic and commensal organisms, play a pivotal role in the 
transfer of these resistance genes across ecosystems, posing a 
significant risk to human health (Wang et  al., 2023; Selvarajan 
et al., 2022).

In summary, microbial communities play a multifaceted role in 
antibiotic resistance dynamics within agricultural ecosystems. 
Understanding the complex interactions between microbial 
populations, AMR genes, and environmental factors is essential for 
developing effective strategies to mitigate the spread of antibiotic 
resistance in food production systems. Given the varying impact of 
agricultural practices on microbial dynamics and antimicrobial 
resistance, this study hypothesizes that distinct farming systems and 
environmental conditions in Alabama and Tennessee differentially 
shape the microbial communities and resistome in southern farming 
ecosystems. Through comparative metagenomic analysis, we aim to 
assess how variations in farming practices influence the distribution 
of microbial species, virulence factors, and antimicrobial resistance 
genes across soil, manure, and water samples. The study further 
hypothesizes that these factors have significant implications for 
antimicrobial stewardship and public health by identifying key 
microbial taxa that act as reservoirs for antibiotic-resistant genes. This 
study will provide insights into how agricultural systems contribute to 
the spread of antimicrobial resistance and inform targeted AMR 
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mitigation strategies for more sustainable farming practices and 
enhanced public health outcomes (Table 1).

Materials and methods

Study sites and sample collection

The environmental samples were collected from six poultry farms 
(1  in Tennessee and 5  in Alabama) and 31 cattle farms (16  in 
Tennessee and 15 in Alabama) between September 2019 and August 
2020 through collaboration with Tennessee State University (TN) and 
Tuskegee University (AL) Extension Programs. All sampling sites 
experienced a humid subtropical climate, with Tennessee sites 
receiving 50–55 inches (1270–1,400 mm) of rainfall annually and 
Alabama sites receiving 50–60 inches (1270–1,520 mm). These are 
generally small-scale farms, with incomes under $350,000 as reported 
by the USDA, and an average size of 231 acres. Soil samples were 
collected from three designated sites on each farm (S1, S2, and S3), 
spaced 50 meters apart, with triplicate samples of 200 grams collected 
from a depth of 5–10 cm at each site. Manure samples were collected 
from three sites (M1, M2, and M3) at each farm. Three samples were 
aseptically taken from solid manure piles less than 2 weeks old, 
creating composite samples of 500 grams. Water samples were 
collected from three sites (W1, W2, and W3) at each farm, including 
feeding areas and nearby water bodies such as rivers, lakes, ponds, or 
streams. Sterile plastic bottles were submerged below the water surface 
for collection and sealed to prevent contamination. A simple 
randomization of sample collection was used for collecting oil, 
manure, and water samples to eliminate systematic errors and ensure 
that the selection process was fair and unbiased. Soil and manure 
samples collection was done using disposable plastic spoons and 
transferred into sterile sampling bags (Fisher brand, Pittsburg, PA). 
Water samples were collected in 500 mL sterile bottles from each farm. 
All samples were collected in triplicates per site and labeled with the 
farm identification number and the dates of collection. Immediately 
after collection, samples were transported using coolers (≈ 4°C) and 
subsequently stored at −80°C till analysis. Water samples were 
collected from three sites in each cattle and poultry farms from 
feeding areas and any other nearby water bodies such as a river, lake, 
pond, and a stream. A bottle was filled by plunging downwards below 
the water surface and resealed tightly to avoid leakage. Soil samples 
were collected in triplicates of 200 g from each site. The distance 
between the three sites was 50 m apart and the collection was done to 
a depth of 5–10 cm. The soil samples from each designated site were 
pooled into one composite sample of approximately 600 g. The soil was 
properly mixed and carefully cleaned of any extraneous materials such 

as debris, leaves, stems, and roots, using sterilized forceps to avoid 
contamination. All tools were sterilized, and gloves were changed 
between uses to maintain the integrity of the samples. Manure samples 
from three sites from each cattle and poultry facility manure were 
aseptically collected to make a composite sample of 500 g from solid 
manure from each pile using the simple random technique. The solid 
samples were collected from piles less than 2 weeks old and were 
termed as Fresh Pile. Samples were processed immediately upon 
arrival to the laboratory for standard microbiology analysis. An 
aliquot of samples was kept frozen in the −80°C for DNA extraction 
and metagenomic sequencing. All together a total of 60 samples 
(water, soil, and manure, 20 each) were collected from Alabama and 
Tennessee. Thirty samples were collected from each state to ensure 
representative sampling, from both cattle farming (53 samples) and 
poultry farming (n = 7 samples) facilities. Poultry sampling was 
significantly reduced during the COVID-19 pandemic due to 
restricted farm visits. Supplementary Table S1 demonstrates the 
detailed distribution of the sample types among two states and 
farming practices.

DNA extraction

Frozen samples were thawed at room temperature and an aliquot 
of samples (250 mg manure and soil) were lysed and homogenized in 
a bead beating tube containing lysis buffer and 0.1 mm and 0.5 mm 
bashing beads using Omni’s Bead Ruptor 96 (Perkin Elmer, 
United States) as per manufacturer instructions. Total DNA was then 
isolated using ZymoBiomics DNA extraction kit (Zymo Research, 
USA) with a final elution volume of 50 μL. Three water subsamples 
(500 mL/each) from the same farm were also mixed, and then 
concentrated each 500 mL water by filtering through a sterile 
disposable vacuum filter unit with 0.22 μm polyethersulfone (PES) 
membranes (Fisher Scientific, Pittsburgh, PA). PowerWater® DNA 
Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA) was used to 
extract DNA. Concentration of genomic dsDNA was measured using 
Qubit® 4.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, 
United States).

Library preparation and shotgun 
metagenomic sequencing

Metagenomics sequencing was performed at EzBiome Inc. 
(Gaithersburg, MD, United States). 50 ng-1ug of genomic DNA was 
used for library construction using NEB Next® Ultra™ II FS DNA 
Library Prep Kit for Illumina. Briefly, gDNA was enzymatically 

TABLE 1 Distribution of samples collected from various sources and farming systems from two southern states (N  =  60).

State/Sample 
type

Alabama (n  =  30) Tennessee (n  =  30)

Cattle Poultry Sub-total Cattle Poultry Sub-total

Manure 7 3 10 10 0 10

Soil 10 0 10 8 2 10

Water 8 2 10 10 0 10

Total 25 5 30 28 2 30
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sheared, DNA fragment ends were repaired, 3′ adenylated, and ligated 
to adapters according to the manufacturer’s instructions. The resulting 
adapter-ligated libraries were PCR-amplified using an initial 
denaturation step performed at 98°C for 45 s followed by 5 cycles of 
denaturation (98°C, 15 s), annealing (60°C, 30 s) and extension (72°C, 
30 s), and a final elongation of 1 min at 72°C. PCR products were 
cleaned up with magnetic beads. The libraries were then quantified 
and qualified using the Agilent 2,200 TapeStation instrument followed 
by normalization and multiplexed sequencing on HiseqX10 sequencer 
(Illumina, San Diego, CA, United States) using the pair-end 150 bp 
run format. All samples successfully underwent metagenomic shotgun 
sequencing, yielding a total of 1.25 billion raw reads. On average, each 
sample yielded 20.77 million raw reads, ranging from 8.4 million to 
38.25 million. Supplementary Figure S1 illustrates the distribution of 
reads in each sequenced sample.

Metagenomic taxonomic and functional 
profiling

Taxonomic and functional profiling of the datasets were 
conducted as described by Bhattacharjee et al. (2024), Brumfield et al. 
(2023), and Ibekwe et al. (2023). Briefly, Kraken2 (Wood et al., 2019) 
with a pre-built core gene database (Chalita et al., 2020) containing 
k-mers (k = 35) of reference genomes from the EzBioCloud database 
(Yoon et al., 2017) was used to identify bacterial and archaeal species. 
Fungal and viral genomes from NCBI refseq database were added to 
the Kraken2 database. A custom bowtie2 (Langmead and Salzberg, 
2012) database was built from identified species, and raw samples 
were mapped using the --very-sensitive option and a quality threshold 
of phred33. Samtools (Li et al., 2009) and Bedtools (Quinlan and Hall, 
2010) were used to process the output. Species were quantified if core 
genes or genomes had at least 25% coverage. Finally, species 
abundance was calculated using the total number of reads counted 
and normalized species abundance was calculated by using the total 
length of all their references. DIAMOND (Buchfink et al., 2015) was 
used for functional annotation against the KEGG database (Kanehisa 
et al., 2017) using the blastx parameter. If a read had multiple KEGG 
hits, the top hit was always used. After quantifying the KEGG 
orthologs, minpath (Ye and Doak, 2009) was used to predict the 
presence of KEGG functional pathways.

Comparative metagenomic and statistical 
analyses

Various comparative metagenomics and statistical methods were 
used to compare microbiome composition, diversity, resistome, and 
virulome across different sample types, farming practices, and states. 
For microbiome composition analysis, average relative abundances 
per genus per sample type were calculated and visualized using 
sunburst charts. Alpha diversity was measured using Shannon 
Diversity (Shannon, 1948) and Faith’s phylogenetic diversity (PD) 
(Faith, 1992) on the EzBioCloudPro platform (https://www.
ezbiocloudpro.app/). Enterotype analysis was performed on genus 
relative abundance as described by Arumugam et al. (2011). PAM 
clustering (Kaufman and Rousseeuw, 1990) and the Calinski-Harabasz 
(CH) Index (Caliński and Harabasz, 1974) determined optimal 

clusters. Beta diversity was analyzed using pairwise Bray-Curtis 
distances, followed by Principal Coordinate Analysis (PCoA). 
Pairwise PERMANOVA analyses determined statistical differences 
between sample groups in PCoA ordination.

Differential abundance

Differential abundance analysis (DAA) identifies candidate 
biomarkers for the group of interest. Seven different DAA methods 
available through EzBioCloudPro Platform which comprises: DESeq2, 
LinDA, LEfSe, ANCOM-BC, ALDEx2, MaAsLin2, and SIAMCAT 
(Love et  al., 2014; Zhou et  al., 2022; Segata et  al., 2011; Lin and 
Peddada, 2020; Fernandes et al., 2013; Mallick et al., 2021; Wirbel 
et al., 2021, respectively) were employed. The results of each DAA tool 
were compared to find consensus biomarkers.

Antimicrobial resistance (AMR) and 
virulence factor (VF) gene profiling

Antibiotic resistance gene (ARG) profiles were produced using a 
pre-built bowtie2 (Langmead and Salzberg, 2012) database from 
NCBI’s NDARO (www.ncbi.nlm.nih.gov/pathogens/antimicrobial-
resistance/) reference genes. The analysis focused on identifying 
acquired antibiotic resistance genes (ARGs) derived from 
metagenomic sequence data. Intrinsic resistance mechanisms, which 
are naturally occurring and not typically associated with horizontal 
gene transfer, were not the focus of this study. Virulence factor (VF) 
profiles were generated using a pre-built bowtie2 database from the 
VFDB (http://www.mgc.ac.cn/VFs/), covering VFs from 32 bacterial 
genera (Liu et al., 2019). Each metagenome read was mapped against 
these genes using bowtie2 with the --very-sensitive option, and 
processed using samtools (Li et  al., 2009). De-duplication was 
performed with a custom script selecting the highest coverage 
alignment for each gene. Data subsets were created with cut-offs of 
>40 and > 70% reference gene coverage. Further datasets for AMR 
gene class, VF gene reference, and VF gene category were generated 
by summing shared classes, references, and categories within each 
sample and visualized with Sankey Graphs to demonstrate the 
distribution and flow of VF genes across categories and potential hosts.

Ecological analysis

Envfit and co-occurrence analyses were used to gauge potential 
associations of AMR genes with sample types and microbial taxa. The 
R package envfit was employed to uncover significant associations of 
AMR gene classes with sample types. Genus read counts were 
normalized using DESeq2’s median of ratios method (Love et al., 
2014), and a dissimilarity matrix was created using vegdist in the 
vegan R package for PCoA via cmdscale. The resulting data frame was 
used for envfit analysis along with base abundances for gene sets with 
>40% reference coverage, summed by AMR class as “environmental 
vectors.” To visualize correlations, a correlation matrix was constructed 
by calculating all possible pairwise Spearman’s rank correlations 
between the 84 ARG subtypes found in the environmental samples 
(Steele et al., 2011). A correlation was considered statistically robust if 
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Spearman’s correlation coefficient (ρ) was >0.8 and p-value <0.01 
(Junker and Schreiber, 2008). p-values were adjusted using the 
Benjamini–Hochberg method to reduce false positives (Benjamini 
and Hochberg, 1995). Robust pairwise correlations of the ARG 
subtypes formed co-occurrence networks, analyzed in R using 
VEGAN v2.6–4 and igraph v1.4.1, with network visualization 
conducted on Gephi v0.10.1.

Statistical analyses

Alpha diversity statistics were calculated using the ranksum 
function and Spearman correlation coefficient statistics were 
calculated using the ‘spearmanr’ funciton from the Python package 
scipy. PERMANOVA statistics were calculated using the vegan v2.6–4 
R package.

Results

Demographic and operational insights on 
farming practices

The cattle and poultry farmers in Tennessee and Alabama show 
significant demographic trends: most farmers are older males with a 
high school education or less (TN: 79.3% male, 69% high school; AL: 
92.3% male, 42.3% high school), with low percentages of female and 
young farmers under 35 years old (TN: 3.4%, AL: 3.8%). Antibiotic 
usage is mainly for therapeutic and prophylactic purposes, with a high 
percentage of farmers in Tennessee (82.4%) and Alabama (92.4% 
combined) using them accordingly. Record-keeping on antibiotic use 
is robust (TN: 82.8%, AL: 57.7%), surpassing previous reports, and 
most farmers consult veterinarians (TN: 86.2%, AL: 76.9%). However, 
awareness of AMR as a public health issue remains low (TN: 65.4%, 
AL: 69%), indicating a need for better educational efforts. Manure 
management varies; Alabama predominantly uses stockpiling, while 
Tennessee employs a mix of methods including stockpiling (72.4%) 

and composting (20.7%). Dead animal disposal also differs, with 
Alabama entirely using dead animal services, whereas Tennessee uses 
multiple methods, such as deep burial and composting.

Overall microbiome composition

The microbial community across diverse agroecosystems and 
farming practices in Alabama and Tennessee was dominated by 
Bacteria (67.01%) and Viruses (32.85%), with minimal Archaea 
(0.09%) and Fungi (0.05%) (Supplementary Table S1). The bacterial 
diversity was remarkable, including over 1800 species from 448 
genera, 155 families, and 12 phyla (Supplementary Tables S1, S2). 
Dominant phyla were Proteobacteria (30.75%), Cyanobacteria 
(15.86%), Actinobacteria (13.77%), Firmicutes (4.28%), and 
Bacteroides (1.81%) (Supplementary Table S3). The viral microbiota 
included over 140 DNA viral species from 36 genera and four phyla, 
with Phixviricota (19.32%) and Uroviricota (13.51%) being the 
predominant (Figure 1A and Supplementary Table S3). The fungal 
community had four fungal species across four genera from 
Ascomycota and Basidiomycota (Supplementary Tables S1, S2). The 
Archaeal diversity inluded five species from Methanobrevibacter genus 
(Figure  1 and Supplementary Table S1). Overall, the ecosystem 
showcased a diverse microbial community with over 1950 species 
across Bacteria, Viruses, Fungi, and Archaea with no protists detected 
in any of the samples analyzed.

Comparing microbiomes between Alabama and Tennessee, 8 out 
of 12 bacterial phyla were common in both states. Tennessee lacked 
Deinococcus and Verrucomicrobia, instead had Armatimonatedes 
and Tenericutes, which were absent in Alabama. In Alabama, 
Proteobacteria was most abundant (22.29%), followed by 
Actinobacteria (11.58%) and Firmicutes (4.14%) (Figure  1B and 
Supplementary Table S3). In Tennessee, Proteobacteria dominated 
(40.70%), followed by Cyanobacteria (34.25%) and Actinobacteria 
(16.34%) (Figure  1C and Supplementary Table S3). Interestingly, 
Alabama samples exhibited dominance of the viral community, mostly 
phages from Microviridae and Siphoviridae families, not observed in 

FIGURE 1

Microbial community associated with different farming systems across two states. (A) Overall composition of microbial communities in this study 
cohort; Microbiome community associated with Alabama (B), and Tennessee (C) samples.
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Tennessee. Microviridae comprises single-stranded DNA phages, 
while Siphoviridae includes lambda phages that infect bacteria.

Microbial community across sample types 
and farming systems

Microbial composition analyses revealed distinct microbial 
landscapes across different sample types reflecting the ecological 
specificity of microbial communities and their adaptation to 
environmental niches (Figure  2). Soil samples were dominated by 
Actinobacteria (92.43%), with significant difference (p < 0.01), nearly 
double the abundance in manure (40.60%) and more than twice that in 
water (34.14%), highlighting their adaptation to terrestrial 
environments and vital role in soil ecology. Water samples 
demonstrated a predominance of Proteobacteria (46.74%), substantially 
higher than in manure (24.57%) and soil (6.69%), indicating an 
ecological preference for aquatic habitats (p < 0.01). Cyanobacteria were 
predominantly identified in water samples (7.86%) and absent in soil 
samples (Figure 2), reflecting their phototrophic nature.

Regionally, Tennessee water samples had a higher average 
abundance of Cyanobacteria (15.19%) compared to Alabama (0.52%), 
but this was not statistically significant (p > 0.05) (Figure  3). No 
significant differences were observed in soil samples between the 
states but discernible variations were observed in manure samples 
between states (Figure 3). Alabama manure samples had significantly 
higher Actinobacteria (64.58%) than Tennessee (16.61%, p = 0.03). 

Differences in other major bacterial phyla such Proteobacteria 
(13.95% vs. 35.19%), Firmicutes (11.46% vs. 31.15%), and 
Bacteroidetes (5.54% vs. 11.55%) between Alabama and Tennessee 
were not statistically significant (p > 0.05). No significant differences 
were observed between microbial compositions of cattle and poultry 
samples. However, the smaller number (n = 7) of poultry samples as 
opposed to the larger number (n = 53) of cattle samples limit the 
robustness of comparative conclusions.

Microbial diversity

Alpha diversity
The alpha diversity indices offer insights into the microbial 

richness, evenness, and the breadth of phylogenetic lineages within 
the microbial communities of each sample type. The observed 
Shannon diversity varied significantly across sample types and states 
(Figure 4A). In Alabama, cattle manure (ACM) exhibited a relatively 
low median index of 0.45, indicating a homogeneous microbial 
community (Supplementary Table S4), while cattle soil (ACS) 
displayed a slightly higher median index of 1.01, suggesting marginally 
richer microbial diversity. Water samples from cattle farms (ACW) 
showed the highest median Shannon index at 3.71, indicating a 
diverse microbial community. Poultry- samples displayed distinct 
trends, with poultry manure (APM) recording a higher median 
Shannon index of 3.42 compared to cattle manure, and poultry water 
(APW) had a median index of 1.62. In Tennessee, microbial diversity, 

FIGURE 2

Overall composition of microbial community associated with different sample types. (A–C) represent water, manure, and soil samples, respectively. 
Inner circle represents phylum and outer circle represents genus level. Each phylum is represented by a distinct color with different shades of the same 
color representing distinct genera under each phylum.
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especially in manure samples, surpassed that of Alabama. Cattle 
manure (TCM) exhibited a median Shannon index of 4.34, closely 
followed by cattle soil (TCS) with a median index of 4.32. Water 
samples from Tennessee cattle farms (TCW) also displayed high 
median Shannon indices (3.75). Poultry Soil (TPS) exhibited a median 
index of 1.74. Tennessee’s manure samples, both poultry and cattle, 
showed significantly higher diversity compared to soil and 
water samples.

Faith’s PD index, a measure of phylogenetic diversity, revealed 
distinct patterns across sample types and states (Figure  4B). In 
Tennessee, cattle manure (TCM) demonstrated the highest median 
phylogenetic diversity of 53.99, highlighting a rich and varied 
microbial ecosystem. Tennessee cattle soil (TCS) exhibited a median 

Faith’s PD of 32.72, comparable to Alabama’s cattle soil. Cattle water 
(TCW) samples had the lowest median PD among all Tennessee 
samples. Poultry soil (TPS) had a median PD of 33.12, consistent with 
cattle soil samples.

The parallel analysis of the Shannon diversity index and Faith’s 
PD across Alabama and Tennessee samples illuminates the 
intricate microbial landscape shaped by environmental and 
agricultural influences. Tennessee consistently showed elevated 
diversity and phylogenetic complexity compared to Alabama. 
Tennessee Cattle manure (TCM) exhibited the highest median 
values in both Shannon (4.34) and Faith’s PD (53.99), indicating 
abundant and evolutionarily diverse microbial communities. In 
contrast, Alabama had a more homogeneous microbial profile 

FIGURE 3

Interstate comparison of microbial communities associated with water, soil, and manure samples. In each of the five-digit alphanumeric numbers of 
samples where 1st digit represents state: “A” for Alabama, “T” for Tennessee; 2nd digit represents farming practices; “C” for Cattle, “P” for Poultry; and 
third digit represents sample types: “W” for Water; “S” for Soil and “M” for Manure, and finally numeric value represents the individual samples number. 
Different colors in the stacked bar represent relative abundance of distinct genera. Genera with >2% relative abundances were constituted as “others.”
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with lower Shannon diversity for cattle manure (ACM) but 
considerable phylogenetic depth. Alabama’s water samples 
exhibiting higher Shannon diversity compared to Tennessee, 
indicating nuanced microbial ecosystem differences. Poultry 
samples in both states exhibited intermediate levels of diversity 
and phylogenetic depth.

Enterotype
Enterotype analysis provides finer resolution in understanding the 

microbial community structure and its variations across different 
sample types. Enterotype clustering using the partitioning around 
medoids (PAM) method across all sixty (n = 60) samples from cattle 
and poultry farms in Alabama and Tennessee revealed intriguing 
patterns (Figure 4C). Overall, four distinct clusters were identified 
with the top two principal coordinate components explaining 40% of 
the variance at the genus level. Manure samples exhibited the highest 
variety with two clusters (E2, E3) where E2 was predominated by 
Microbacterium. Soil samples displayed fewer clusters (E1, E2, and 
E4), possibly due to the more stable and structured environment of 
the soil. Water samples showed an intermediate level of diversity, with 
clusters E1 and E2.

State-wise differences in cluster distributions were evident, with 
Alabama and Tennessee exhibiting distinct patterns. Both states 
shared some common clusters (E1, E2, and E4), but each also had 
unique clusters specific to its environmental conditions. Tennessee 
displayed a wider range of clusters, including E3, suggesting a greater 
microbial diversity compared to Alabama. Interestingly, the clustering 
patterns between cattle and poultry farming showed similarities, with 
both types sharing common clusters across the two states. However, 
poultry farming in Alabama appeared to have additional unique 

clusters (E2 and E4), indicating specific microbial compositions 
associated with this farming practice.

Further analysis of soil, water, and manure samples individually 
revealed distinct enterotypes compositions. Manure samples 
contained five enterotypes (E1-E5; Supplementary Figure S2A) with 
E1 predominantly comprising the genus Microbacterium, and E3 
including Bacteroides. Tennessee manure contained all five 
enterotypes, while Alabama manures had four, lacking E5. Soil 
microbiota exhibited less diversity in terms of enterotypes, with only 
two types (E1 and E2; Supplementary Figure S2B) present in both 
Alabama and Tennessee where E1 was dominated by Marmoricola. 
Similarly, water samples displayed two enterotypes, both dominated 
by multiple genera (Supplementary Figure S2C).

Beta diversity
Principal coordinate analysis (PCoA) was conducted to investigate 

the microbial composition differences between and among the various 
sample groups (Figure  5; Supplementary Figure S3). The analysis 
revealed distinct community differences between manure samples 
from the two states, although such differences were not observed in 
soil and water samples. When combining soil, water, and manure 
samples from both states into three sample groups, significant 
differences were observed (PERMANOVA p-value 0.0005, Figure 5A). 
Specifically, significant differences were noted between soil vs. water 
(p-value 0.0016), soil vs. manure (p- value 0.0043), and manure vs. 
water (p-value 0.0358) (Figure  5A). No distinct differences were 
identified between cattle and poultry samples (p-value 0.5069, 
Supplementary Figure S3). However, when samples are grouped into 
nine different groups by collection states (Alabama and Tennessee), 
farm type (cattle or poultry), and sample sources (water, soil, and 

FIGURE 4

Observed species alpha diversity (richness and diversity) among different groups of samples. (A) Shannon diversity index; (B) Faith phylogenetic 
diversity; and (C) Overall enterotypes of all samples (PAM clustering). Connecting bars with p-values on top indicate the level of significance between 
the groups. Each enterotype is represented by a distinct color as shown in the figure.
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manure), significant group differences were observed (overall p-value 
0.0034, Figure 5B). The most significant differences were observed 
between manure samples collected from cattle farms in Tennessee and 
soil samples collected from cattle farms in Alabama (p-value <0.001) 
(Figure 5B).

Differential abundance of taxa

Metagenomic sequencing reveals how microbial populations 
influence ecosystems, with differential abundance analysis (DAA) 
identifying key taxa. However, the choice of DAA methods and data 
preprocessing significantly impact results, necessitating careful 
handling to ensure accurate interpretations. To address this variability, 
we employed seven different DAA methods namely DESeq2, LinDA, 
LEfSe, ANCOM-BC, ALDEx2, MaAsLin2, SIAMCAT, and LinDA. In 
Alabama, Deinococcus and Ligilactobacillus were consistently found to 
be more abundant across all environmental samples, by both DESeq2 
and LefSe methods (Figure 6). In water samples, Alabama exhibited 
higher abundance of Deinococcus, Noviherbaspirillum, and several 
other genera including g_WLRQ01 and JZUE_g, Pseudarthrobacter, 
Hymenobacter, Spirosoma, Methylorubrum, Sphingomonas by multiple 
DAA methods (Figure  6A). Conversely, Enhydrobacter and 
Caldimonas were found to be less abundant in Alabama soil samples 
compared to Tennessee, as reported by six DAA methods, while 
eleven genera, including Paracoccus and Rubrobacter, were found to 

be  highly abundant in Alabama by at least three separate DAA 
methods (Figure 6B). Notably, 28 genera were differentially abundant 
in Alabama manure samples compared to Tennessee including 
Enterococcus (by five DAA methods, Figure  6C), Bifidobacterium, 
Georgenia, Cellulomonas, Timonella, Oerskovia, Cellulosimicrobium, 
Isoptericola, Krasilnikoviella, Ornithinimicrobium, Cnuibacter, 
Glutamicibacter, Dietzia, Rhodococcus, Nocardioides, 
Thermophilibacter, Kurthia, Lysinibacillus, Jeotgalibaca and 
Stutzerimonas (by four methods); Brevibacterium, Flavimobilis, 
Microbacterium, Tessaracoccus, Fundicoccus, Lactobacillus, 
Ligilactobacillus and Halopseudomonas (by three separate DAA 
methods). In contrast, Lawsinobacter were found to be  low in 
abundance in Alabama (by three methods). Among these genera, 
Enterococcus is well known for harboring antimicrobial resistance 
(AMR) genes including vancomycin. Furthermore, when comparing 
cattle and poultry samples, Comamonas was found to be differentially 
more abundant in cattle samples compared to poultry samples by 
three DAA methods (Figure 6D).

Community virulome

The community virulome was analyzed using the VFDB reference 
database, which covers virulence factors (VFs) from 32 genera of 
common bacterial pathogens. With a 70% gene coverage cut off, our 
analysis identified 403 distinct VFs across 42 putative hosts species 

FIGURE 5

Principal coordinate analysis (PCoA) shows diversity dissimilarities of microbial composition among communities (beta diversity). (A) Beta diversity of 
soil, water, and manure samples. PERMANOVA p-value <0.05; and (B) Beta diversity across farm types and states. PERMANOVA p-value <0.05. Color 
legends indicate the type of samples.
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(Figures 7A,B). These VFs encodes 30 major categories of proteins 
conferring functions such as adhesin, biofilm formation, motility, 
exotoxin, immune modulation, nutritional/metabolic factor or 
enzyme, quorum sensing, metal uptake, effector delivery system, and 
invasion to name a few (Supplementary Figure S4). Remarkably, over 
80% of VF genes were detected in Alabama (1,097 out of 1,357), 
primarily within manure (n = 793, from both cattle and poultry farms, 
58.44%) and water (from both cattle and poultry farm, n = 296, 
21.81%) samples. Manure samples harbored a diverse array of VF 
genes commonly associated with enteropathogenic bacteria. Notably, 
protein molecules integral parts of various effector delivery systems, 
including types II, III, IV, V, VI, and VII, were identified in these 

samples, mostly in poultry manure samples from Alabama, where 
Gram-negative bacteria are presumed to be  the putative hosts. 
Interestingly, some of the VF genes (e.g., cheW, Rv0440) identified in 
manure samples were also detected in soil and water samples. All the 
VF genes identified, with E. coli O157:H7 as the putative host, 
primarily encode flagellar proteins and are associated with type 3 
secretion system, chemotaxis, and biofilm formations. Other 
frequently detected VF genes in soil and water samples likely 
originated from Mycobacterium spp. including M. tuberculosis, and 
P. aeruginosa. Notably, soil and water samples mostly harbored VF 
genes typically associated with Mycobacterium spp. and Pseudomonas 
spp., along with Burkholderia pseudomallei, B. cepacia and 

FIGURE 6

Differential abundance analysis (DAA) of (A) water; (B) soil and (C) manure samples of Alabama and Tennessee. Red bar color represents differential 
abundance in Alabama and blue color represents differentially abundant in Tennessee. (D) DAA between cattle and poultry samples. Red bar color 
represents differential abundance in cattle farms and blue color represents differentially abundant in poultry farms. Number at the top of each bar 
indicates the number of differentially abundant genera.
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Enterococcus faecalis. Surprisingly, only 0.81% (11 out of the total 
1,357) VF genes were detected in soil samples altogether.

The above findings were corroborated by the base abundance 
analysis of VF genes. In general, total base abundance of VF genes was 
significantly higher in Alabama compared to Tennessee (88.30% vs. 
11.70%, p < 0.001, Supplementary Table S5). Among the community 
members, manure microbiota harbored the highest proportion 
(54.42%) of VF genes, followed by water (45.44%), and soil (0.14%). 

Surprisingly, the mean abundance (prevalence as denominator) of VF 
genes in poultry manure samples was over 5 times higher than the 
average VF gene abundance across all environmental samples 
(365,656.383 vs. 1,839,243). Overall, soil samples harbored 
substantially lower abundance (prevalence as denominator) of VF 
genes (423 times lower) compared to the overall environmental 
samples. On the contrary, water samples collected from Alabama 
exhibited 1.44 and 1.40x higher numbers (prevalence as denominator) 

FIGURE 7

Prevalence of virulence genes and their putative hosts observed in cattle and poultry farming systems in Alabama (A) and Tennessee (B). The figure 
represents VF genes detected using a detection threshold of ≥70% genes coverage.
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compared to all environmental samples and all water samples, 
respectively.

Microbiota of manure samples from both Alabama and Tennessee 
were found to harbor VF genes associated with major diarrheagenic 
pathogens in humans, including E. coli O157:H7 and 13 other E. coli 
serovars, also Shigella sonnei, S. boydii, S. flexneri, S. dysenteriae etc. 
(Supplementary Figure S6). Tennessee water samples mostly harbored 
other VF genes typically found in Mycobacterium spp., while VF genes 
associated with Pseudomonas spp. were mostly detected in water 
samples from both regions, although in lower abundance. Additionally, 
various other VF genes from putative foodborne pathogens such as 
Salmonella enterica, Enterococcus spp., Burkholderia spp., and 
Aeromonas spp., as well as human pathogens including Klebsiella 
pneumoniae and Acinetobacter baumannii, among others, were 
detected of discrete samples in both manure and water. In general, the 
soil samples from both regions exhibited very low abundance of VF 
genes (Supplementary Figure S5).

Community resistome

A total of 109 antibiotic resistance (AMR) genes associated with 
18 antibiotic class/subclasses were identified using a detection 
threshold of at least 40% gene coverage (Figure 8). Among those, 
tetracycline exhibited the highest abundance (58.55%), followed by 
macrolide (13.99%), streptomycin (4.62%), vancomycin (4.28%), 
lincosamide (4.23%), cephalosporin (3.51%), beta-lactam (1.81%), 
carbapenem (1.72%), sulfonamide (1.62%) and pleuromutilin (1.03%) 
(Supplementary Table S6). Altogether, these 10 classes of antibiotics 
accounted for over 95% of all AMR gene abundances. In terms of 
prevalence, vancomycin displayed the highest prevalence, detected in 
25 out of 60 environmental samples, followed by tetracycline (21 out 
of 60), lincosamide (18 out 60), streptomycin (14 out of 60), and 
macrolide, cephalosporin, carbapenem and sulfonamide (each 
detected in 12 out of 60 samples). Colistin and tobramycin resistant 
genes were also observed but with low abundance and prevalence 
(0.11 and 0.06%, respectively and in 1 out of 60 samples). Notably, 
colistin is considered as a last-resort antibiotic for treating patients 
when other drugs are ineffective. Interestingly, tetracyclines, 
macrolides, streptomycin, lincosamides (specifically pirlimycin), 
cephalosporins, beta-lactams, and sulfonamides were among the 
antibiotics used at various times in the history of the 
participating farms.

The microbial communities in both Alabama and Tennessee 
exhibited similar abundances of the community resistome (54% vs. 
46%, respectively, Supplementary Table S6). All manure samples 
contained at least one antimicrobial resistance (ARM) gene, while 90% 
of water samples and in 55% of soil samples harbored at least one 
AMR gene. Colistin and tobramycin resistance genes were exclusively 
identified in Tennessee cattle farm water and were absent in Alabama. 
Quinolone resistance genes were solely detected in Alabama poultry 
manure microbiota. Sample-wise, manure microbiota harbored over 
91% of the AMR genes, in both states, accounting for 50.29 and 
41.14% in Alabama and Tennessee, respectively; followed by water 
(5.25%) and soil microbiota (3.32%). Interestingly, soil microbiota 
alone harbors three-quarters of the total vancomycin resistance gene 
abundances shared between the two states (Alabama, and Tennessee, 
56.20 and 21.03%, respectively). Surprisingly, soil microbiota in 

Tennessee harbors no other resistance genes but vancomycin alone 
(Figure 8).

The average relative abundances of AMR genes were 1.71 times 
higher in poultry farms compared to cattle farms. However, the 
uneven collection of samples with 5 poultry samples from Alabama 
and 2 from Tennessee, compared to 25 cattle samples from Alabama 
and 28 from Tennessee, due to poultry farm visit restriction during 
the COVID-19 pandemic, limits our ability to perform a confirmatory 
statistical analysis.

Community ecology

Envfit analysis
To further assess potential association between antimicrobial 

resistance and the sample types studied, an envfit analysis were 
performed which fits sample types onto ordination results derived 
from multivariate analyses of AMR gene data. The projections of 
points onto vectors have maximum correlation with corresponding 
environmental variables, and the factors show the averages of factor 
levels. Here vectors are antimicrobial resistances and sample types 
were environmental variables. The length of the arrows indicates the 
strength of association (significance), while the proximity of samples 
to the arrows indicates the strength of their relationship (R-value). 
Our analysis revealed that most soil samples (ACS, TCS, and TPS) are 
clustered together, apart from two samples that exhibited a closer 
ordination to colistin and glycopeptide (e.g., vancomycin) resistances 
(Figure 9). Same is true for manure samples. All manure samples 
(ACM, TCM and APM) clustered in the upper right quadrant, 
pointing toward several prevalent antimicrobials, including 
lincosamide, streptogramin, phenicol/quinolone, pleuromutilin, 
sulfonamide, trimethoprim, aminoglycoside, fosfomycin, fusidic acid 
and lincosamide. Likewise, all water samples (TCW, ACW and APW) 
were positioned in the bottom right quadrant pointing toward beta-
lactam, nitroimidazole and tetracycline resistances (Figure  9). In 
general, manure microbiota harbored more diverse AMR genes 
compared to water and soil microbiota, which could potentially 
be attributed to observed high diversity of microbial composition in 
manure samples across both states.

Network of ARG subtypes and microbial taxa
In this study, the hypothesis that patterns of co-occurrence 

between antimicrobial resistance genes (ARGs) and microbial taxa 
across different environments might reveal potential host carriers 
of ARGs were explored. This hypothesis rests on the observation 
that if ARGs and the co-occurring microbial taxa show 
significantly similar abundance trends (Spearman’s ρ > 0.8, p-value 
<0.01), it suggests specific taxa may harbor these genes, as 
supported by Forsberg et al. (2014). Our analysis confirmed this 
hypothesis, with strong correlations and distinct clustering of ARG 
subtypes and microbial genera forming distinct clusters evident in 
Figure  10, indicating potential ARG hosts within microbial 
ecosystems. Notably, the tetracycline resistance gene, tetY, is 
associated with 15 microbial genera, alongside other ARGs like 
blaPME and aadA7 within the same cluster. Remarkably, a 
bacteriophage, Luckybarnesvirus, is also part of this assemblage, 
co-occurring with these three ARGs. Additionally, macrolide 
resistance genes [erm(A), erm(B), erm(C), erm(F), erm(33), 
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mph(N), mph(C), mph(H), msr(D), msr(E)] are significantly 
related to 45 genera across eight clusters, with two bacteriophages 
included. A distinct cluster shows a combination of nine ARGs, 
representing resistance to macrolide (ermA, erm33 and mphH), 
trimethoprim (dfrD and dfrG), fusidic acid (fusF), streptogramin 
A (vgaE), streptomycin (str) and aminoglycoside (ant-9-la), linked 
to five taxa, including Streptococcus. This exemplifies the 
widespread distribution of resistance genes across various genera, 
with tetracycline and vancomycin resistance genes notably 
prevalent, associated with 34 and 11 genera, respectively. Genus 
Pseudomonas has been noted to correlate strongly with multiple 
ARGs such as blaTEM, qnrB, and sul1 genes, suggesting a nexus of 
multidrug resistance. Similarly, Acinetobacter spp. exhibit 
connections to acquired ARGs like armA and carbapenem-
resistant genes, indicating its role in critical resistance mechanisms. 
Although both Pseudomonas and Acinetobacter are known for 
intrinsic resistance, this study specifically identified acquired 
resistance genes that contributed to the spread of resistance 
mechanisms beyond their intrinsic capacities. These acquired 
ARGs contribute significantly to multidrug resistance. Escherichia 
spp. show correlations with an extended spectrum of β-lactamases, 
represented by genes such as blaCTX-M and 

blaSHV. Bacteriophages have emerged within clusters, linked to 
the dissemination of ARGs such as mecA, which is fundamental in 
methicillin resistance. Genera like Bacillus and Staphylococcus are 
visualized in close association with tetracycline resistance genes, 
denoted by tet genes.

Analysis also revealed taxa with multiple ARG associations 
appearing to be hotspots for a variety of ARGs. For instance, Klebsiella 
is observed to be  associated with blaKPC, blaNDM, and 
aminoglycoside resistance genes. Enterococcus genera are connected 
to vancomycin resistance genes (vanA and vanB) and exhibit links to 
genes imparting resistance to macrolides. The blaNDM gene exhibits 
associations with several taxa, including Klebsiella, Escherichia, and 
Acinetobacter, indicating its prevalence across diverse bacteria. Genes 
such as qnr, conferring quinolone resistance, are linked with a broad 
spectrum of genera, reflecting the widespread nature of this resistance.

One of the last resort antibiotics for infection treatment is 
colistin; colistin resistance gene (mcr-10) which was found associated 
with 9 separate genera including Rhizobacter, identified from one of 
ten Tennessee cattle farm collected water. Soil samples were less 
diverse and harboring lower abundance of antimicrobial resistance 
genes. However, soil microbiota was rich in vancomycin resistance 
where three vancomycin resistance genes and gene regulators (vanR, 

FIGURE 8

Community resistome profiles observed in soil, manure and water samples collected from cattle and poultry farming systems in Alabama and 
Tennessee. The figure represents antimicrobial resistance genes (ARGs) detected using a detection threshold of ≥40% genes coverage.
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vanS and vanT) were found associated with 11 genera including 
Pediococcus. Among food borne pathogens, Staphylococcus was 
found associated with tetracycline resistance [tet(K)]. No other food 
borne pathogens were captured in this network 
co-occurrence analysis.

Discussion

Understanding the dynamics of microbial community, resistome, 
and virulome across various farm samples such as water, manure, and 
soil, is important for advancing farming practices and enhancing our 
understanding of these ecosystems. Previous studies (Durso et al., 
2012; Zhu et al., 2013; Forsberg et al., 2014) have emphasized the 
crucial role of microbial communities in AMR dissemination within 
agricultural settings and the need for comprehensive surveillance in 
livestock environments to safeguard public health. Conducting a 
detailed investigation of microbial diversity, community resistome, 
and farming practices, this study offers critical scientific insights for a 
sustainable agricultural system. Demographic trends among cattle and 
poultry farmers in Tennessee and Alabama, predominantly older 
males with limited education, impact the adoption of advanced 
farming practices, including AMR management. Regional differences 
in manure management and dead animal disposal practices 
underscore the variations in environmental management strategies 

between the states. Through thorough analysis, the study provides 
valuable insights into the interplay of microbial communities within 
agricultural environments and suggests strategies for mitigating AMR 
dissemination and optimizing agricultural sustainability.

Multi-kingdom microbiome analysis uncovered over 1950 
microbial species across four major kingdoms in Alabama and 
Tennessee. Bacteria, comprising over 1800 species, emerged as the 
predominant kingdom, closely followed by viruses, with minimal 
representations of Archaea and Fungi. High prevalence of bacteria is 
in concordance with previous study (Pershina et al., 2015) reporting 
the significant roles of Proteobacteria and Actinobacteria in 
agricultural soils for nutrient cycling and soil structure maintenance. 
Interstate variability in bacterial phyla was observed reflecting 
Proteobacteria being most abundant in both states, with variations in 
the abundance of other phyla like Cyanobacteria and Actinobacteria. 
These variations might be a results of distinct environmental and 
agricultural conditions influencing the soil microbiota (Chen et al., 
2018). Notable difference was also observed in the bacteriophage 
composition across states, highlighting the substantial role of 
bacteriophages in modulating bacterial populations, influencing 
nutrient cycling, and overall soil health (Wang et al., 2022; Au et al., 
2021; Choudhary et al., 2021; Ye et al., 2019). The high abundance of 
bacteriophages in cattle manure is concerning due to their established 
role in AMR transmission (Gummalla et al., 2023; Colavecchio et al., 
2017). This could potentially undermine the effectiveness of manure 

FIGURE 9

Envfit analysis showing relatedness of environmental samples with antimicrobial resistance (AMR). The length of the arrow indicates the strength of 
association (significance), while the proximity of samples to the arrows indicates the strength of their relationship. Arrow number indicates the AMR 
type as mentioned in the legend. Each dot represents individual samples. Color legend indicates the sample type. In each of the five-digit 
alphanumeric numbers of samples, 1st digit represents the state: “A” for Alabama, “T” for Tennessee; 2nd digit represents farming practices; “C” for 
Cattle, “P” for Poultry; and third digit represents samples types: “W” for Water; “S” for Soil and “M” for Manure, and finally numeric value represents the 
individual samples number.
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as biofertilizer by altering the microbial communities and promoting 
the spread of resistance genes, eventually compromising soil health 
(Ross and Topp, 2015; Roux et  al., 2015). Understanding these 
microbial dynamics is, therefore, crucial for improving agricultural 
practices and managing microbial ecosystems.

Notable heterogeneity was observed in microbial communities 
across soil, manure, and water samples, reflecting the significant 
influence of environmental niches on microbial distribution and 
function. This findings is consistent with Lopatto et al. (2019), which 
reported how swine manure application significantly impacted soil 
microbiome profiles and AMR dynamics. The study further supports 
the idea that these microbial communities are dynamic entities shaped 
by geographic and agronomic factors, as also noted by Constancias 
et al. (2015), who obseved spatial variability in microbial communities 
related to diverse soil properties and land-use patterns, mirroring the 
interstate differences observed here. The predominance of 

Actinobacteria and Proteobacteria in these ecosystems contrasts the 
predominance of Acidobacteria reported by Nkuekam et al. (2018). 
This discrete observation may indicate influence of local agricultural 
practices in shaping the microbiome. The predominance of 
Actinobacteria in soil samples makes ecological sense due to their 
known role in organic matter decomposition which contributes to soil 
fertility and productivity (García-Orenes et al., 2013; Yaradoddi and 
Kontro, 2021). Similarly, the prevalence of Proteobacteria in aquatic 
environments aligns with their known ecological adaptability and 
crucial role in biogeochemical cycles and consistent with van der 
Heijden and Hartmann’s (2016) finding. However, their known 
potential as vectors for ARGs raise concerns and emphasize the need 
for vigilant water quality management (Li et al., 2022a). Additionally, 
the observed dominance of Cyanobacteria, in Tennessee’s water 
samples, may indicate nutrient overabundance, particularly nitrogen 
and phosphorus, and low dissolved oxygen, which could be harmful 

FIGURE 10

The network analysis revealing the co-occurrence patterns between antimicrobial resistance gene (ARG) subtypes and microbial taxa. The nodes were 
colored according to ARG types and genus. A connection represents a strong (Spearman’s correlation coefficient ⍴>0.8) and significant (p-value < 
0.01) correlation. Antimicrobial resistance genes (ARGs) with 40% or higher coverage are used to generate this figure.
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for aquatic species. The distinct microbial profiles in manure samples 
from Alabama and Tennessee likely reflects differences in farming 
practices, such as feed composition and antibiotic use, which 
influences both microbial populations and ARG profiles (Marutescu 
et al., 2022). Collectively, these observed heterogeneities in microbial 
communities among sample types and farming systems underscore 
the importance of localized management practices tailored to specific 
microbial ecologies to maintain ecological balance and enhance 
agricultural safety and productivity.

The exploration of microbial diversity across agricultural 
ecosystems in Alabama and Tennessee revealed valuable insight into 
how localized environmental factors and farming practices shape 
microbial landscapes. Alpha diversity analysis, using Shannon and 
Faith’s phylogenetic indices, revealed that most Tennessee sample 
types generally exhibited higher microbial diversity and species 
richness, compared to Alabama. This difference is likely due to state-
specific agricultural practices, environmental policies, or climatic 
conditions favoring microbial heterogeneity (Fierer et  al., 2012). 
Among the sample types, manure samples consistently showed higher 
microbial diversity and richness, which is expected as it provides 
nutrient-rich environments conducive to microbial growth. While 
such rich microbial ecosystem can enhance nutrient cycling, soil 
fertility, and resilience against pathogens (Wagg et al., 2014), it also 
can serve as a reservoir for AMR genes. As a result, high diversity in 
Tennessee manure samples could be  both an opportunity for 
biofertilization as well as a potential risk for AMR dissemination if not 
managed properly (Heuer et al., 2011). Lower phylogenetic diversity 
in water samples, particularly in Tennessee, likely indicate ecological 
stress or the impact of improper agricultural practices such as 
antibiotic or chemical use, affecting water quality and runoff 
management (Acero Triana et al., 2021).

Enterotyping analysis identified four distinct clusters, highlighting 
the diverse microbial ecosystems within these farm environments. 
Manure samples, as usual, exhibited the highest variety of enterotypes 
indicating a rich and complex microbial community that can play a 
role in shaping soil microbiota (Heuer et al., 2011). In contrast, soil 
samples displayed fewer clusters, indicating lower microbial diversity, 
possibly due to the more stable, structured soil environment. This 
unique ecosystem of farm-associated soils, distinct from natural soil 
habitats, might be responsible for limiting microbial variations and 
contributing to the observed lower diversity (Wagg et al., 2014). Water 
samples demonstrated an intermediate level of diversity, reflecting the 
dynamic nature of aquatic microbial populations routinely influenced 
by nutrient availability and water flow dynamics (Wall et al., 2015). 
State-wise differences in cluster distributions indicate distinct 
microbial landscapes between Alabama and Tennessee, with 
Tennessee exhibiting greater microbial diversity, including unique 
clusters such as E3. The differential microbial landscape observed in 
this analysis emphasizes the need for targeted management practices 
to enhance microbial diversity in these ecosystems.

Principal Coordinate Analysis (PCoA) revealed substantial 
microbial compositional differences among various sample groups, 
with pronounced differences observed in manure samples from 
Alabama and Tennessee. This observation aligns with the alpha 
diversity analysis, which shows relatively lower microbial diversity 
in Alabama cattle manure compared to Tennessee. Such differences 
might reflect the variation (more diverse or uniform) of livestock 
diets being used or other factors like antibiotic or chemical usage 

and farming practices (Jami et  al., 2013; Shawver et  al., 2021). 
Moreover, the significant variation observed among combined soil, 
water, and manure samples from both states emphasizes the 
complex dynamics of microbial communities across different 
environmental compartments within farm ecosystems. These 
findings highlight the dynamic influence of agricultural practices 
and environmental factors on microbial diversity, as supported by 
ecological literature (Fierer et  al., 2010), underscoring the 
importance of studying multiple sample types to achieve a 
comprehensive understanding of microbial ecology and its 
implications for ecosystem functioning.

The differential abundance analysis (DAA) unveiled notable 
variations in microbial taxa across sample types and regions, 
highlighting their ecological significance. For instance, Deinococcus 
and Ligilactobacillus were consistently enriched in Alabama samples, 
reflecting their known ecological roles. Deinococcus is known for its 
robustness against environmental stressors, contributing to nutrient 
cycling and ecosystem resilience (Daly et  al., 2007), while 
Ligilactobacillus (formerly Lactobacillus) spp., plays an important role 
in food fermentation processes, and thereby influences microbial 
dynamics in farm ecosystems (Vinderola et al., 2019). The analysis also 
revealed characteristic microbial signatures in water, soil, and manure 
samples, illustrating the interplay between microbial communities and 
environmental factors (Gomez-Alvarez et al., 2009). The presence of 
Deinococcus, Noviherbaspirillum, Pseudarthrobacter, Hymenobacter, 
Spirosoma, Methylorubrum, and Sphingomonas genera in water 
samples has ecological implications. For instance, Pseudarthrobacter 
and Hymenobacter contribute to organic matter decomposition and 
nutrient cycling in water environments (Gomez-Alvarez et al., 2009), 
while Spirosoma species assist in the breaking down complex organic 
compounds (Vinderola et  al., 2019). Methylorubrum and 
Sphingomonas play roles in water quality and environmental 
remediation by degrading organic pollutants (Fujii et al., 2003), while 
Deinococcus species resist environmental stressors (Daly et al., 2007) 
and Noviherbaspirillum plays roles in nutrient cycling and soil health, 
all indicative of a healthy aquatic ecosystem (Lin et al., 2013). In soil 
samples, the differential abundance of Enhydrobacter and Caldimonas 
between Alabama and Tennessee has ecological relevance. For 
instance, Enhydrobacter degrades complex organic compounds in soil 
environments, reflecting variations in organic matter availability or 
soil nutrient composition between the regions (Premalatha et  al., 
2015). Conversely, the higher abundance of Paracoccus and 
Rubrobacter in Alabama soils may indicate potential ecological 
adaptations to local conditions. Paracoccus contributes to soil fertility 
by enhancing nitrogen and phosphorus availability (Zeng et al., 2022), 
while Rubrobacter plays a crucial role in soil organic matter 
decomposition and nutrient cycling (Raimi et al., 2023). In manure 
samples, the differential abundance of Enterococcus, Bifidobacterium, 
and Lactobacillus suggests implications for agricultural ecosystems 
and human health (Arias and Murray, 2012; Turroni et  al., 2018; 
Afanador-Barajas et al., 2021). Enterococcus indicates potential risks 
of AMR gene transfer to environmental bacteria (Arias and Murray, 
2012), Bifidobacterium, known for its probiotic properties, suggests 
fecal contamination (Turroni et al., 2018), Lactobacillus spp. influence 
microbial community structure and nutrient cycling in agricultural 
soils (Afanador-Barajas et al., 2021), while Rhodococcus and 
Nocardioides contribute to organic matter decomposition and nutrient 
cycling in manure-amended soils (Ma et al., 2021). Moreover, the 

https://doi.org/10.3389/fmicb.2024.1443292
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kilonzo-Nthenge et al. 10.3389/fmicb.2024.1443292

Frontiers in Microbiology 17 frontiersin.org

differential abundance of Comamonas between cattle and poultry 
samples underscores farming practices’ influence on microbial 
community dynamics, with Comamonas species commonly inhabiting 
animal intestinal microbiomes (Ryan et al., 2022).

The identification of at least 82 distinct virulence factor (VF) 
genes, encompassing diverse functional categories such as adhesion, 
biofilm formation, motility, toxin production, immune modulation, 
nutritional/metabolic factors, effector delivery systems etc., in this 
study underscores the dynamic nature of the community virulome 
and reflect the multifaceted strategies employed by microbes to 
colonize hosts and cause disease (Wu et al., 2008). Notably, 70% of 
these genes were detected in Alabama, primarily in manure and water 
samples from cattle and poultry farms, reflecting the impact of 
agricultural activities on the environmental virulome (Li et al., 
2022b). The detection of VF genes related to effector delivery systems 
in poultry manure samples from Alabama suggest potential spread of 
VFs within the microbial community (Curtis et al., 2005). The overlap 
of VF genes in soil and water samples with those in manure points to 
contamination through runoff, indicating potential VF dissemination 
beyond agricultural areas (Wu et al., 2008). Interestingly, the various 
non-pathogenic VF genes, typically associated of E. coli O157:H7, 
Shigella spp., and Salmonella spp., were detected, but their major 
pathogenicity factors like intimin (eae) and shiga toxin (stx) remined 
undetected. This suggests that these non-pathogenic trait-associated 
VFs are perhaps widespread within environmental microbial 
communities, serving basic survival and fitness functions across 
diverse bacterial communities (Reiland et al., 2014). Detection of 
Salmonella enterica rpoS gene, essential for its survival under stress, 
indicates that infection determinants may also confer benefits for 
bacterial survival outside the host (Abdullah et  al., 2017). 
Additionally, VF genes from Mycobacterium, Pseudomonas, 
Burkholderia, and Enterococcus in soil and water samples highlights 
the vast genetic diversity in these ecosystems (King et  al., 2017; 
Egberongbe et al., 2023; Padilla and Lobos, 2013). The detection of 
VF genes associated with diarrheagenic pathogens in manure samples 
as well as putative foodborne pathogens in water samples highlights 
public health risks, emphasizing the need for rigorous water quality 
monitoring and pretreatment before agricultural use to minimize 
transmission risks and ensure environmental health and safety 
(Rodrigues et al., 2020; Sen and Rodgers, 2004). Finaly, it is important 
to note that mere presence of these VF genes does not necessarily 
indicate the presence of pathogens but may indicate the potential 
carriage of these genes by various community members. This 
highlights the vast reservoir of genetic diversity within natural 
microbial populations, providing opportunities for ceratin pathogens 
to acquire, assemble, and exploit a subset of these genes for survival, 
fitness, or pathogenicity within their ecological niche or when 
encountering a suitable host (Baquero et al., 2022; Mattock and 
Blocker, 2017).

The community resistome analysis identified 109 ARGs associated 
with 18 antibiotic classes/subclasses, with tetracycline being the most 
abundant. Its high abundance is consistent with its widespread usage 
in human and veterinary medicine, as well as its persistence in the 
environment (Martinez, 2009; Bengtsson-Palme et  al., 2017). 
Vancomycin emerged as the most prevalent resistance gene, raising 
concerns about its potential transfer to clinically relevant pathogens, 
given the interconnected nature of human, animal, and environmental 
health. This emphasizes the need for robust surveillance and 

mitigation efforts (Wegener, 2012). Soil samples exhibited 
predominant resistance to colistin and vancomycin, reflecting 
environmental antibiotic resistance trends (Bengtsson-Palme et al., 
2017), while manure sample exhibited resistance to a wide range of 
antibiotics, highlighting the impact of agricultural practices on 
resistance dynamics (Durso et al., 2012; Holmes et al., 2016). Water 
samples primarily harbored genes associated with beta-lactam, 
nitroimidazole, and tetracycline resistance, suggesting potential 
dissemination through water sources (Larsson, et  al., 2018). The 
exclusive detection of colistin and tobramycin resistance genes in 
Tennessee cattle farm water, despite their rare use in cattle farming, 
suggest potential contamination from hospitals wastewater or 
improper pharmaceutical disposal (Olaitan et al., 2014). Conversely, 
quinolone resistance genes solely in Alabama poultry manure suggests 
specific management practices or selective pressures driving 
dissemination of these genes (Wang et  al., 2017). Overall, high 
prevalence of ARGs in farming systems raises concern for ecosystem 
health and food safety, posing risks of multidrug-resistant pathogens 
emergence and contamination of food products with antibiotic-
resistant bacteria, threatening public health (Larsson, et  al., 2018; 
Holmes et al., 2016; Bengtsson-Palme et al., 2017).

The cohesive clustering of soil samples around colistin and 
glycopeptide (e.g., vancomycin) resistance genes in the envfit analysis 
suggest potential contamination from anthropogenic sources, as these 
genes are uncommon in soil under natural conditions (Li et al., 2009; 
Zhu et al., 2017; Zhu et al., 2013). The clustering of manure samples 
toward a diverse array of antimicrobials correlates with high microbial 
diversity and species richness observed in diversity analysis and aligns 
with prior research (Martinez, 2009; Durso et  al., 2012). Such 
prevalence of diverse antimicrobials likely arises from extensive 
antimicrobial use in livestock farming, leading to the accumulation of 
antibiotic residues and active drug compounds in animal waste, which 
subsequently contaminates manure (Durso et  al., 2012). These 
findings underscore the need for caution when using manure as 
fertilizer. The clustering of water samples around beta-lactam, 
nitroimidazole, and tetracycline resistances genes suggests that farm 
aquatic environments may serve as reservoirs for these resistance 
genes. The occurrence of beta-lactam and tetracycline resistance likely 
reflects their extensive use in livestock farming (Bengtsson-Palme 
et  al., 2017; McEwen and Fedorka-Cray, 2002). In contrast, the 
presence of nitroimidazole resistance, because of its uncommon use 
in agriculture, may indicate their environmental presence and 
contamination from wastewater (Löfmark et  al., 2005). Further 
research is needed to evaluate their prevalence in Alabama and 
Tennessee water sources (Malayil et al., 2022; Bergeron et al., 2017).

This study specifically focused on identifying acquired resistance 
genes, due to their potential for horizontal gene transfer and 
contribution to multidrug resistance. The comprehensive network 
analysis of AMR genes and microbial taxa revealed widespread 
distribution of ARGs across diverse microbial taxa, defing the notion 
of single-source ARG origins. Genes associated with tetracycline and 
vancomycin resistance showed associations with broad range of 
genera (34 and 11 genera, respectively). This pattern demonstrates 
extensive dissemination of acquired ARGs within microbial 
communities through horizontal gene transfer. The association of 
ARGs such as blaKPC, blaNDM, and quinolone resistance genes with 
multiple genera including Pseudomonas, Acinetobacter, and 
Escherichia, corroborates findings from clinical isolates (Cantón et al., 
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2012) and suggests a convergence of resistance patterns across clinical 
and environmental realms. This is particularly concerning for 
notorious genera like Klebsiella and Enterococcus due to their roles in 
nosocomial infections and as hubs for ARGs (Mathur and Singh, 
2013). The co-occurrence of ARGs with heavy metal resistance and 
biocides, as also seen in both clinical and environmental microbes (Pal 
et al., 2016), points to an interconnected resistance network that poses 
public health risks. The co-occurrence of ARGs like aad9, nimC, and 
cmx with multiple bacterial genera and bacteriophages, including 
those infecting Escherichia and Salmonella, illustrates the role of 
phages in ARG dissemination (Gummalla et al., 2023). The association 
of resistance genes mcr-10, blaFRI, and cepS with seven bacterial 
genera, and the co-occurrence of fosA8, blaSED, oqxB, and blaCMY 
in five other genera, further illustrate the intricate resistance networks 
within microbial communities. The notable presence of tetY, blaPME, 
and aadA7 across 14 bacterial genera and the bacteriophage 
Luckybarnesvirus as well as the co-occurrence of genes like ermB, 
tetB(P), blaAIM, blaPOM, aac(6′)-Iz, and blaL1 suggests a complex, 
multifaceted resistance landscape. The unique resistome of soil 
microbiota, particularly rich in vancomycin resistance, is consistent 
with previous findings that suggest soil as a potential reservoir for 
ARGs (Aminov et al., 2001). The linkage of these genes to genera like 
Pediococcus, known for its role in food fermentation, raises questions 
about the potential transmission routes of ARGs into the human 
microbiome (Clewell et  al., 2024). Similarly, the association of 
Staphylococcus with the tetracycline resistance gene tet(K) underscores 
the possible ARG transmission via the food chain (Smith et al., 2002). 
Finally, our findings advocate for a comprehensive ‘One Health’ 
approach, emphasizing the need to monitor environmental, 
foodborne, and phage-mediated ARG transmission for effective AMR 
mitigation strategies.

In conclusion, this study provided deep insights into the complex 
dynamics of microbial communities and resistome, influenced by 
geographical, agricultural, and livestock management factors. The 
findings reveal substantial microbial diversity, demonstrating the 
intricate nature of these ecosystems and the necessity for specialized 
management strategies to enhance soil health, agricultural productivity, 
and environmental sustainability. The detection of diverse virulence 
and AMR genes, along with bacteriophages in manure, underscores the 
need for continued surveillance and further research into their genetic 
roles and transmission dynamics. The presence of cyanobacteria in 
Tennessee water additionally stresses the importance of continuous 
water quality monitoring, especially concerning the risk associated 
with cyanotoxins. The study also emphasizes the importance of 
targeted education to improve AMR management among farmers. 
However, limitations exist, such as cross-sectional design and uneven 
sample distribution between cattle and poultry, which may hinder 
comparability, causal inferences, and generalizability of findings. 
Longitudinal studies with balance sample distribution could offer more 
insights. While the study reported a broad array of ARGs, VFs, and 
bacteriophages, and their potential association with diverse microbial 
taxa, it did not assess their functional potential or transfer mechanisms. 
Future research should study dissemination and expression dynamics 
of ARGs and VFs. Moreover, the significant presence of bacteriophages 
prompts further study into other viruses, especially enteroviruses, often 
overlooked in farm settings. Finally, the findings from this 
metagenomic investigation should be considered as predictive biology, 
thus experimental validation is necessary to clarify the roles of specific 
ARG, VF, bacteriophages, and microbes. Overall, this research 

advocates for ongoing microbial surveillance and proactive 
interventions to ensure the long-term sustainability and safety of 
agricultural systems.
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